
On the benefits and caveats of exploitingQuality on Demand
Network APIs for video streaming

Tuan Tran, Dylan Gageot, Christoph Neumann,
Guillaume Bichot

Broadpeak
France

Abderrahmen Tlili, Karim Boutiba,
Adlen Ksentini

Eurecom
France

ABSTRACT
The mobile industry - via forums such as the O-RAN Alliance and
Linux Foundation CAMARA - is working on network APIs that
allow a mobile network operator to expose network capabilities to
application developers. One of these APIs is the Quality on Demand
(QoD) API, which enables the application to ask for additional
network resources for improved latency or bandwidth. In this work,
we show how an intelligent content delivery network (CDN) can
exploit these APIs to improve the quality of experience (QoE) of
video streaming despite difficult network conditions by boosting
the available network bandwidth at precise moments in time. As
the bandwidth boost is only applied whenever necessary, we avoid
the caveat of constantly and statically assigning network resources
to a service. We propose two boosting strategies both relying on
information provided by the video player via CommonMedia Client
Data (CMCD). We implemented the approach and evaluated it on
an emulation testbed and on top of an actual 5G O-RAN compliant
network capable of running xApps and the CAMARA QoD API.
Our evaluation shows the gains in terms of QoE but also highlights
possible caveats and adverse interactions with the ABR algorithm
of the video player.

CCS CONCEPTS
• Information systems→Multimedia streaming.

ACM Reference Format:
Tuan Tran, Dylan Gageot, Christoph Neumann, Guillaume Bichot and Ab-
derrahmen Tlili, Karim Boutiba,, Adlen Ksentini. 2024. On the benefits and
caveats of exploiting Quality on Demand Network APIs for video streaming.
In The 34th edition of the Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV ’24), April 15–18, 2024, Bari, Italy.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3651863.3651882

1 INTRODUCTION
The network conditions experienced by end-users of a cellular net-
work can greatly vary over time because of changing coverage, due
to the user’s mobility, interference, or because of highly loaded cells
at peak hours. In the context of video streaming, Adaptive BitRate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NOSSDAV ’24, April 15–18, 2024, Bari, Italy
© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-0613-4/24/04. . . $15.00
https://doi.org/10.1145/3651863.3651882

REST API /
xApps

CDN

Radio Access
Network

Bandwidth boost
request/release

GET /segment2?CMCD=bl%3D2300...

Bandwidth boost
applied/cancelled

Continously decide whether
to ask for or release bandwidth boost

Bandwidth boost
request/release

Figure 1: High-level architecture for bandwidth boost

(ABR) can compensate for some of these difficult network condi-
tions by having the video player requesting lower video bitrates.
However, in the best case, this comes at the price of lower video
quality and, at worst, may still lead to video freezes and rebuffering.

The mobile industry is working on mechanisms and APIs - we
call “Network APIs” - that allow an application to dynamically
control and reconfigure the radio or the core network of a cellular
network. Such control is made possible at a low-level using appli-
cation called “xApps” deployed at the RAN Intelligent Controller
(RIC) as proposed by the O-RAN Alliance [3], or at a high-level us-
ing REST APIs as specified by Linux Foundation (LF) CAMARA [9].
These APIs are not specifically tailored towards video streaming
but are open to any application provider that needs fine control
over a telecom operator’s network.

In this work, we explore how an intelligent CDN (Content De-
livery Network) can exploit these Network APIs to improve the
quality of experience (QoE) of a given video streaming session
despite difficult network conditions by temporarily requesting ad-
ditional network bandwidth (that we call “bandwidth boost”) at
precise moments in time. The CDN hereby relies on information
provided by the video player via CMCD [5], such as the buffer
length. As the bandwidth boost is only applied whenever necessary,
we avoid the caveat of constantly allocating a network slice to a
service, which avoids reserving and wasting underlying network
resources. The radio and network resources allocated to a band-
width boost are immediately released when the video streaming
session is back to safe conditions.

This concept is depicted in Figure 1. While serving the client
and using the provided CMCD information, the CDN continuously
evaluates whether to ask for a bandwidth boost for this particular
user. If needed, the CDN requests a bandwidth boost using either the
high-level REST APIs or the low-level xApps. Upon reception of the
request, the mobile radio access network allocates temporarily more
radio resources to this mobile user. The CDN releases the bandwidth
boost as soon as it considers that the boost is not required anymore.

https://doi.org/10.1145/3651863.3651882
https://doi.org/10.1145/3651863.3651882

NOSSDAV ’24, April 15–18, 2024, Bari, Italy Tran et al.

The contributions of this work are as follows:

• We provide an overview of the different Network APIs that
can be exploited by an intelligent CDN to ask for additional
resources when needed. We hereby focus on two initiatives:
(i) LF CAMARAwith its high-level Quality on Demand (QoD)
API [16] that has been demonstrated and used by some tier-
one mobile network operators [13, 18, 19], and (ii) the low-
level and radio-centric “xApps” that controls the radio access
network (RAN) as proposed by the O-RAN Alliance.

• We propose two bandwidth boost strategies for a CDN to
dynamically ask for additional bandwidth when needed: one
strategy that solely focuses on avoiding buffer underruns;
and another strategy that also takes into account the video
quality retrieved by the player, therefore trying to guarantee
a certain level of quality.

• We implemented the bandwidth boost strategies within a
caching server. We deployed and evaluated this caching
server and it’s bandwidth boost strategies within an em-
ulated network that exposes QoD API as defined by LF CA-
MARA. We also deployed and evaluated the caching server
within a 5G network for which we developed an O-RAN
xApp using the FlexRIC framework [17]. Our xApp is able
to provide additional radio resources upon request.

• We evaluate the proposed strategies, demonstrate the overall
benefits of the approach and show that we are able to im-
prove video QoE in degraded network conditions. We also
highlight limitations of some bandwidth boost strategies and
configurations due to the bad interaction with the ABR adap-
tation algorithm of the video player. This opens perspectives
to further study and design bandwidth boost strategies.

2 BACKGROUND
The LF CAMARA project defines a set of network APIs, allowing a
mobile network operator to expose network capabilities to applica-
tion developers. One of the specified APIs is the QoD API [16]. A
high-level description of the QoD API is provided in Figure 2. The
QoD API allows an authorized application to request a given QoS
profile for a specified user equipment or network flow. The QoS
profile defines the type and amount of network guarantees that
the application asks for: an amount of network bandwidth and/or
some latency guarantees. Once a QoD request is set, it can either
be explicitly removed with a specific delete API call or the request
is removed after an optional duration set in the initial QoD request.
Several commercial offers provide the QoD API [13, 18, 19, 22].

LF CAMARA focuses on specifying northbound APIs; how these
APIs are implemented or mapped to internal mechanisms to provide
the requested network capability is implementation specific. For
the QoD API, different approaches exist on how to implement a QoS
profile: (i) the QoS profile is either applied on the existing bearer
and PDU-session of the mobile device, or (ii) a new dedicated bearer
and PDU-session is created that solely transports the traffic of the
requesting application. A description of an implementation of the
QoD API is provided in [14]. In this specific setup, each of the QoS
profiles is mapped to a specific set of 3GPP specific parameters

QoS Sessions Manage QoS sessions

POST

GET

DELETE

POST

/sessions Creates a session

/sessions/{sessionId} Get QoS session information

/sessions/{sessionId} Delete a QoS session

/sessions/{sessionId}/extend Extend the duration of an active session

QoS Profiles Manage QoS profiles

GET /qos-profiles Get All QoS profiles

GET /qos-profiles/{name} Get a QoS profile for a given name

{
 "duration": 400,
 "device": {
 "ipv4Address": {
 "publicAddress": "84.125.93.10",
 "publicPort": 32000
 }
 },
 "qosProfile" : "BITRATE_HIGH"
}

Figure 2: QoD API description. (top) Overall overview of API,
(bottom) Example Json body of a new QoD session request.

that are applied to the existing bearer and PDU-session of the end-
device. These 3GPP parameters typically include the 5G Quality
Indicator (5QI) amongst others.

The advantage of re-using the existing bearer is that the profile
can be applied quickly and that it does not require specific support
from the mobile device, hence faster response time that is critical for
some applications. The drawback is that the QoS profile is applied
on all traffic of the mobile device, which includes traffic from other
applications that did not request the QoD. While this is probably
not a major issue with a mobile phone (the number of applications
running in parallel and sharing the bearer is limited), it can be
more problematic in the case of Fixed Wireless Access (FWA) as the
connection is shared amongst many different devices in the home
network. Creating a dedicated bearer and PDU-session may take
more time (in the order of a few seconds) and most mobile devices
do not support such a feature as of today. The advantage of such
approach is that the traffic is well isolated from the rest and the
network can provide better quality guarantees.

The Open Radio Access Network (O-RAN) is an initiative to
develop an open and interoperable RAN ecosystem with open in-
terfaces and specification to enable mobile network operators to
deploy and manage RAN from different vendors. This helps to re-
duce the cost and complexity of deploying RANs, and also enable
operators to innovate more quickly [15].

One of key components in the O-RAN architecture [4] is the RAN
Intelligent Controller (RIC); it runs applications that can reconfigure
RAN specific parameters and behaviors in “near-realtime”. Doing
so it is possible to reconfigure the scheduler of a base station, the
number of resource blocks allocated to a specific user equipment
etc. An xApp can therefore implement a QoD logic and APIs that
are exposed to a specified application.

On the benefits and caveats of exploitingQuality on Demand Network APIs for video streaming NOSSDAV ’24, April 15–18, 2024, Bari, Italy

3 VIDEO STREAMING BOOST STRATEGIES
AND USE CASES

We describe how to exploit QoD network APIs in the case of video
streaming and detail the different bandwidth boost strategies.

We suppose that a CDN cache server is authorized to use a
QoD network API of a cellular network, either via a CAMARA-like
network API or by relying on xApps that are deployed within the
cellular network. The cache server is either deployed within the
cellular network, e.g. in regional edge locations, or runs as part of
a global CDN [20]. When using the network API, the cache server
uses the public IP address and port as an end-user device identifier.
Such an identifier allows the network API to determine for which
device the QoS profile must be applied.1

We describe two scenarios where each has its own strategy:
• Avoiding buffer underruns: this scenario solely focuses on
avoiding video freezes (because of buffer underruns) while
accepting a quality degradation due to players retrieving
lower qualities in the ABR bitrate ladder. This scenario typi-
cally targets mobile phones that are subject to higher fluc-
tuations of the radio signal, interference and coverage; a
degradation of video quality is also less visible due to the
reduced screen size of such devices. The main metric used
in this scenario is the buffer length of the video player; the
algorithm for this scenario is described in subsection 3.1.

• Ensuring video quality: this scenario tries to maintain a cer-
tain video quality for the end-user. This scenario targets
connected TVs and set-top boxes that access the video con-
tent via FWA. Video quality variations are very visible on
such devices and should thus be avoided. Further, as the
receiving wireless device is not moving, the variation of the
wireless signal will mostly depend on the load of the cell. The
two metrics used in this scenario are the buffer length of the
video player and the retrieved video quality; the algorithm
for this scenario is described in subsection 3.2.

A cache server may implement only one or both of the above strate-
gies. This may depend on the type of deployment (e.g. a deployment
within the edge location of a mobile operator) and the capabilities
and types of subscriptions offered by the mobile operator. For a
network operator that does not offer any FWA subscription, the
cache server should only implement the first strategy. For network
operators that offer both modes, the cache server may either use in-
formation provided by the network operator to determine the type
of wireless access, or exploit HTTP User-Agent to detect SmartTVs
(hence connected via FWA) and use appropriate boost strategy.

The video players provide the information required for the above
strategies via CMCD. Namely, we exploit the fields bl, specifying
the video player buffer length in milliseconds and br, specifying the
encoded bitrate of the requested object. For the latter information
it is also possible for the server to exploit the URL path or file name
which often (but not necessarily) provides hints on the video quality
being requested by the player.

For all proposed boost strategies we try to minimize the “budget”
spent and to release a bandwidth boost as soon as it is not more

1Note that other identifiers, including the private IP address or the IMSI number are
also supported but these identifiers may require additional end-user device support or
code to provide this information to the cache server.

Table 1: Experimental setup.
(top) QoS profiles and (bottom) video ladder.

QoS-Profile Requested bandwidth (Mbps)

High 6
Medium 4

Low 2
Live video encoding ladder (Mbps) 0.8, 1.5, 2.5, 3.5, 5

required to reach one of the above objectives. The budget may be
expressed as the number of requests or a duration during which
we requested a certain bandwidth. We detail and evaluate different
budget metrics in the evaluation (see subsection 4.1).

3.1 Buffer-based boost strategy
We propose a simple buffer-based boost strategy. We define two
thresholds: bl_min and bl_max. bl_min defines the minimum buffer
length uponwhich the bandwidth boost should be triggered. bl_max
defines the buffer length upon which an ongoing bandwidth boost
can be withdrawn. At reception of an HTTP request for a video
segment the cache server extracts the CMCD information contain-
ing the buffer length attribute (bf). If the buffer length is below
bl_min the cache server asks for a bandwidth boost: it invokes the
network API to request a certain QoS profile for the end-user. Once
the bandwidth boost has been requested, the cache server contin-
ues to observe the buffer length attribute (bl) of this streaming
session. Once the buffer length is greater or equal than bl_max the
cache server asks for the cancellation of the bandwidth boost. In
the evaluation (subsection 4.1) we evaluate and discuss the impacts
of the QoS profile chosen, and the values bl_min and bl_max.

3.2 Quality-based boost strategy
The above buffer-based strategy can be extended to take into ac-
count the video quality being retrieved: in addition to the band-
width boost triggered by the buffer length, additional bandwidth
boost might be triggered because of the video quality. We define
three parameters: min_quality, max_quality and nb_quality_hit.
nb_quality_hit defines the number of consecutive segments in
a quality below or equal min_quality that the cache server can
tolerate before asking for a bandwidth boost at a specified QoS
profile. nb_quality_hit also defines the number of consecutive seg-
ment downloads that must have occurred in a quality of at least
max_quality before releasing the bandwidth boost.

4 IMPLEMENTATION AND EVALUATION
We implemented a cache server that is able to interpret CMCD
information provided by a video player and that implements the
two bandwidth boost strategies discussed in this paper.

We also implemented the LF CAMARA QoD API that is called by
our caching server according to the used bandwidth boost strategy.
The QoD API allows us to abstract the underlying network and
mechanisms that apply the requested QoS profile. We tested three
different QoS profiles that can be requested via the QoD API as
described in Table 1. We implemented two approaches for the actual

NOSSDAV ’24, April 15–18, 2024, Bari, Italy Tran et al.

Cache server
(BW boost

decision logic and
xApps client)

Interface 2 without QoD

NetEm

Interface 1 with QoD

NetEm

CMCD-enabled players

Figure 3: Emulated mobile network

underlying network and the application and enforcement of the
requested QoS profile within the network: (i) tc-based network em-
ulation as described in subsection 4.1; and (ii) an O-RAN compliant
5G RAN as described in subsection 4.2.

During our evaluation, we measured and report different metrics
that reflect the QoE as experienced by the end-user and the budget
spent by performing bandwidth boosts:

• Stall duration: Cumulative duration of video freezes because
the player buffer is empty.

• Average bitrate: Average video bitrate retrieved by the video
player.

• Number of boosts: Number of times the cache server re-
quested a bandwidth boost.

• Duration of boosts: Cumulative duration in seconds of band-
width boost.

For each reported metric we performed 10 test runs. Each run lasts
for 30 minutes and average results are reported.

We relied on the dash.js [8] player (version 4.7.3), which pro-
vides buffer length and bitrate information via CMCD. We used
the default dash.js’ ABR strategy called “Dynamic”. We customized
the player to report QoE video metrics at the end of the streaming
session. The tests were performed automatically using Python Se-
lenium [1]. We used a live video that we produced by looping an
approximately 12 minutes long video file "Tears of Steel" encoded
with a 5-layer video ladder as described in Table 1. The segment
duration is 2 seconds.

4.1 Emulation
We used tc NetEm to emulate network conditions. To mimic real-
istic network conditions, we based our evaluation on the network
bandwidth traces Cascade, Intra-cascade and Spike provided with
the ACM MMSys 2020 Twitch Grand Challenge [21]. Similarly
to [6], we adapted the bandwidth values of the traces resulting
in a bandwidth pattern described in Table 2. tc applies the band-
widths and durations specified in the traces with a RTT of 50ms.
Episodes with low bandwidth (1Mbps) emulate the difficult wireless
conditions. While a little above the lowest video encoding bitrate
of 800kbps, such bandwidth is sufficient to slowly drain the video
player buffer (due to the additional audio of 128kbps and manifest
requests combined plus a small variability in video encoding rate).

The cache server exposes two interfaces to the players (Figure 3).
We applied the same bandwidth patterns on both interfaces. When
the cache server requests a QoS profile via the network API, we
overrode the bandwidth of the target interface with the bandwidth
corresponding to the QoS profile. When the QoD request is deleted,
tc falls back to the bandwidth set in the network bandwidth pattern.

Table 2: Repeated network pattern used in the evaluation
derived from [21] with a RTT of 50ms.

Pattern Bandwidth pattern (Mbps) Duration (s)

Cascade 6, 1 30
Intra-cascade 6, 3, 1, 3 15

Spike 6, 1, 5 10

Cascade Intra-Cascade Spike
0

10

20

30

St
al
ld

ur
at
io
n
(s
ec
on

ds
)

No Boost Buffer (bl_min=2 sec) Buffer (bl_min=4 sec)

Quality

Cascade Intra-Cascade Spike
0

1

2

3

Av
g.
bi
tr
at
e
(M

bp
s)

Figure 4: Average performance metrics of the buffer and
quality-based bandwidth boost strategies. The buffer-based
strategy is defined as a function of the minimum buffer
length threshold bl_min (bl_max=8 seconds). The qual-
ity strategy uses the parameters min_quality=1.5Mbps,
max_quality=2.5Mbps, nb_quality_hit=3. For all strategies
the requested QoS profile isMedium (4Mbps).

This setup allows us to run tests with and without bandwidth boost
in parallel, while ensuring that both video players exhibit the same
network conditions but in separate environments.

Figure 4 reports the stall duration and average bitrate without
bandwidth boost and with buffer-based and quality-based band-
width boost strategies. We observe that all buffer-based boost strate-
gies reduce the stall duration. Without any bandwidth boost the
video player experience stalls for about 33 seconds, 4 seconds and
17 seconds for the patterns Cascade, Intra-Cascade and Spike re-
spectively. The buffer-based bandwidth boost strategies allow to
reduce the stall duration down to about 6 seconds, 2 seconds and 8
seconds respectively. We also observe that increasing bl_min in the
buffer-based bandwidth boost decreases the stall duration. This is
expected, as the boost is called earlier before the buffer is at risk of
being completely empty. In terms of average bitrate, the bandwidth
boost tends to improve the average bitrate, but the magnitude of
improvements largely depend on the traffic pattern.

The quality-based strategy improves the bitrate the most; this
was expected as it’s objective was to avoid video bitrate degradation.
However, the quality-based strategy is less efficient in reducing
the number of stalls than the buffer-based strategy. Worse, in some
scenarios, the stall duration increases significantly. We suspect that

On the benefits and caveats of exploitingQuality on Demand Network APIs for video streaming NOSSDAV ’24, April 15–18, 2024, Bari, Italy

Table 3: Budget spent for different strategies and scenarios.

Buffer-based boost (medium, bl_max=8)
Cascade Intra-Cascade Spike

bl_min (sec) 2 4 2 4 2 4
Nb. boosts 26 28 3 14 16 52

Duration boost (seconds) 228 214 13 66 92 388

Quality-based boost (medium, min_quality=1.5Mbps,
max_quality=2.5Mbps, nb_quality_hit=3)

Cascade Intra-Cascade Spike

Nb. boosts 31 38 62
Duration boost (sec) 814 1024 753

the quality-based boost made the ABR adaptation algorithm switch
to high encoding bitrates; at the time of release of the bandwidth
boost the player experiences a sudden and strong degradation of
the network conditions that the ABR algorithm cannot compensate
for anymore. This highlights the importance of carefully designing
the bandwidth boost strategy. Further work is required to propose
an efficient quality-based bandwidth boost strategy.

The budget associated with each of these strategies in our experi-
ments is shown in Table 3. We can notice that the number of boosts
increases while increasing the bl_min threshold. The bandwidth
boost is triggered earlier and more often, giving the player less time
to drain its buffer. The quality strategy is more expensive than the
buffer-based strategy, especially when considering the duration of
boosts. In light of the little benefits in average bitrate with mitigated
results on the stall duration, we recommend to rely on the more
simple yet effective buffer-based strategies.

The effect of changing the bl_max parameter and the requested
QoS profile is shown in Figure 5. First we can observe - as already
shown previously - that the players that benefit from a bandwidth
boost have smaller stall duration and a higher average bitrate.

The highest QoS profile does not provide the best results. Stall
duration and average bitrate are worse than boost strategies relying
on lower QoS profiles. This may be explained by the ABR adaptation
algorithm of the video player. As the video player is measuring a
high available bandwidth it switches to higher video qualities in the
video layer. When the bandwidth boost is released, the player will
observe a sudden drop in available bandwidth and may not react
immediately (i.e., change video quality), which results in draining
the buffer more rapidly. This behavior highlights the difficulties
when having two different control loops (bitrate adaptation by
the video client and bandwidth boost by the server), especially in
varying network conditions. It’s a subject for further work.

Increasing the bl_max buffer duration threshold upon which
the bandwidth boost is released has similar effects than increasing
the requested QoS profile. A high bl_max can increase the stall
duration and decrease the average video bitrate compared to lower
ones. Similarly to the previous analysis, we suspect that this is due
to the interaction with the ABR adaptation algorithm of the video
player that decides to switch to higher video quality which has an
adverse effect when the boost is released.

No Boost Profile: Low Profile: Medium

Profile: High

0

10

20

30

St
al
ld

ur
at
io
n
(s
ec
)

0

1

2

3

Av
g.
bi
tr
at
e
(M

bp
s)

No boost Buffer: bl_max=6 sec Buffer: bl_max=8 sec

Buffer: bl_max=10 sec

0

10

20

30

St
al
ld

ur
at
io
n
(s
ec
)

0

1

2

3

Av
g.
bi
tr
at
e
(M

bp
s)

Figure 5: Average performance metrics of buffer-based band-
width boost strategies with the Cascade pattern (top) as a
function of the QoS profile requested with bl_max=8 and
(bottom) as a function of the maximum buffer length thresh-
old bl_max with a medium QoS profile (bl_min=4 seconds).

4.2 xApp-enabled 5G RAN
Our experiments were conducted on top of an OpenAirInterface 5G
RAN [12] and 5G Core network [11]. The cache server is deployed
within an edge cluster of the 5G network. The cache server has
access to an LF CAMARA API which interacts with an xApp that
controls the 5G RAN.

We implemented an xApp capable of handling bandwidth boost
requests using the FlexRIC [17] framework. We apply the requested
QoS profile by reusing the existing bearer as described in section 2.
More specifically, the xApp overrides the decisions of the scheduler
of the radio base station (gNB) by assigning a number of Physical
Resource Blocks (PRBs) that corresponds to the requested band-
width. Each PRB has multiple Resource Elements (RE) which is
the smallest radio resource unit. The Modulation Coding Scheme
(MCS) defines how many bits are carried by a single RE over the
air. MCS varies depending on the network condition. When the
MCS changes, the xApp dynamically adapts the number of assigned
PRBs in order to meet the requested bandwidth.

When the bandwidth boost is deactivated, the mobile terminal
gets a fixed number of radio resource blocks, set to 5 PRBs in our
experiments. A change in the MCS will therefore directly impact
the available bandwidth.

We ran the following experiments. We used a mobile phone that
streams the same live video described before. To generate varying
radio conditions we varied the MCS of the radio according to the
Twitch traffic pattern as shown in Table 4. This also allows us to run
repeatable experiments. We ran this experiment several times with
andwithout the proposed bandwidth boost.We only focus on buffer-
based boost strategies, as we showed previously the limitations of
quality-based strategies. How the used MCS values map to available

NOSSDAV ’24, April 15–18, 2024, Bari, Italy Tran et al.

Table 4: Repeated MCS radio network pattern used in the
evaluation derived from [21].

Pattern MCS pattern Duration of one MCS value (s)

Cascade 8 27, 8 30
Cascade 9 27, 9 30

Intra-Cascade 27, 16, 8, 16 15
Spike 27, 8, 16 10

Table 5: Theoretical mapping of MCS values to radio
bandwidth using 5 PRBs [2].

MCS max throughput

27 4.7Mbps
16 2.27Mbps
12 1.45Mbps

MCS max throughput

9 1.1Mbps
8 970kbps
6 700kbps

No Boost Buffer-based boost (bl_min=4 sec, bl_max=8 sec, Profile: Medium)

Cascade 8 Cascade 9 Intra-Cascade Spike
0

50

100

150

St
al
ld

ur
at
io
n
(s
ec
on

ds
)

Cascade 8 Cascade 9 Intra-Cascade Spike
0

1

2

3

Av
g.
bi
tr
at
e
(M

bp
s)

Figure 6: Average performance metrics of the buffer-based
bandwidth boost strategies on 5G O-RAN testbed. The target
bitrate of the xApp when the boost is enabled is 4Mbps.

bandwidth using the default number of radio resource blocks (when
the boost is not activated) is shown in Table 5.

Figure 6 reports the stall duration and average bitrate with and
without buffer-based bandwidth boost on our 5G network. We
observe that without bandwidth boost the 30 minutes video playout
shows significant stalls with up to 158 seconds of stalls with the
network pattern Cascade 8 and up to 50 seconds with Cascade 9.
When the bandwidth boost is activated the stall duration is largely
decreased to 28 seconds and 18 seconds respectively. For Intra-
cascade and Spike, the benefit of the bandwidth boost is smaller: the
stall duration decreases from 89 seconds to 69 seconds for Spike and
from 20 seconds to 14 seconds for Intra-cascade. The effect on the
average bitrate is less visible; the average bitrate increases about
0.2 Mbps in all network patterns. Overall, the experiments on the
actual 5G network are in-line the ones using network emulation
and show the clear benefit of using a buffer-based boost strategy.

5 RELATEDWORK
The use of CMCD to improve the performance of adaptive video
streaming has been discussed in [6]. More specifically, the authors
implement a buffer-aware bandwidth allocation algorithm on the
video streaming server that exploits buffer information provided by
the video players via CMCD. The server implements a buffer-length-
to-rate mapping function, i.e. the server calculates a rate that is
allocated to a given video player as a function of the current buffer
length and the minimum and maximum bandwidth supported by
the player. The authors show that they are able to significantly
reduce rebuffering events across different scenarios. Lim et al.[10]
extend this work by relying on CommonMedia Server Data (CMSD).
The server adapts its scheduling based on the buffer-level signaled
via CMCD by serving video players being at risk of a buffer un-
derrun first. At the same time, the server signals via CMSD to the
delayed video players how long its requests have been delayed,
such that the players can adapt their rate calculation accordingly.
Our work also exploits CMCD buffer length information in order to
detect and act upon possible bandwidth bottlenecks in the 5G cellu-
lar radio access network. Our approach and the two above related
work are not exclusive to each other and it may even be beneficial
to combine them, i.e. to design a cache server that implements a
rate allocation buffer-aware rate allocation algorithm while at the
same time boosting the radio bandwidth when needed.

Use cases for QoD APIs have been demonstrated at several show-
cases by different operators and partnering application providers
[7, 13, 18, 19]. The approach adopted in these demonstrations is to
continuously allocate a request quality (latency and bandwidth) to
an application. E.g. the bandwidth would be guaranteed from the
beginning until the end during the usage of the requesting applica-
tion such as a game streaming session. In contrast, in our approach
the bandwidth requests are only temporary and are released as
soon as the buffer length is sufficient. This avoids the caveats of
constantly reserving radio resources, therefore freeing them for
other end-users and applications.

6 CONCLUSIONS
In this paper, we presented a mechanism to improve the QoE of
video streaming on top of a cellular network with difficult network
conditions. We relied on recent network APIs - such as the QoD
LF CAMARA API and the O-RAN xApps - exposed by cellular
network operators. These network APIs allow an application such
as a video streaming CDN to ask for additional bandwidth resources
when needed. We leveraged CMCD to provide buffer and bitrate
information to the cache server. This allows the cache server to ask
for a bandwidth boost at moments where the player encounters
degraded download conditions. We implemented a cache server
that interfaces with the LF CAMARA QoD API and evaluated the
benefits on top of an emulation testbed and a 5G RAN controlled via
an xApps. We show that simple bandwidth boost strategies allows
us to improve the overall QoE. We also showed that a too aggressive
bandwidth boost strategy may have adverse effects on the ABR
adaptation algorithm of the video player, which opens perspectives
to further study and design bandwidth boost algorithms.

On the benefits and caveats of exploitingQuality on Demand Network APIs for video streaming NOSSDAV ’24, April 15–18, 2024, Bari, Italy

ACKNOWLEDGEMENT
This work is funded by the french government within the frame-
work “France 2030”.

REFERENCES
[1] 2023. Selenium with Python. https://selenium-python.readthedocs.io/
[2] 3GPP. 2023. 3GPP TS 38.214 Release 17. TSG RAN; NR; Physical Layer Procedures

For Data.
[3] The O-Ran Alliance. 2023. O-RAN ALLIANCE Specifications. https://www.o-

ran.org/specifications
[4] The O-RAN ALLIANCE. October 2023. O-RAN Architecture Description R003-

v10.00.
[5] Consumer Technology Association et al. 2020. Web Application Video Ecosystem-

Common Media Client Data. CTA-5004. Retrieved June 7 (2020), 2021.
[6] Abdelhak Bentaleb, May Lim, Mehmet N Akcay, Ali C Begen, and Roger Zimmer-

mann. 2021. Common media client data (cmcd) initial findings. In Proceedings
of the 31st ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video. 25–33.

[7] Blacknut. 2023. Operators are opening up 5G networks to application developers to
drive innovation. https://www.blacknut.biz/press-release/operators-are-opening-
up-5-g-networks-to-application-developers-to-drive-innovation

[8] Dash Industry Forum. 2023. Dash.js source code. https://github.com/Dash-
Industry-Forum/dash.js

[9] The Linux Foundation. 2023. Camara - The Telco Global API Alliance. https:
//camaraproject.org/

[10] May Lim, Mehmet N Akcay, Abdelhak Bentaleb, Ali C Begen, and Roger Zim-
mermann. 2022. The benefits of server hinting when DASHing or HLSing. In
Proceedings of the 1st Mile-High Video Conference. 52–55.

[11] OpenAirInterface. 2023. 5G CORE NETWORK. https://openairinterface.org/oai-
5g-core-network-project/

[12] OpenAirInterface. 2023. OpenAirInterface 5G Radio Access Network Project. https:
//openairinterface.org/oai-5g-ran-project/

[13] Orange. 2023. CAMARA - Quality on Demand. https://developer.orange.com/
apis/camara-quality-on-demand

[14] Jose Ordonez-Lucena and Felix Dsouza. 2022. Pathways towards network-as-a-
service: the CAMARA project. In Proceedings of the ACM SIGCOMMWorkshop
on Network-Application Integration. 53–59.

[15] Michele Polese, Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, and Tommaso
Melodia. 2022. Understanding O-RAN: Architecture, Interfaces, Algorithms,
Security, and Research Challenges. CoRR abs/2202.01032 (2022). arXiv:2202.01032
https://arxiv.org/abs/2202.01032

[16] The Linux Foundation CAMARA project. 2023. Quality on Demand. https:
//camaraproject.org/quality-on-demand/

[17] Robert Schmidt, Mikel Irazabal, and Navid Nikaein. 2021. FlexRIC: an SDK for
next-generation SD-RANs. In Proceedings of the 17th International Conference on
emerging Networking EXperiments and Technologies. 411–425.

[18] Telefonica. 2023. QoD Mobile API. https://opengateway.telefonica.com/en/apis/
qod-mobile

[19] Deutsche Telekom. 2023. Telekom commercially launches network APIs.
https://www.telekom.com/en/media/media-information/archive/telekom-
commercially-launches-network-apis-1049276

[20] Tuan Tran, Christoph Neumann, and Guillaume Bichot. 2023. Elastic Video
Content Delivery Networks at the Edge. In Proceedings of the 2nd Mile-High Video
Conference (Denver, CO, USA) (MHV ’23). Association for Computing Machinery,
New York, NY, USA, 91–96. https://doi.org/10.1145/3588444.3591010

[21] Twitch. 2023. Twitch’s ACM MMSys 2020 Grand Challenge. https://github.com/
twitchtv/acm-mmsys-2020-grand-challenge

[22] Vonage. 2023. Vonage QoD. https://developer.vonage.com/en/api/qod

https://selenium-python.readthedocs.io/
https://www.o-ran.org/specifications
https://www.o-ran.org/specifications
https://www.blacknut.biz/press-release/operators-are-opening-up-5-g-networks-to-application-developers-to-drive-innovation
https://www.blacknut.biz/press-release/operators-are-opening-up-5-g-networks-to-application-developers-to-drive-innovation
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
https://camaraproject.org/
https://camaraproject.org/
https://openairinterface.org/oai-5g-core-network-project/
https://openairinterface.org/oai-5g-core-network-project/
https://openairinterface.org/oai-5g-ran-project/
https://openairinterface.org/oai-5g-ran-project/
https://developer.orange.com/apis/camara-quality-on-demand
https://developer.orange.com/apis/camara-quality-on-demand
https://arxiv.org/abs/2202.01032
https://arxiv.org/abs/2202.01032
https://camaraproject.org/quality-on-demand/
https://camaraproject.org/quality-on-demand/
https://opengateway.telefonica.com/en/apis/qod-mobile
https://opengateway.telefonica.com/en/apis/qod-mobile
https://www.telekom.com/en/media/media-information/archive/telekom-commercially-launches-network-apis-1049276
https://www.telekom.com/en/media/media-information/archive/telekom-commercially-launches-network-apis-1049276
https://doi.org/10.1145/3588444.3591010
https://github.com/twitchtv/acm-mmsys-2020-grand-challenge
https://github.com/twitchtv/acm-mmsys-2020-grand-challenge
https://developer.vonage.com/en/api/qod

	Abstract
	1 Introduction
	2 Background
	3 Video streaming boost strategies and use cases
	3.1 Buffer-based boost strategy
	3.2 Quality-based boost strategy

	4 Implementation and evaluation
	4.1 Emulation
	4.2 xApp-enabled 5G RAN

	5 Related work
	6 Conclusions
	References

