
The Curse of (Too Much) Choice: Handling
combinatorial action spaces in slice orchestration
problems using DQN with coordinated branches

Pavlos Doanis1 and Thrasyvoulos Spyropoulos1, 2

1 EURECOM, France, first.last@eurecom.fr
2 Technical University of Crete, Greece

Abstract— One of the prominent problems in envisioned
6G networks is the truly dynamic placement of multiple
virtual network function chains on top of the physical network
infrastructure. Reinforcement Learning based schemes have
been recently explored for such problems. Yet these have
to deal with astronomically high state and action spaces in
this context. Using a standard Deep Q-Network (DQN) is a
common way to effectively deal with state complexity. While
the use of independent DQN (iDQN) agents could be further
used to mitigate action space complexity, such schemes often
suffer from instability and sample (in)efficiency, and their
theoretical performance is hard to assess. To this end we
propose a DQN-based scheme that uses a recent Deep Neural
Network architecture, with a different branch responsible for
the placement of each virtual network function (again reducing
action space complexity), yet with (implicit) coordination among
branches, via shared layers (hence avoiding iDQN shortcomings).
Using a real traffic dataset, we (i) theoretically ground the
proposed scheme by comparing it with an optimal online
algorithm for a stateless experts environment; (ii) we demonstrate
a 41% cost improvement compared the existing state-of-the-art
multi-agent DQN approach (independent agents).

Index Terms—Slice orchestration, Beyond 5G Networks, Rein-
forcement Learning, Deep-Q Network

I. INTRODUCTION

Network slicing had already been identified as a key enabler
for 5G and beyond networks [1]. A slice is often seen as a
“VNF chain” comprising Virtual Network Functions (VNFs)
and Virtual Links (VLs). Hosting multiple slices, with different
demands and Service Level Agreements (SLA) on top of
shared physical resources is thus a prominent problem [2].

The use of traditional static optimization methods for net-
work slicing is problematic due to the dynamically changing,
a priori unknown, or even non stationary parameters that de-
termine slice performance. With an eye towards 6G networks,
that will heavily leverage modern Artificial Intelligence (AI)
methods, recent works have explored the use of Deep Neural
Networks (DNNs) to either forecast mobile traffic [3] or even
directly allocate a physical node’s resources to the co-located
VNFs [4]. Deep Reinforcement Learning (DRL) has been also
employed for dynamic resource allocation [5], when traffic
dynamics are unknown, or slice embedding (mapping of VNFs

The research leading to these results has been supported in part by the
H2020 SEMANTIC Project (grant agreement no. 861165) and in part by the
H2020 MonB5G Project (grant agreement no. 871780).

and VLs to physical nodes and links respectively), when the
performance function is unknown [6].

While the main focus of this paper’s contribution is on the
dynamic slice embedding problem (continuous embedding of
VNFs and VLs), the proposed framework also considers the
impact of resource allocation on slice performance. Some of
the remaining open challenges for RL based solutions are the
following: (i) infinite state spaces, due to continuous traffic
demands of VNFs involved; (ii) astronomically high action
spaces, due to the combinatorial nature of placing multiple
VNFs upon multiple nodes (considering multiple slices further
exacerbates this problem) [6]; (iii) poor sample-efficiency,
which is an important shortcoming in online settings.

While DNN-based RL schemes, e.g. a Deep Q-Network
(DQN) [7], can help with challenge (i), and multi-agent DQN
[8] mitigates challenge (ii), existing schemes often suffer
from instability and/or sample (in)efficiency. In this work,
we propose a DRL scheme based on the Branching Deep
Q-Network (BDQ) architecture, which dramatically reduces
action complexity by allotting the control of each VNF to a
different DNN branch. Moreover, to avoid the non-stationarity
issues arising in multi-agent solutions with independent agents,
a DNN module that is shared between different branches is
responsible for their (implicit) coordination, improving the
scheme’s sample efficiency and scalability properties. The
outline and specific contributions of this paper are as follows:

(C.1) In Section III-A, we formulate the dynamic slice
embedding problem as a (stateless) “experts” problem. We use
a state-of-the-art algorithm that is theoretically optimal (in the
experts context) as a baseline for our scheme.

(C.2) We then consider a stateful RL version of the problem,
that attempts to take advantage of patterns in the VNF/VL
traffic dynamics, and discuss how and where existing DQN-
based schemes fail to cope with the combinatorial state and
action spaces involved (Section III-B).

(C.3) In Section IV, we propose a DRL scheme based on a
sophisticated DNN architecture that considers: (i) a different
DNN branch for each VNF; (ii) (implicit) coordination among
branches (to improve scalability).

(C.4) Using a real dataset, in Section V, we demonstrate that
the proposed scheme outperforms (i) the experts baseline, both
in terms of cost performance and sample efficiency (theoreti-
cally “grounding” the proposed approximate RL scheme); and

(ii) the existing state-of-the-art multi-agent DQN approach,
showing a 41% cost improvement in a fairly large scenario.

II. SYSTEM MODEL

Our model is based on some common assumptions on
VNF embedding, originally discussed in [2], and generalized
recently in [8]. We summarize below the main attributes, for
completeness, but refer the interested reader to [8] for details.

Physical Network: a weighted undirected graph G = (V, E)
of physical nodes (set V = {0, 1, ..., V − 1}), interconnected
by a set of links E (physical paths). Each node, v ∈ V , and
link, (v, v′) ∈ E , is characterized by a capacity to process
traffic flows.

Network Slices: virtual networks on top of the physical
network. Each slice k ∈ K is a directed graph Hk = (Nk,Lk)
of VNFs (set Nk) and VLs (set Lk), that must be assigned
to physical nodes and paths respectively. Assuming that time
is slotted, each VNF n and VL (n, n′) requires an amount of
resources denoted by dkn(t) and dkn,n′(t) respectively, where t
indicates the time slot.

(Input) Demand vector d(t) ∈ D: denotes the demands of
all slices at time slot t,

d(t) = (dki (t)|∀k ∈ K, i ∈ Nk ∪ Lk). (1)
(Control Variables) Configuration vector c(t) ∈ C: denotes

the assignment of all VNFs to physical nodes1 at time slot t,
c(t) = (ckn(t)|∀k ∈ K, n ∈ Nk), (2)

where ckn(t) indicates the host node of VNF n (slice k) at t.
The goal of dynamic slice embedding is to choose the

configuration c(t) at every time slot t, before actually knowing
the demands for that slot (but possibly knowing past demands
and configurations), in order to ensure that (i) each slice’s
performance is isolated from other slices, despite sharing
common resources (SLAs are fulfilled); (ii) network resources
are utilized efficiently (low network-related costs).

Slice SLAs: We assume that each slice’s performance is
measured with an end-to-end KPI, and there is an agreed slice-
specific worst case performance qk (SLA). Without loss of
generality, we will assume here that this KPI is the end-to-
end delay of an average flow going through that VNF chain,
given by a function F delay

k (c, d). This delay is captured by a
fairly sophisticated queuing model, where resources between
collocated VNFs on a node (or VLs on a link) are scheduled
with a (generalized) Processor Sharing discipline, while the
end-to-end delay per chain is captured with a (generalized)
Jackson network [9]. We refer the reader to [8] for more details
on the general model. Then, the SLA violation cost is:
ℓSLA(c, d) =

∑
k∈K

(σk+F delay
k (c, d)−qk)·1{F delay

k (c,d)>qk}, (3)

where σk is a fixed penalty inflicted when an SLA violation
occurs, and 1{condition} is a binary indicator variable that is
equal to 1 when the condition is satisfied (0 otherwise).

Network Costs: In addition to the costs associated with end-
to-end delay violating the SLA qk, we assume that there are

1W.l.o.g., we assume that routing paths are predetermined and known for
any pair of physical nodes. Our algorithm could be straightforwardly extended
to scenarios with multiple alternative paths to choose from, for each node pair.

additional network costs that an operator might pay. First, we
consider a (monetary) cost related to using a node, e.g. an
idle node could be set to sleep mode to save energy [10]. This
“on” nodes cost is given by:

ℓON(c) =
∑
v∈V

1{v∈c}. (4)

Second, we assume there is another potential cost for migrat-
ing a VNF from one node to another (e.g. network overhead
due to signalling, or even service downtime [11]). This recon-
figuration cost is given by:

ℓRC(c(t), c(t+1)) =
∑
k∈K

∑
n∈Nk

1{ckn(t) ̸=ckn(t+1)}. (5)

III. OPTIMIZATION BASELINES FOR VNF CHAIN
PLACEMENT

In this section, we will discuss two popular solution frame-
works for solving the previously defined high level problem.
In both cases, demands d(t) are assumed unknown and time-
varying, so algorithms sought fall in the broad area of online
learning/optimization.

A. Experts optimization

As a first step, we formulate and solve the problem as a
standard “experts” problem. These problems are often cate-
gorized under the umbrella of Bandit optimization or Online
Convex Optimization (OCO) [12]. In the experts setting, a
learning agent takes actions based on a “goodness” estimate
that he maintains for each configuration (“arm” or “expert”).
This estimate depends only on past costs and gets updated at
every time slot for all configurations.2

Action space. The agent’s action at t, is the assignment of
VNFs to physical nodes in t+ 1 (without knowing d(t+1)):

at = c(t+1) ∈ A. (6)
The action space A = C quickly explodes, even in moderate-
sized scenarios, due to the combinatorial configuration vector.

Cost function: The total cost of a configuration a at t is:
ℓ(a, d(t)) = wSLA · ℓSLA(a, d(t)) + wON · ℓON(a), (7)

where wSLA and wON are “fixed” scalar weights that determine
the importance of the respective cost terms. Note that we
normalize the cost, so that ℓ(a, d(t)) ∈ [0, 1] for all a ∈ A
and t ∈ {0, 1, ..., T −1}, where T is the optimization horizon.

Baseline algorithm. To solve this problem, we consider the
Multiplicative Weights (MW) algorithm [13], a simple online
algorithm that can learn probabilistic policies with optimality
guarantees. The algorithmic steps of MW are detailed in Fig. 1.

The performance of experts algorithms is compared to an
“optimal static oracle”. This oracle knows in advance all future

2We stress here that an experts algorithm is very powerful in that, at every
step, it improves the goodness estimate of all possible configurations, not just
the chosen configuration c(t). This is in stark contrast to bandit environments,
or online RL environments, where information only about c(t) is obtained at
each step. For massive action spaces, like the ones arising in slice embedding
problems, this constitutes a very significant theoretical advantage in terms
of sample efficiency. For this reason, we’ll treat this scheme as one of our
baselines, that is not possible to implement in practice, for large problems.

MW algorithm
Initialize a “goodness” estimate vector Qt(a) to
Q0(a) = 1, for all configurations a ∈ A. Set the learning

rate to η =
√

ln |A|
T , where |A| is the number of configu-

rations and T the optimization horizon.
Step 1: At time slot t, the agent selects at ∈ A (the
configuration c(t+1)), with probability:

pt(a) =
Qt(a)∑
a Qt(a)

(8)

Step 2 The demand vector d(t+1) is revealed and the cost
ℓ(at, d

(t+1)) is inflicted. Also, the costs ℓ(a, d(t+1)) for
all configurations a ∈ A become known.
Step 3: All estimates are updated according to:

Qt+1(a)← Qt(a) · (1− η)ℓ(a,d
(t+1)),∀a ∈ A (9)

Repeat steps 1 to 3 untill t = T .
Fig. 1. Main algorithmic steps of MW.

demands up to horizon T and chooses one (hence “static”)
configuration (a0 = a1 = ... = aT−1 = a∗):

a∗ = argmin
a∈A

T−1∑
t=0

ℓ(a, d(t+1)). (10)

Regret is defined over T , as the difference between
the accumulated cost achieved by the MW agent
L
(T)
MW =

∑T−1
t=0

∑
a pt(a)ℓ(a, d

(t+1)), and the respective
cost of the optimal static oracle L

(T)
a∗ =

∑T−1
t=0 ℓ(a∗, d(t+1)).

MW has optimal (scaling-wise) regret [13]:

Lemma 1. Regret(T) = L
(T)
MW − L

(T)
a∗ ≤ 2

√
T ln |A|.

Sublinear regret implies that MW eventually catches up with
the oracle, in terms of cost per slot, and hence, we cannot
expect to do better (in this class of schemes). We will thus use
both the performance of MW and the oracle’s performance as
theoretically-grounded baselines.

We stress that MW is 1-to-1 equivalent to the more well
known Exp3 algorithm, with appropriate parameter changes
[14]. Exp3 is an algorithm for the bandit setting, where only
the cost of the chosen action is revealed (as opposed to the
experts setting where the costs of all actions become available).
As a result of this partial feedback, the regret of Exp3 is
O(

√
|A|T ln |A|) (as opposed to the O(

√
T ln |A|) regret of

MW). This highlights the important advantage of MW, in
terms of sample efficiency, compared to bandit schemes.

Pros: (i) MW doesn’t require any foreknowledge about de-
mands; (ii) it has optimallity guarantees on cost performance;
(iii) it has an important sample efficiency advantage compared
to standard bandit-like schemes.

Cons: (i) it is a very strong assumption, and computationally
very intensive, to improve the estimates for all configurations
at every step, when |A| is in the order of billions (not to men-
tion the memory requirements); (ii) MW is a stateless scheme,
essentially assuming an “adversary” chooses demands, hence
fails to exploit any patterns intrinsic to the demands (e.g.
diurnal traffic, week-weekend patterns, etc.); (iii) it does not
account for reconfiguration costs (while bandit algorithms

for setups with reconfiguration costs do exist [15], these go
beyond the scope of this work).

B. Reinforcement Learning formulation
We now assume that that the (unknown) demand dynamics

have stateful characteristics, meaning that the current history
of demands determines the probability distribution of future
demands. Considering also a reconfiguration cost for migrating
VNFs between consequent time slots, gives rise to a problem
with delayed rewards (e.g. if the demand of a VNF is predicted
to increase and stay high for long enough, its migration to a
less busy server might be suboptimal in the short term, due to
a high reconfiguration cost, but could pay-off in the next few
time slots). Since this is a typical RL setting, in what follows
we will first provide the RL formulation of the slice embedding
problem, and then discuss the approximate RL algorithms that
we use as baselines for the more advanced proposed scheme.
State Space. The state of the system at t consists of the
configuration vector (2) and the demand vector (1):

st = (c(t), d(t)) ∈ S. (11)
Consequently, the state space S is the Cartesian product
between the sets of configuration and demand vectors (S =
|C| × |D|). In this work we consider continuous real traffic
demands imported from the Milano dataset [16], which implies
an infinite state space (due to the infinite set D).
Action space. The agent action at is the same as in the experts
setting (the configuration to be applied in the next time slot).

Remark: An RL algorithm can be practically applied in the
slice embedding problem only if it is able to handle both the
infinite state space and the combinatorial action space.
Reward function. If the system is at state st and the agent
takes an action at, then in the next time slot a new state st+1

is revealed and the corresponding reward is:
rt+1 = −(wSLA ·ℓSLA(st+1)+wON ·ℓON(at)+wRC ·ℓRC(st, at))

(12)
The only difference of (12) with the cost function of the
experts problem (7), is that it has an additional reconfiguration
cost term and a minus sign (typically RL agents try to
maximize the received rewards instead of minimizing the cost).
Q-learning. In the RL setting, the goal is to learn an optimal
configuration for each possible state s of the system. This gives
rise to a more “powerful” oracle than the static one, which
may select a different action at every state (this optimal policy
can be obtained by dynamic programming algorithms, e.g.
Policy Iteration [17]). Q-learning is a standard “tabular” RL
algorithm that is guaranteed to converge to this more “powerful
oracle”, in theory. However, neither Q-learning nor dynamic
programming can be (directly) applied to our problem, due
to the infinite number of states (even for quantized demands,
these schemes would be applicable only in very small toy
scenarios due to the combinatorial state and action spaces).
Thus, we refer to them as a motivation for more practical
DRL schemes, and instead, we use the MW algorithm and the
static “oracle” of Section III-A as baselines.
RL baseline: independent Deep Q-Networks (iDQN). It

is a state-of-the-art, multi-agent, Q-learning-based algorithm
in the DRL class of schemes, proposed in [8] for dynamic
slice embedding. The standard single-agent DQN algorithm
[7] uses a DNN with parameters θ to approximate the action
value function Q(s, a). It takes as input the state s and
outputs the estimates Qθ(s, a) of the expected (discounted)
long-term reward, for all actions a ∈ A. Learning a “good”
approximation Qθ(s, a) is equivalent to learning a “good” slice
embedding policy: at any state, the agent can select the best
configuration by performing an argmax operation over the
action values of all possible configurations. While standard
DQN can be applied in arbitrarily large state spaces, the
exploding action space of our problem still poses a scalability
bottleneck (exploding DNN fanout and expensive argmax
operations over the combinatorial actions space). These action
complexity problems can be addressed by using multiple
independent DQN agents and decomposing the original action
space into much smaller action sub-spaces.

Action space decomposition: Each independent DQN agent
(n, k) is responsible only for the placement of a specified
VNF n (of slice k), and thus its DNN outputs the predicted
action values of placing this VNF to any of the permitted
physical nodes (all agents view the same state st (11)). The
new action space Ank is not combinatorial anymore (much
smaller fanout). Moreover, the computational complexity of
the argmax operation required to choose a configuration in-
creases linearly instead of exponentially (N argmax operations
over V actions instead of one argmax over V N actions, where
V is the number of physical nodes and N the total number
of VNFs). We refer the interested readers to [8] for a detailed
description of DQN and iDQN algorithms.

Pros: iDQN can be applied in practical slicing scenarios (the
DQN component tackles state space complexity while the use
of multiple agents radically reduces action space complexity).

Cons: The lack of coordination among agents can poten-
tially deteriorate sample efficiency and quality of the obtained
policies (or even lead to stability problems), due to the induced
non-stationarity. The fact that the agents are independent
means that each of them conceives the rest as part of the
environment, and thus, as agents try to improve their policies,
the environment becomes non-stationary.

IV. DQN WITH COORDINATED BRANCHES

We are now ready to delve into the details of our proposed
algorithm, that attempts to overcome the different shortcom-
ings in the baseline schemes, identified earlier. The action
branching Deep Q-Network (BDQ) architecture was intro-
duced in [18] to facilitate the application of DQN (and any
other discrete-action RL algorithm) into problems with high-
dimensional discrete action spaces. This method shares the
same action space decomposition advantages with the iDQN
scheme of the previous section, but also aims to tackle the
problems stemming from the lack of coordination between
agents. Fig. 2 visualizes the branching architecture.

Action space decomposition: Each DNN branch Qθnk
(s),

outputs the predicted action values of placing VNF n of slice

Fig. 2. Schematic representation of the branching architecture. A shared mod-
ule of the DNN takes as input the state st and outputs a latent representation
ŝt, which in turn is given as input to N different branches (one branch per
VNF). The assignment ci(t + 1) of each VNF i to a physical node in the
next slot is determined by an argmax operation over the Q-value estimates of
branch i. Then, the chosen action is at = (c0(t+1), c1(t+1), ..., cN (t+1)).

k to any of the permitted physical nodes (the number of
network outputs and the computational complexity of argmax
operations scale linearly with the number of VNFs).

Coordination: A DNN module that is shared among the
different “cooperative” branches is responsible for their im-
plicit coordination. It takes as input the state s and outputs
a latent representation ŝ, that is in turn given as input to the
branches. This module is the key difference between iDQN
and BDQ, as it can learn features that foster coordination
(during the backward pass its parameters are updated based
on the gradients backpropagated by all branches).

Action selection: An ϵ-greedy policy is used to balance
exploration of new actions and exploitation of the learned Q-
function. To this end, a random configuration is chosen with
probability ϵ, while each VNF is assigned to the node with
the maximum Q-value estimate with probability 1− ϵ.

Stability mechanisms: Using a DNN to approximate the Q-
function can potentially lead to instabilities due to correlations
between subsequent parameter updates (the states visited by
the agent are highly correlated). BDQ uses two standard DQN
mechanisms to ensure stable learning, the experience memory
replay and the target network (both are also used in iDQN).
The former is a replay buffer that stores visited experiences
(s, a, s′, r), and enables updating the parameters θ of the DNN
(policy network) based on randomly sampled mini-batches.
The latter is an older “frozen” version of the policy network,
with parameters θ′, that is updated less frequently and is used
as part of the Temporal Difference (TD) target (13).

Action improvement: At each round, a minibatch of expe-
riences is randomly sampled from the replay buffer and the
policy network’s parameters are updated based on the expected
value of the mean squared TD error across all branches (15).
We give the main algorithmic steps of BDQ in Fig.3.

V. SIMULATION RESULTS

In this Section we employ a real traffic dataset to drive the
demands in various slice embedding scenarios, with the goal
to: (i) theoretically ground the proposed BDQ scheme both in
terms of cost per time slot (compared to the static oracle), as
well as in terms of sample efficiency (compared to MW), in
a moderately-sized setup; (ii) validate the scalability of BDQ

BDQ algorithm
Action branching architecture: A DNN Qθ(s), with a
separate branch Qθnk

(s) per VNF n ∈ Nk of slice k ∈ K.
Step 1: (in agent) An ϵ-greedy action is taken:

ank ←

random ank ∈ Ank, with probability ϵ;

argmax
ank∈Ank

Qθnk
(s, ank), with probability 1− ϵ.

Then, the collective action is:
a = (a00, ..., aNKK)

Step 2 (in env): Returns the next state s′ and reward r.
Step 3: (in agent) store transition (s, a, s′, r).
Step 4 (in agent): copy the policy network parameters θ
to the target network θ

′
(only every X timesteps).

Step 5 (in agent): pick M samples randomly from replay
buffer and calculate the TD target yi for each sample i:

yi = ri + γ
1

N

∑
n∈Nk,k∈K

max
(ank

i)′∈Ank
Qθ

′
nk
(s′i, (a

nk
i)′),

(13)
where N is the number of branches.
Then, perform a gradient step:

θ ← θ − η∇θL, (14)
where
L = Ei∼U(D)[

1

N

∑
n∈Nk,k∈K

(yi −Qθnk
(si, a

nk
i))2]. (15)

Repeat steps 1 to 5 for T time slots.
Fig. 3. Main algorithmic steps of BDQ.

and the performance gains offered by coordination, compared
to the independent agents of iDQN, in a large-scale setup.
Thus, the Section is divided into two respective parts, each
dedicated to one of the above objectives.

Algorithms. Here we outline all the algorithms (or policies)
used in this section and any algorithm-specific parameters.

• group-all a simple static policy that merely minimizes
the number of active nodes by placing all VNFs on the
largest node. Possibly suffers from SLA violations.

• split-all a sister policy to group-all, which instead aims
to minimize SLA violations by spreading VNFs to all
available nodes. It often uses more nodes than necessary,
inflicting a high “on” nodes cost.

• static oracle the optimal static policy of Section III-A.
• MW the experts algorithm of Section III-A (Fig. 1), that

has optimal regret with respect to the static oracle above.
• iDQN the multi-agent DRL scheme of [8], described in

Section III-B.
• BDQ the DRL scheme of Section IV (Fig. 3).

Parameters of DRL schemes: We set the replay buffer size to
5000, the target update period to 500, the minibatch size to 32,
the learning rate to 10−3, and the discount factor to γ = 0.9,
as in [8]. The DNNs are multilayer perceptrons3 (commonly
used in related works, e.g. [6], [8]). Each iDQN agent or BDQ
branch has 3 hidden layers with 60 neurons per layer (in BDQ

3We use simple DNNs to not entangle our discussion with the additional
impact of specific (fancier) DNN architectures. We defer this to future work.

(a) Scenario 1 (b) Scenario 2

Fig. 4. Convergence plots for 2 different scenarios in a setup with 256 actions.
In (a) reconfigurations are free, while in (b) an additional reconfiguration cost
is inflicted. Notice that the y-axis is discontinuous in order to be able to
depict MW in (b), where it demonstrates significantly higher costs due to
reconfigurations. We remark that in (b) we also plot “MW(free reconf.)”,
which is MW, but with the advantage of making free reconfigurations.

this includes a single-layer module shared between branches);
this size performed well in a variety of tested scenarios.
VNF demands. We use the popular Milano dataset [16] to
drive the demands. The imported timeseries consist of 8928
samples per base station (1 sample every 10 minutes), so we
map the demand sequence of each VNF to the normalized
“internet” traffic of a different base station. W.l.o.g., we
assume that VL demands are zero.

A. Comparison with experts baseline

We first focus on a medium-sized setup, in order to compare
our proposal to the theoretically grounded MW algorithm and
the corresponding static oracle.
System setup. We consider a physical network with two
domains, each consisting of two servers, while there are four
slices comprising 2 VNFs each (one VNF per domain). This
results to 256 possible configurations (we remind that the state
space is infinite due to continuous traffic demands).
Scenario 1 - free reconfigurations. We first consider a
scenario without reconfiguration cost (wRC = 0), in order
to assess in isolation the ability of both bandit and DRL
algorithms to dynamically adapt their actions according to the
changing traffic. Fig. 4(a) depicts the cost as a function of time
slot during training (averaged over 10 independent training
runs and smoothed), for the algorithms under test. Note that
MW, iDQN, and BDQ start with a random policy that they
improve online at each timestep (they demonstrate a higher
cost at timestep 0, which gets lower over time), while the rest
of the policies have been obtained offline.

Sanity checks: : (i) static oracle is indeed better than
the simple static heuristics group-all and split-all; (ii) MW
converges to the cost of the static oracle as expected.

Key Observations: i) both iDQN and BDQ are able to
not only reach the static oracle much faster than MW, but
they in fact outperform any static or bandit/expert policy (i.e.
they more than make up for the theoretical sample efficiency
gap, through increased algorithmic sophistication); (ii) already
the advantages of BDQ over iDQN are visible, even in this
relatively small action space setup.

Take-away message 1: DRL schemes converge faster than
the experts baseline.

Take-away message 2: DRL schemes obtain dynamic poli-
cies with lower cost than any static or bandit/expert policy.
Scenario 2 - costly reconfigurations. We now introduce
a reconfiguration cost in the previous scenario (we increase
wRC). We hope that the DRL agents will be able to smartly
factor this in, unlike (vanilla) experts algorithms that do not. To
make this even more challenging for DRL schemes, we further
compare their performance with an MW version that has
been given the advantage of free reconfigurations, denoted by
“MW(free reconf.)”. The results are depicted in Fig.4(b), with
the main observations being: (i) the DRL schemes are able to
gracefully degrade a little bit their performance, now making
some costly reconfigurations only when they predict that this
can be amortized later (hence the slightly higher cost compared
to Scenario 1); (ii) they are still better than MW(free reconf.),
despite its advantage of free reconfigurations; (iii) without this
advantage, MW’s performance is severely degraded due to
many unnecessary reconfigurations.

Take-away message 3: approximate RL schemes obtain
effective policies even in the presence of reconfiguration costs.

B. Comparison with DRL baseline
Having established both the theoretical sanity and necessity

for (stateful) RL policies, we now consider a more realistically
sized scenario, to test our new BDQ-based policy to a state-
of-the-art iDQN one.
System setup. We consider a physical network with two
domains, where one domain consists of 9 servers and the other
of 3, while on top of it there are 10 slices comprising 2 VNFs
each (one VNF per domain). This setup already leads to an
immense action space of |A| = 2 · 1014 confgurations!
Cost performance. We execute 10 independent training runs
for each DRL agent (with different random seeds per run), as
in Section V-A. We remark that, due to the vast action space
of this scenario, it was not possible to apply MW here4. In
order to examine both the mean performance and the stability
of the DRL agents, we outline the results in the box plot of
Fig. 5, depicting the cost of the policies obtained at the end
of each training round (agents act greedily with respect to the
learned action value functions). The main observations are the
following: (i) BDQ demonstrates 41% and 47% better mean
cost than iDQN and the static oracle respectively; (ii) BDQ has
robust performance with much lower standard deviation than
iDQN (thanks to the implicit coordination of its branches); it
is noteworthy that even the worst policy obtained by BDQ is
still better than the static oracle.

Take-away message 4: the performance gains of BDQ
against iDQN and the static oracle become more prominent
as the scenario size grows larger.

VI. CONCLUSION

In this paper we investigated the dynamic slice embedding
problem both in an experts and an RL setting. We proposed

4To obtain the static oracle in this scenario we used the surrogateopt
function of Matlab with the default parameter values (this solver performed
well in a variety of tested scenarios).

Fig. 5. Cost performance comparison in large-scale scenario (2·1014 actions).

a DQN-based algorithm that uses a recent DNN architecture
with semi-independent, but coordinated branches, to improve
scalabilty, and validated it using a real traffic dataset.

REFERENCES

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Commun. Surv. Tutor., vol. 20, no. 3, 2018.

[2] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi,
L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The algorithmic aspects
of network slicing,” IEEE Commun. Mag., vol. 55, no. 8, 2017.

[3] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile traffic forecasting for maximizing 5g network
slicing resource utilization,” in IEEE INFOCOM, 2017.

[4] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Aztec: Anticipatory capacity allocation for zero-touch network slicing,”
in IEEE INFOCOM, 2020.

[5] F. Mason, G. Nencioni, and A. Zanella, “Using distributed reinforcement
learning for resource orchestration in a network slicing scenario,”
IEEE/ACM Trans. Netw, vol. 31, no. 1, 2023.

[6] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
TNSM, vol. 16, no. 4, 2019.

[7] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, 2015.

[8] P. Doanis, T. Giannakas, and T. Spyropoulos, “Scalable end-to-end slice
embedding and reconfiguration based on independent dqn agents,” in
IEEE GLOBECOM, 2022.

[9] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open,
closed, and mixed networks of queues with different classes of cus-
tomers,” Journal of the ACM (JACM), vol. 22, no. 2, pp. 248–260, 1975.

[10] M. Shojafar, N. Cordeschi, and E. Baccarelli, “Energy-efficient adaptive
resource management for real-time vehicular cloud services,” IEEE
Trans. on Cloud Computing, vol. 7, no. 1, 2019.

[11] K. Kaur, F. Guillemin, and F. Sailhan, “Container placement and
migration strategies for cloud, fog, and edge data centers: A survey,”
International Journal of Network Management, vol. 32, no. 6, 2022.

[12] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge
University Press, 2020.

[13] S. Arora, E. Hazan, and S. Kale, “The multiplicative weights update
method: a meta-algorithm and applications,” Theory of Computing,
vol. 8, no. 6, 2012.

[14] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM journal on computing,
vol. 32, no. 1, pp. 48–77, 2002.

[15] N. Liakopoulos, A. Destounis, G. Paschos, T. Spyropoulos, and P. Mer-
tikopoulos, “Cautious regret minimization: Online optimization with
long-term budget constraints,” in Proceedings of the 36th International
Conference on Machine Learning, 2019.

[16] Telecom Italia, “Milano Grid,” 2015.
[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd ed. The MIT Press, 2018.
[18] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architectures

for deep reinforcement learning,” in Proceedings of the aaai conference
on artificial intelligence, 2018.

