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Abstract—In this paper, we propose a generic method for
computing the rate-distortion-perception function (RDPF) of a
multivariate Gaussian source under tensorizable distortion and
perception metrics. Through the assumption of a jointly Gaussian
reconstruction, we establish that the optimal solution of the
RDPF belongs to the vector space spanned by the eigenvector
of the source covariance matrix. Consequently, the multivariate
optimization problem can be expressed as a function of the
scalar Gaussian RDPFs of the source marginals, constrained by
global distortion and perception levels. Utilizing this result, we
devise an alternating minimization scheme based on the block
nonlinear Gauss–Seidel method. This scheme solves optimally
the optimization problem while identifying the optimal stage-
wise distortion and perception levels. Furthermore, the associated
algorithmic embodiment is provided, along with the convergence
and the rate of convergence characterization. Lastly, in the regime
of “perfect realism”, we provide the analytical solution for the
multivariate Gaussian RDPF. We corroborate our findings with
numerical simulations and draw connections to existing results.

I. INTRODUCTION

The recently established field of rate-distortion-perception
(RDP) theory has attracted major interest in the information
theory community. Appearing simultaneously by Blau and
Michaeli in [1] and Matsumoto in [2], [3], the RDP framework
proposes a generalization of the classical rate-distortion (RD)
theory, originally envisioned by Shannon [4]. Echoing the
increasing body of research highlighting the limitations of
solely focusing on distortion minimization in the reconstructed
signals (see e.g., [5]–[9]), the RDP framework focuses on the
concept of perceptual quality, which refers to the property
of a sample to appear pleasing from a human perspective.
This is enacted by extending the classical single-letter RD
formulation, incorporating a divergence constraint between the
source distribution and its estimation at the destination. The
divergence constraint acts as a proxy for human perception,
quantifying the satisfaction experienced when utilizing the
data. Moreover, this divergence constraint may have multiple
interpretations and can be seen as a semantic quality metric,
measuring the relevance of the reconstructed source from the
observer’s perspective [10].

Multiple coding theorems have been developed for the
RDP framework. Under the assumption of infinite common
randomness between the encoder and decoder, Theis and
Wagner in [11] prove a coding theorem for stochastic variable-
length codes in both one-shot and asymptotic regimes. Chen et.
al. in [12] derive coding theorems for the asymptotic regime,

analyzing the three distinct operative conditions; when the
encoder and the decoder share or not common randomness,
and when both have private randomness. Originally in the
context of the output-constrained RDF, but also valid for
the "perfect realism" RDPF case, Saldi et. al. [13] provide
coding theorems for when only finite common randomness
between encoder and decoder is available. Similar results are
also presented, specifically for the RDPF, by Wagner in [14].

Similarly to the classical RD theory, the mathematical
embodiment of the RDP framework is represented by the rate-
distortion-perception function (RDPF), which, as its classical
counterpart, does not enjoy a general analytical solution.
However, despite the general complexity, certain closed-form
expressions have been developed for specific categories of
sources. For instance, binary sources subject to Hamming
distortion and total variation distance have closed-form ex-
pressions, as discussed in [1]. Similarly, for scalar Gaussian
sources under mean squared-error (MSE) distortion closed-
form expressions have been established for and squared
Wasserstein-2 distance in [15] and for Kullback–Leibler
(KL) divergence, Geometric Jensen-Shannon divergence, and
Hellinger distance in [16]. In [17] the authors have recently
derived closed-form parametric expressions using two distinct
reverse water-filling algorithms for the case of the multivariate
Gaussian source under MSE distortion and either Wasserstein-
2 distance or KL divergence perception.

The complexity associated with deriving analytical solutions
for the RDPF has prompted research into computational meth-
ods for its estimation. Toward this end, both Serra et al. in [18]
and Chen et. al. in [19] propose algorithms for the computation
of the RDPF for general discrete sources, studying respectively
the cases where the perception constraint belongs to the family
of f -divergences or Wasserstein distances, KL divergence,
and total variation distance. Alternatives to these algorithmic
approaches for the computation of the RDPF rely on data-
driven solutions employing generative adversarial networks
[1], [15], [20] which, despite providing a practical framework
for data-driven codec optimization, are highly computational-
and data-intensive and lack generalization capabilities.

A. Our Approach and Contributions

This work focuses on the design of algorithmic solutions
for the computation of the (upper) bounds obtained assuming
a multivariate Gaussian RDPF. To this end, in Section III-A

1077979-8-3503-8284-6/24/$31.00 ©2024 IEEE



we prove that, under convex and tensorizable distortion and
divergence metrics and assuming jointly Gaussian reconstruc-
tion, the optimal solution of the multivariate Gaussian RDPF
belongs to the space of the eigenvectors of the source covari-
ance matrix. In other words, an optimal solution can be char-
acterized as a set of design matrices commuting by pairs1. The
resulting optimization problem can be solved optimally using
the block nonlinear Gauss–Seidel method [22], an alternating
minimization approach for which we develop an algorithmic
embodiment (see Algorithm 1). For the specific algorithm, we
show convergence (Theorem 1) and provide an upper bound
on the worst-case convergence rate (Theorem 2). In Section
III-B, we provide an application example of Algorithm 1 con-
sidering the case of MSE distortion and squared Wasserstein-
2 divergence constraints. Leveraging the analytical results of
this example, in Section III-C we characterize the closed-form
solution of the multivariate Gaussian RDPF in the regime of
perfect realism (Corollary 2). Specifically, this result provides
the optimal stagewise distortion allocation, i.e., the distortion
introduced on each dimension of the Gaussian reconstruction,
according to what is interpreted as an adaptive water-level (see
Fig. 2).

B. Notation

Given a Polish space X , we denote by (X ,B(X )) the Borel
measurable space induced by the metric, with P(X ) denoting
the set of probability measures defined thereon. For a random
variable X defined on (X ,B(X )), we denote with pX ∈ P(X )
its probability measure and with µX and ΣX its mean and
covariance matrix, respectively. Given two random variables
X and Y , X ⊥ Y indicates their statistical independence. We
denote the diagonal of a square matrix by diag(·). Given a
square matrix A ∈ Rd, we indicate its positive definiteness
(resp. positive semi-definiteness) with the notation A ≻ 0
(resp. A ⪰ 0) and the set of its eigenvalues with {λA,i}i=1,...,d.

II. RDPF ON GENERAL ALPHABETS

We commence by providing the definition and some prop-
erties of the RDPF for general alphabets. Such preliminaries
can be found for instance in [1].

Definition 1. (RDPF) Let a source X be a random variable
distributed according to pX ∈ P(X ). Then, the RDPF for a
source X ∼ pX under the distortion measure ∆ : X 2 → R+

0

and divergence function d : P(X ) × P(X ) → R+
0 is defined

as follows:

R(D,P ) = min
PX̂|X

I(X, X̂) (1)

s.t. E
[
∆(X, X̂)

]
≤ D (2)

d(pX ||pX̂) ≤ P (3)

where the minimization is among all conditional distributions
PX̂|X : X → P(X̂ ).

1For the definition of matrix commutability, we refer the reader to [21,
Section 0.7.7]

We point out the following remark on Definition 1.

Remark 1. (On Definition 1) Following [1], it can be shown
that (1) has some useful functional properties, under mild
regularity conditions. In particular, [1, Theorem 1] shows that
R(D,P ) is (i) monotonically non-increasing function in both
D ∈ [Dmin, Dmax] ⊂ [0,∞) and P ∈ [Pmin, Pmax] ⊂ [0,∞);
(ii) convex if the divergence d(·||·) is convex in its second
argument.

III. MAIN RESULTS

A. A Generic Alternating Minimization Approach

The main goal of this section is to provide a general yet
simple algorithmic approach to compute the bounds obtained
assuming a vector Gaussian RDPF, able to tackle a large set of
divergence metrics. We begin with the characterization of (1)
for jointly Gaussian random variables under distortion measure
∆(·, ·) and divergence measure d(·||·).

Problem 1. Given a Gaussian source X ∼ N (µX ,ΣX),
ΣX ≻ 0, assume that the reconstructed random vector
X̂ ∈ RN is chosen such that the joint tuple (X, X̂) is jointly
Gaussian. Then, the reconstructed message admits a linear
(forward) realization of the form X̂ = AX + W , where
A ∈ RN×N , W ∼ N (µW ,ΣW ), W ⊥ X and ΣW ⪰ 0,
such that µX̂ = AµX + µW and ΣX̂ = AΣXAT + ΣW .
Moreover, we can cast (1)-(3) as follows:

R(D,P ) ≤ RG(D,P )

= min
A∈RN×N ,ΣW⪰0

E[∆(X,X̂)]≤D

d(pX ||pX̂)≤P

1
2 log

(
|AΣXAT+ΣW |

|ΣW |

)
. (4)

Remark 2. The upper bound R(D,P ) ≤ RG(D,P ) arises
from the assumption of jointly Gaussian reconstruction and
holds with equality only for specific distortion ∆(·, ·) and
perception d(·||·) metrics. Such cases include for example
MSE distortion and either the squared Wasserstein-2 distance
[15] and the reverse KL-distance [16].

Under the assumption of tensorizable fidelity metrics
E[∆(·, ·)] and d(·||·), i.e.,

E
[
∆(X, X̂)

]
≥

N∑
i=1

g
(
E
[
∆(Xi, X̂i)

])
d(pX ||pX̂) ≥

N∑
i=1

h
(
d(pXi

||pX̂i
)
)

with g(·) and h(·) convex functions dependent on the fidelity
metrics, applying [23, Lemma 2] in (4) leads to the following
lower bound

RG(D,P )
(⋆)

≥ min
λA,i,λΣW ,i∑N

i=1 g(E[∆(Xi,X̂i)])≤D∑N
i=1 h

(
d(pXi

||pX̂i
)
)
≤P

N∑
i=1

1
2 log

(
1 +

λA,i
2λX,i

λW,i

)

(5)
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where (⋆) holds with equality if the triplet (A,ΣW ,ΣX)
commute by pairs. The sufficient condition that achieves the
lower bound in (5) can be easily satisfied2, hence one can
replace inequality with equality without loss of generality. This
observation does not generalize beyond i. i.d. random vectors.

Proposed alternating minimization method: To solve (5),
we first introduce the (vector) optimization variables D =
[Di]i∈1:N and P = [Pi]i∈1:N such that

Di = E
[
∆(X, X̂i)

]
, Pi = d(pXi

||pX̂i
), ∀i ∈ 1 : N.

Once the slack variables above are substituted in (5), we yield

RG(D,P ) = min
D,P∑N

i=1 g(Di)≤D∑N
i=1 h(Pi)≤P

N∑
i=1

RG
i (Di, Pi) (6)

where RG
i (Di, Pi) corresponds to the stagewise RDPF given

by

RG
i (Di, Pi) = min

λA,i,λΣW ,i

Di=E[∆(Xi,X̂i)]
Pi=d(pXi

||pX̂i
)

1
2 log

(
1 +

λA,i
2λX,i

λW,i

)
.

We note that (6) defines three distinct “rate region” cases,
which - when combined - describe the entirety of the RDPF.
In particular, we distinguish the cases where either only the
distortion constraint is active (hereinafter referred to as Case
I), or only the perception constraint is active (hereinafter
referred to as Case II), or both are active (hereinafter referred
to as Case III). We remark that Case III is the most interesting
one, as the other two cases easily follow from its computation.

To find the optimal pair (D∗,P∗) in (6) we resort to an
application of an alternating minimization technique. Specifi-
cally, we define the following two subproblems of (6):

• For fixed P, (6) simplifies to

min
D

N∑
i=1

RG
i (Di, Pi) s.t.

N∑
i=1

g(Di) ≤ D. (7)

• For fixed D, (6) simplifies to

min
P

N∑
i=1

RG
i (Di, Pi) s.t.

N∑
i=1

h(Pi) ≤ P. (8)

The solutions of optimization problems (7) and (8) are of
central interest since their alternate application forms a min-
imization scheme that can optimally solve (6). This class
of alternating minimization schemes is referred to as block
nonlinear Gauss-Seidel (GS) method [22]. In the following,
we prove the convergence to an optimal point of a GS scheme
based on the solutions of (7) and (8).

Theorem 1. (Convergence) Let the optimization problem (6)
be defined for finite distortion and perception levels (D,P ).

2This is because the matrices (A,ΣW ) are design variables and can be
chosen such that they have the same eigenvectors as ΣX , for details see, e.g.,
[24, Proposition 1].

Let (D(0),P(0)) be an initial point and let the sequence
{(D(n),P(n)) : n = 1, 2, . . .} be the sequence obtained by
the alternating optimization of problems (7) and (8). Then the
sequence has a limit limn→∞(D(n),P(n)) = (D∗,P∗) and
the limit is an optimal solution of (6).

Proof: See [23, Theorem 5].
Although the GS method simplifies the optimization of

(6), subproblems (7) and (8) remain constrained optimiza-
tion problems whose solution may not be easily approached.
Therefore, to further simplify the optimization task, we define
the unconstrained optimization problem associated with (6).
Let s = (sD, sP ), with sD > 0 and sP > 0, be the
vector of Lagrangian multipliers respectively associated with
the distortion (sD) and perception (sP ) constraints. Then, the
Lagrangian function LRG(s) associated with (6) is defined as

min
D,P

LRG(D,P, s) = min
D,P

N∑
i=1

RG
i (Di, Pi)

+sD

N∑
i=1

g(Di) + sP

N∑
i=1

h(Pi).

(9)

Similarly to the constrained case, the optimal pair (D∗,P∗)
in (9) can be characterized through an alternate minimization
scheme. Hence, the associated subproblems are

• For fixed P,

min
D

N∑
i=1

RG
i (Di, Pi) + sD

N∑
i=1

g(Di) (10)

• For fixed D,

min
P

N∑
i=1

RG
i (Di, Pi) + sP

N∑
i=1

h(Pi). (11)

Assume the Lagrangian multiplier vector s to be given and
let D∗

s and P∗
s be the optimal solutions obtained from the

Gauss-Seidel method for subproblems (10) and (11), respec-
tively. Furthermore, let Ds =

∑N
i=1 g(D

∗
s,i) and Ps =∑N

i=1 h(P
∗
s,i). Then, due Lagrangian duality [25], we can

compute R(D∗
s,P

∗
s) as

RG(Ds, Ps) = LRG(D∗
s,P

∗
s, s)− sDDs − sPPs. (12)

Remark 3. The assumption of strictly positive Lagrangian
multipliers (sD, sP ) implies finite (D,P ) levels in Theorem
1, therefore guaranteeing the convergence of Algorithm 1.
However, under the assumption of bounded perception metric
d(·||·), the case sP = 0 does not violate the assumptions
of Theorem 1. In this regime, the perception constraint of
Problem 1 is inactive, making the problem equivalent to the
classical RD function problem.

To characterize the worst-case performance of Algorithm 1,
we provide an upper bound on its convergence rate.

Theorem 2. (Upper bound on the Convergence Rate) Let
{(D(n),P(n))}n=0,...,T be the sequence of iterations gener-
ated by Algorithm 1 in T iterations and let (D∗,P∗) be a
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minimizer of LRG(·, ·). Then, there exists positive and finite
constant C such that Alg. 1 guarantees that

LRG(D(T ),P(T ))− LRG(D∗,P∗) ≤ C

T
(13)

i.e., the asymptotic rate of convergence of Alg. 1 is upper
bounded by O

(
1
T

)
(sublinear convergence rate).

Proof: See [23, Theorem 6].

Algorithm 1 Algorithm of Theorem 1

Require: source distribution pX = N (µX ,ΣX) with ΣX ≻
0; Lagrangian parameters s = (sD, sP ) with sD > 0 and
sP > 0; error tolerances ϵ; initial point (D(0),P(0)).

1: ω ← +∞; n← 1;
2: while ω > ϵ do
3: D(n) ← Solution Problem (10) for (P(n−1), sD)
4: P(n) ← Solution Problem (11) for (D(n), sP )
5: ω ← ||(D(n),P(n))− (D(n−1),P(n−1))||2
6: n← n+ 1
7: end while

Ensure: D =
∑N

i=1 g(D
(n)
i ), P =

∑N
i=1 h(P

(n)
i ),

RG(D,P ) =
∑N

i=1 R
G
i (D

(n)
i , P

(n)
i ).

In Algorithm 1 we implement the alternating minimization
scheme of Theorem 1 using the unconstrained formulation
previously discussed, which allows for the computation of
any multivariate Gaussian RDPF of the form characterized in
Problem 1 as long as we can have a characterization of the
problem for the univariate case.

B. Application of the Alternating Minimization Approach

In this subsection, we apply the theoretical results of
Subsection III-A to the specific case of MSE distortion and
squared Wasserstein-2 perception constraints. We remark that
similar specializations can be developed for other divergence
measures whenever the scalar RDPF characterization is avail-
able (see e.g., [16]), as shown in the numerical examples
of Section IV. We start by solving the subproblems (7)
and (8). To this end, we leverage the RDPF provided in
[15] to characterize the function Ri(Di, Pi), which is the
stagewise RDPF for the ith dimension, under MSE distortion
metric and W2

2 perception metric, for a Gaussian source
Xi ∼ N (0, λΣX ,i). Furthermore, using the tensorization of the
squared Wasserstein-2 distance (for details see [23, Proposition
3]), the functional form of as the auxiliary optimization
variables D = [Di]i∈1:N and P = [Pi]i∈1:N is defined as
follows:

Di = E
[
||Xi − X̂i||2

]
= (1− λA,i)

2λΣX ,i + λΣW ,i

Pi = W2
2(pXi , pX̂i

) = λΣX ,i −
√
λA,i

2λΣX ,i + λΣW ,i

where X̂i ∼ N (0, λΣXi
,i) is the stagewise linear realization of

the form X̂i = λA,iXi+Wi with Wi ∼ N (0, λΣW ,i). Instead,
the tensorization functions g(·) and h(·), introduced in (6), are
equal to the identity function, i.e. g(·) = h(·) = id(·).

We derive the optimal solution of subproblem (7) for the
described case in the following theorem.

Theorem 3. Let the Lagrangian multiplier sD > 0 be given.
Then, for fixed P, the optimal stagewise distortions levels
D∗(P) = [D∗

i (Pi)]i∈i:N ∈ S achieving the minimum of (10)
are given by

D∗
i = Pi + 2

√
λΣX ,i

(√
λΣX ,i −

√
Pi

)
+

(
1

2sD
−

√
4λΣX ,i(

√
λΣX ,i −

√
Pi)2 +

1

4s2D

)
.

(14)

Proof: See [23, Theorem 7].
We now move to the solution of subproblem (8), as de-

scribed in the following theorem.

Theorem 4. Let the Lagrangian multiplier sP > 0 be given.
Then, for fixed D, the optimal stagewise perception levels
P∗(D) = [P ∗

i (Di)]i∈i:N ∈ S achieving the minimum of
(11) can be characterized as the zeros of the vector function
T (·) : RN → RN where each component is defined as

Ti(x) ≜
∂RG

i (Di, Pi)

∂Pi

∣∣∣∣∣
(Di,xi)

+ sP . (15)

Proof: See [23, Theorem 8].

Corollary 1. Let Ti : RN → R be the ith component of
the vector function T (·) defined in Theorem 4. Then, Ti is a
continuous and non-decreasing function on R. Furthermore,
Ti has at least one root in S.

Proof: See [23, Corollary 2].
Even though a closed-form solution for subproblem (8)

cannot be directly derived, the optimal P∗ can be found as
zeros of the functions {Ti}i∈1:N . Corollary 1 guarantees that
the roots of {Ti}i∈1:N can be numerically approximated using
root-finding methods, e.g., bisection method [26, Sec. 2.1].

C. RDPF under perfect realism regime

Using the results of Theorem 3, we can characterize the
optimal distortion levels in the perfect realism regime [12],
[14], i.e., P = 0.

Corollary 2. Consider the optimization problem (6) for per-
ception level P = 0. Then, for a given Lagrangian multiplier
sD > 0, the optimal solution D∗ = [D∗

i ]i∈1:N is given by

D∗
i = 2λΣX ,i +

1

2sD
−

√
4λ2

ΣX ,i +
1

4s2D
(16)

such that the distortion level D =
∑N

i=1 D
∗
i .

Proof: (16) is obtained from (14) for Pi = 0.
We stress the following technical remarks for Corollary 2.
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Remark 4. The optimal solution D∗ is well defined in the
limit sD → 0, since limsD→0 D

∗
i = 2λΣX ,i.

Remark 5. In the water-filling solution of the classical mul-
tivariate Gaussian RD function, the optimal solution D∗

RD =
[D∗

i,RD]i∈1:N for sD > 0 is shown to be

D∗
i,RD = min(w(sD), λΣX ,i) w(sD) =

1

2sD

where water-level w(sD) is independent of the marginal and
the min(·) operation is required to guarantee that D∗

i,RD

belongs to the constraint set. Heuristically, one can interpret
it as the i-th source component being discarded in the re-
construction whenever w(sD) ≥ λΣX ,i, thus upper bounding
the maximum distortion observed in the i-th component. On
the other hand, the solution identified in (16), and in general
the results of Theorem 3, can be seen as an adaptive water-
level. Indeed, in (16), w(sD) shows a dependency to λΣX ,i

that guarantees that all source components are present in the
reconstructed signal.

IV. NUMERICAL RESULTS

In this section, we demonstrate numerical simulations us-
ing Algorithm 1. All the numerical experiments have been
conducted considering a multivariate Gaussian source X ∼
N (0,ΣX) with ΣX = diag([1, 3, 5]).

1) RDPF Curves: In Fig. 1, we report the Gaussian RDPF
under MSE distortion metric and either squared Wasserstein-
2, squared Hellinger distance or KL divergence perception
metric. Focusing on the Wasserstein-2 case (Fig. 1a), we
compare the computed curve with the classical RD curve
(black line), where in the latter the perception measure has
been computed post hoc using the same divergence metric.
The result confirms that, for bounded divergence measure, the
RD curve delineates the boundary between the regions of Case
I and Case III and can be obtained as an extreme case of
RDPF surface. Additionally, the surface region of Case I can
be retrieved by rigid translation of the boundary curve, as for
any (D,P ) point in the region the perception constraint is
not active, turning the RDPF problem into the classical RD
problem. The same observations can be extended for the case
of the RDPF under Hellinger distance H2 perception metric
(Fig. 1b). However, in the case of KL divergence perception
(Fig. 1c), a different behavior emerges in the limit case of
sP → 0, i.e P → ∞, due to the unbounded nature of the
KL divergence. Therefore, the boundary between Case III
and Case I cannot be computed and, following Remark 3,
we impose a finite perception level P by setting sP ≥ 10−3.

2) Adaptive Water-Level: In Fig. 2, we examine the per-
dimension levels of distortion D∗

i and perception P ∗
i between

the source X and its reconstruction X̂ , comparing Algorithm
1 with the classical RD water-filling solution. The comparison
is conducted considering a target distortion level D = 6 while
varying the target perception level P . In the least constrained
case (P ≈ 2), the distortion level D∗

i closely follows the clas-
sical water-filling solution, whereas, in the more constrained
case (P ≈ 0), D∗

i is not distributed according to a uniform

water-level and instead adapts to each marginal. Furthermore,
as previously mentioned in Remark 5, values of distortions
D∗

1 ≥ σ2
X1

can be observed for the first dimension for the
latter case.

(a)

(b) (c)

Fig. 1: R(D,P ) for a Gaussian source X ∼ N (0,ΣX) with ΣX =
diag([1, 3, 5]) under MSE distortion metric and (a) W2

2 perception metric,
(b) H2 Hellinger distance, and (c) KL divergence.

Fig. 2: Comparison of the per-dimension distortion D∗
i and perception P ∗

i
levels between the water-filling solution and Alg. 1, for D = 6.
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