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Abstract—This work inspects a privacy metric based on Cher-
noff information, Chernoff differential privacy, due to its signifi-
cance in characterization of the optimal classifier’s performance.
Adversarial classification, as any other classification problem is
built around minimization of the (average or correct detection)
probability of error in deciding on either of the classes in the
case of binary classification. Unlike the classical hypothesis testing
problem, where the false alarm and mis-detection probabilities
are handled separately resulting in an asymmetric behavior of
the best error exponent, in this work, we focus on the Bayesian
setting and characterize the relationship between the best error
exponent of the average error probability and ε-differential pri-
vacy [1]. Accordingly, we re-derive Chernoff differential privacy
in terms of ε-differential privacy using the Radon-Nikodym
derivative and show that it satisfies the composition property
for sequential composition. Subsequently, we present numerical
evaluation results, which demonstrates that Chernoff information
outperforms Kullback-Leibler divergence as a function of the
privacy parameter ε, the impact of the adversary’s attack and
global sensitivity for the problem of adversarial classification in
Laplace mechanisms.

Index Terms—Chernoff information, ε- differential privacy,
Kullback-Leibler divergence, adversarial classification, compo-
sition

I. INTRODUCTION

Classification theory covers the problem of optimally plac-
ing observations into different categories which are called the
classes. Each class is defined due to an optimal rule according
to some probabilistic description which may or may not be
subjected to some unknown parameter(s). The major challenge
here is to determine the optimal classifier’s performance. This
performance is commonly characterized in connection with
error probabilities in deciding between one of the classes. In
this paper, we employ the best average error exponent, namely
Chernoff information/divergence as a data privacy metric in
classifying adversarial examples targeting machine learning
(ML) algorithms.

ML applications have gained significant traction, partic-
ularly over the past decade. In order to produce accurate
results in an efficient manner, ML techniques heavily depend
on large datasets, which jeopardizes privacy and security of
innocent internet users who are contributing (knowingly or
not) to online statistical datasets. The rising popularity of
such applications that quickly found their place in our day-
to-day lives in critical areas, consequently creates personal

data privacy concerns while making data owners become prone
to privacy breaches. Adversarial ML [2] studies privacy and
security attacks and develop defense strategies to counter these
attacks. Introducing adversarial examples to ML systems is
a specific type of sophisticated and powerful attack, where
additional -sometimes specially crafted- or modified inputs are
provided to the system with the intent of being misclassified
by the model as legitimate. In order to counter adversarial
attacks, which aims to alter the data, as a possible defense
strategy, adversarial classification targets to correctly detect
such adversarial examples. Here the adversary’s goal is to
deceive the classifier, that is designed to detect outliers. In
addition to the security angle of these type of misclassification
attacks, user-data privacy is also subject to violations which
creates an interplay between the security (adversary’s aspect)
and privacy (classifier/defender’s aspect) in studying adversar-
ial classification.

Differential privacy (DP), originally defined and studied
in [3], is the mathematical foundation of user data privacy
in statistical datasets. A randomized algorithm, also called
a mechanism, guarantees the data to be analyzed without
revealing personal information of any of the participants by
employing DP. Essentially, a differentially private mechanism
ensures the level of the privacy of its individual participants
and the output of the analysis to remain unaltered, even when
any user decides to leave or join the dataset with their personal
information.

In this paper, we address the problem of adversarial clas-
sification under DP using a new definition based on Chernoff
information [4]. Here, we consider a strong adversary who
targets a differentially private mechanism not only to discover
its information but also to alter it in order to benefit from it.
The classification problem here is to choose between correctly
detecting the modified data and failing to do so. The main
contributions of the work can be summarized as follows.

• We study the so-called Chernoff DP as a function of
Radon-Nikodym derivative which is related to Dwork’s
ε-DP. We present their comparison as a function of the
privacy budget and show that ε-DP implies Chernoff
DP for a range of ε values as a function of the prior
probabilities assigned to each hypothesis.

• We show that the symmetry property of Chernoff infor-



mation and composition property of DP is preserved in
this adaptation for both Kullback-Leibler and Chernoff
DP.

• We present a numerical comparison among different
variations of divergence based DP metrics.

• Ultimately, we numerically compare the performances of
these two privacy metrics as a function of the impact of
the attack against the global sensitivity of the query and
the privacy budget.

Outline: Section II starts off with properties and different
definitions of DP and continues with basic preliminaries on bi-
nary hypothesis testing problem. Section III offers divergence
based DP definitions and their corresponding properties and
existing comparisons. Our main result on the relation between
Chernoff-DP and ε-DP is presented in Section IV. We present
numerical evaluation of KL and Chernoff divergence functions
for the problem of adversarial classification and finally, we
draw conclusions of our findings and briefly discuss the future
work in Section VI.

Related work: One could question the necessity of yet
another information-theoretic DP metric, given the thorough
studies on Kullback-Leibler [5], [6] and Rényi divergences
[7], various definitions of mutual information [5], [8]–[10] and
min-entropy [9], [11] based privacy metrics. Kullback-Leibler
divergence and Chernoff information carry great importance in
classification problems since they correspond to the best error
exponent for mis-detection and average error probabilities,
respectively. In [12], the authors study a similar problem to
the current paper by employing the bias induced by the at-
tacker as the objective function in a multi-criteria optimization
problem subject to the Kullback-Leibler divergence between
the probability distributions of the dataset before and after
the attack. The optimization step is performed without taking
the privacy budget into account. Kullback-Leibler divergence
as well as other statistical divergence functions are used in
many works for classification tasks [13]–[17]. To the best
of our knowledge, Chernoff information has not been used
for adversarial classification in the literature despite being
thoroughly studied as in [18]–[20] and so on.

II. PRELIMINARIES AND BACKGROUND

This part is reserved for providing some preliminaries and
for building a background on some notions from measure
theory, statistics and information theory that will be used
throughout the paper.

A. Various properties and definitions of DP

In probability and measure theory, a function µ on a field
F in a space Ω is called a measure given that the following
conditions are met:

• µ(A) ∈ [0,∞] for A ∈ F ;
• µ(∅) = 0;

Fig. 1. Differential privacy

• if the sequence F-sets A1, A2, · · · are a disjoint sequence
of F-sets where ∪∞

k=1Ak ∈ F , then the following
equality holds.

µ (∪∞
k=1Ak) =

∞∑
k=1

µ(Ak) (1)

The pair (Ω,F) is called a measurable space if F is a σ-field
in the sample space Ω [21]. If a measure P for P (A) equals
0 whenever another measure Q(A) equals 0, then P is said to
be dominated by another measure Q, denoted as P << Q. For
P << Q, the Radon-Nikodym derivative of P with respect to
(w.r.t.) Q is denoted by dP

dQ [22].

Definition 1. [(ε, δ)-closeness [5]] Probability distributions
P and Q defined over the same measurable space (Ω,F) are

called (ε, δ)-close denoted by P
(ε,δ)
≈ Q if the following couple

of inequalities hold for any A ∈ F .

P (A) ≤ eεQ(A) + δ

Q(A) ≤ eεP (A) + δ

When δ = 0, (ε, 0)- closeness between P and Q can be
represented by the Radon-Nikodym derivative as follows:

e−ε ≤ dP

dQ
(a) ≤ eε, ∀a ∈ Ω. (2)

Equivalently, we have
∣∣∣log dP

dQ (a)
∣∣∣ ≤ ε. In this paper, log(.)

denotes the natural logarithm function.

Definition 2. [23] Any two datasets x, x̃ that differ only in one
record are called neighbors. For two neighboring datasets, the
equality d(x, x̃) = 1 holds, where d(., .) denotes the Hamming
(or l1) distance between two datasets.

Definition 2 anticipates symmetry among neighbors in terms
of the size of the datasets. This could be further relaxed to
include the datasets of different sizes, where neighborhood is
due to addition or removal of a record as depicted in Figure
1. Both definitions ensure that the neighbors differ in a single
row (in one user’s data).

Definition 3 ((ε, δ)− differential privacy). A randomized algo-
rithm M is (ε, δ)− differentially private if ∀S ⊆ Range(M)
and ∀x, x̃ that are neighbors within the domain of M, the
following inequality holds.

Pr [M(x) ∈ S] ≤ Pr [M(x̃) ∈ S] eε + δ. (3)



The randomized mechanism M can also be represented
by the conditional distribution of the dataset Xn =
(X1, X2, · · · , Xn) with the corresponding output Y as PY |Xn .
In this case, PY |Xn satisfies (ε, δ)−DP for all neighboring xn

and x̃n if the following holds:

PY |Xn

(ε,δ)
≈ PY |X̃n (4)

Although, we remind the reader of the original definition
of (ε, δ)−DP of [1] in Definition 3, we will stick to the
expression based on closeness given by equation (4) and
Definition 1 throughout the manuscript. Next, we remind the
reader of the Kullback-Leibler DP (KL-DP).

Definition 4 (KL-DP, [5]). A randomized mechanism PY |X is
said to guarantee ε- KL-DP, if the following inequality holds
for all its neighboring datasets x and x̃,

D(PY |Xn ||PY |X̃n) ≤ ε. (5)

Definition 5 (MI-DP [5]). ε-mutual information differential
privacy1 (MI-DP) holds for the randomized mechanism PY |Xn

if the following inequality is satisfied

sup
i,PXn

I(Xi;Y |X−i) ≤ ε (6)

where X−i denotes the sequence of n random variables
excluding Xi.

B. Order of DP metrics

The main contribution of [5] is the comparison of (ε, δ)−DP
with KL-DP and MI-DP and their ordering in terms of their
strength as a privacy metric. Namely, for two privacy metrics
a-DP and b-DP with a, b > 0, a-DP is said to be stronger than
b-DP, denoted by

a-DP ⪰ b-DP (7)

if for any positive b′, there exists a positive a′, such that

a′-DP =⇒ b′-DP. (8)

In other words, a-DP is stronger than b-DP since a-DP im-
plies b-DP for any non-negative and non-zero b′. Accordingly,
[5, Theorem 1] and its proof show that the following chain of
inequalities hold

ε-DP ⪰ KL-DP ⪰ MI-DP ⪰ (ε, δ)-DP (9)

where ε-DP and δ-DP are (ε, δ)-DP when δ and ε are zero,
respectively. Here ⪰ denotes the privacy guarantee on its left
hand side (l.h.s.) is stronger than the metric on its right hand
side (r.h.s.), i.e. its existence implies the one on the r.h.s.

1The unit is set to be in nats instead of bits due to the use of natural
logarithm.

C. Hypothesis Testing

As one of the most commonly used divergence definition,
Kullback-Leibler distance [24], [25] between two probability
measures P and Q with the dominating measure µ is defined
as

D(P ||Q) =

∫
p log

p

q
dµ (10)

Chernoff information, also called Chernoff divergence is offi-
cially defined as follows.

Definition 6 (Chernoff Information [4]). Chernoff information
between any two probability measures P and Q with the
dominating measure µ and the prior probability α is defined
as follows:

C(P,Q) = max
α∈(0,1)

− log

∫
pαq1−αdµ. (11)

(11) is equally written via the logarithm of
α-skewed Bhattacharya coefficient Cα(P,Q) as
C(P,Q) = maxα∈(0,1) − logCα(P,Q). An important
property of Chernoff information, which is not captured
by Kullback-Leibler divergence, is symmetry, i.e.
C(P,Q) = C(Q,P ).

The importance of the divergences defined above by (10)
and (11) is proven by Stein’s Lemma [4], [26] in the set-
tings of classical and Bayesian binary hypothesis testing.
Accordingly, for two opposing hypothesis H0 and H1 that
are set to choose between two probability distributions based
on the observations, probabilities of false alarm Pfa and
mis-detection Pmiss are respectively defined by probabil-
ities Pfa = Pr[Choose H1|H0 correct] and Pmiss =
Pr[Choose H0|H1 correct]. In case of the existence of prior
probabilities that are weights of the opposing hypothesis
assigned by the analyst or existing due to prior analyses, the
average error probability is the average of Pfa and Pmiss and
is equal to

Pe = αPfa + (1− α)Pmiss (12)

for α ∈ (0, 1). The optimal classifier obeys the following
asymptotics for an M−dimensional random vector of obser-
vations.

lim
M→∞

Pfa

M
= −D(Q||P ), for fixed Pmiss (13)

lim
M→∞

Pmiss

M
= −D(P ||Q), for fixed Pfa (14)

lim
M→∞

Pe

M
= −C(P,Q) (15)

In addition to the relations between error exponents and
divergence functions, Chernoff showed in [4] that C(P,Q)
can be used to obtain D(P ||Q) as[

dCα(P,Q)

dα

]
α=0

= D(Q||P ) (16)[
dCα(P,Q)

dα

]
α=1

= −D(P ||Q) (17)



where α denotes the prior probability. In this paper, we re-
derive DP based Chernoff information tailored for the problem
of adversarial classification.

III. CHERNOFF DP, KL-DP AND COMPOSABILITY

We first restate Chernoff DP by the following definition.

Definition 7 (Chernoff-DP). A randomized mechanism PY |X
for input X and corresponding output Y is said to guarantee
ε-Chernoff DP, if the following inequality holds for all its
neighboring datasets x and x̃, C(PY |Xn , PY |X̃n) ≤ ε, where
ε > 0.

The goal of this paper is to discuss how Chernoff-DP
fits into the chain of inequalities given by (9). In [27], we
used a relaxed version of the above definition based on
logarithm of α-skewed Bhattacharya affinity coefficient, since
the maximum based on the choice of parameter α is upper
bounded by ϵ, Chernoff information is upper bounded by ϵ
for any value of α.

Remark 1. A natural question can be asked regarding the
choice of divergence function. Why do we need a new metric
based on Chernoff information while we already have Rényi
DP [7]? In particular case of adversarial classification as well
as in general for any classification problem, Rényi divergence
provides no information regarding the probability of correctly
detecting the adversary’s attack by altering the data. On the
other hand, as reminded to the reader in Section II-C, due
to Stein’s lemma [4] Chernoff information corresponds to the
highest achievable exponent for the average error probability
of the optimal classifier’s performance.

One of the most important properties of DP is known
as composition which has a role of preventing accumulated
privacy leakage over several independent analyses. In other
words, composition is how DP protects against an attacker
who could combine several chunks of information from var-
ious sources. Composability property, in particular sequential
composition, asserts that a set of mechanisms represented
by different queries each individually satisfying DP, also
collectively satisfies DP. Resulting privacy budget is proven to
be proportional to the number of queries. Namely, sequential
composition [28], [29], provides an upper bound on the privacy
budget of releasing a series of query outputs of several DP
mechanisms applied on the same data. Officially, sequential
composition is defined by the following theorem.

Theorem 1. For εj-differentially private m mechanisms
M1, · · · ,Mm defined over Xn → Y . A collection of m
randomized algorithms M(x) = (M1(x), · · · ,Mm(x)) de-
fined over Xn → Ym and is run (over the same input data)
independently, composability of DP ensures that M satisfies∑m

j εj-DP.

The proof simply follows the multiplicative behavior of in-
dependent events composing a tuple even though the reference
fails to mention the assumption of independence. The same
logic applies to the lower bound with a negative exponent.

Additivity property of KL divergence can directly be translated
as proof of sequential composition property when the distance
is used to define DP constraint as in Definition 4.

Corollary 1. A set of conditionally independent query outputs
{Yj} for j = 1, · · · ,m given the dataset with each mechanism
PYj |Xnsatisfying εj-KL-DP also collectively satisfies KL-DP
with PYm|Xn and privacy budget ε-KL-DP where

∑m
j εj = ε.

Proof. The collection of m conditionally independent mecha-
nisms that satisfy εj-KL-DP is given by

D(PY m|Xn ||PY m|X̃n) =

m∑
j=1

D(PYj |Xn ||PYj |X̃n) (18)

≤
m∑
j

εj (19)

which is equal to ε. (18) follows from the fact that the set
of statistically independent query outputs given the database
represent the mechanism PY m|Xn which is the product of the
individual mechanisms for each j. Substituting the Definition
4 into (18) yields (19). The rest is a result of the follow-
ing property of the logarithmic function in the definition of
Kullback-Leibler divergence; log(a× b) = log a+ log b.

Similarly, MI-DP of Definition 5 is proven to satisfy com-
position theorem in [5] via employing the well-known chain
rule of mutual information function.

Originally, Chernoff information of Definition 6 is not addi-
tive due to the optimization step unlike Kullback-Leibler dis-
tance or Bhattacharya distance, which is Chernoff information
where α = 0.5. Next, we state the sequential composability
of Chernoff DP.

Corollary 2. If the randomized algorithm PYj |Xn satisfies
εj-Chernoff DP, then the set of conditionally independent
randomized algorithms, PYj |Xn for j = 1, 2, · · · ,m, also
satisfy Chernoff-DP with a privacy budget of

∑m
j=1 εj .

Proof. By definition, Chernoff-DP is expanded out as follows:

max
α∈(0,1)

− logCα(PY |Xn , PY |X̃n) ≤ εk (20)

The maximization on the l.h.s. of (20) can be removed without
having any effect on the upper bound since it upper bounds
the function for any value of α in its range.

− logCα(PY |Xn , PY |X̃n) ≤ εk (21)

Substituting conditionally independent randomized mecha-
nisms PY m|Xn and PY m|X̃n after removal of the maximization
function, we have for the l.h.s.

− log

∫
Pα
Y m|XnP 1−α

Y m|X̃n
dµ (22)

= − log

 m∏
j=1

∫
Pα
Yj |XnP 1−α

Yj |X̃n
dµ

 (23)

≤
m∑
j=1

εj (24)



It is worth noting that, unlike ε-DP that is confined in the
interval [e−ε, eε], Chernoff information, hence Chernoff-DP is
lower bounded by 0. Additionally contrary to Chernoff-DP,
Chernoff information defined by (11) is not additive.

IV. MAIN RESULTS-COMPARISON AND ORDERING OF DP
DEFINITIONS

In this part, we re-derive Chernoff-DP via ε-DP in the
form of (ε, 0)-closeness. It was shown in [5] and reminded
by (9) that the KL-DP of Definition 4 is sandwiched between
ε-DP and (ε, δ)-DP through redefining KL-DP as a function
of Radon-Nikodym derivative dP

dQ . Accordingly, we have

D(P ||Q) =

∫
dP (a) log

dP

dQ
(a) (25)

=

∫ [
dP

dQ
(a) log

dP

dQ
(a)dQ(a)

]
(26)

= E [Z logZ] (27)

where (26) is obtained by setting X ∼ Q and in (27),
the Radon-Nikodym derivative is set equal to some random
variable Z = dP

dQ (X) confined in the interval Z ∈ [e−ε, eε]
following Definition 1. Namely, (ε, δ)−DP ensures that the
Radon-Nikodym derivative is defined over [e−ε, eε] when δ =
0, Z is finally defined to be scattered around the endpoints e−ε

and eε weighed by corresponding complementary probabilities
to confer E[Z] = 1. As a result, Z takes on the value eε with
probability p = 1−e−ε

eε−e−ε and takes on e−ε with the complement
of p when substituted into Kullback-Leibler divergence to
redefine it as a function of the Radon-Nikodym derivative.
KL-DP is translated into E [Z logZ] and obtained as follows
for P and Q satisfying ε-DP through deriving with this choice
of probability distribution.

D(P ||Q) ≤ ε
(eε − 1)(1− e−ε)

eε − e−ε
(28)

An interesting result of this relation appears in the form of
symmetry between D(P ||Q) and D(Q||P ) when represented
as a privacy metric.

Following similar steps, next, we plug the Radon-Nikodym
derivative in Chernoff information in order to represent it in
terms of ε−DP.

A. Chernoff DP re-written via ε-DP

α-skewed Bhattacharya affinity coefficient represented by
the integral Cα(P,Q) =

∫
pαq1−αdµ can be re-written w.r.t.

P via a simple change of variables of integration. For P <<
Q, Cα(P,Q) becomes∫

pαq1−αdµ =

∫
(p/q)

α
dQ (29)

It is also possible to represent Cα(P,Q) based on Q to
obtain the following form of α-skewed Bhattacharya affinity
coefficient which yields the Chernoff information equivalent
to the one given by (11).∫

pαq1−αdµ =

∫
(q/p)

1−α
dP (30)

It is straightforward to represent (29) as follows

Cα(P,Q) =

∫ (
dP

dQ
(a)

)α

dQ(a) (31)

= E [Zα] (32)

where in (32), we set Z = dP
dQ (X) for X ∼ Q. Similarly, plug-

ging Radon-Nikodym derivative Z in Cα(P,Q) when the inte-
gral is based on P rather than Q, we obtain EP

[
Zα−1

]
. Using

this form of α−skewed Bhattacharya coefficient Cα(P,Q),
finally we have

Cα(P,Q) =

∫ (
dQ

dP
(a)

)1−α

dP (a) (33)

= E
[
Zα−1

]
(34)

where X ∼ P in Z = dP
dQ (X). Note that, (31) and (33)

are equivalent. Next theorem defines the relation between
Chernoff-DP and ε-DP via their representation as a function
of Radon-Nikodym derivative dP/dQ.

Theorem 2 (Chernoff-DP and ε−DP relation). The following
relation holds

ε−DP ⪰ Chernoff-DP (35)

where the optimal prior for − logCα(P,Q) based on EQ[Z
α]

is α∗ = 1
2ε log

1+ε
1−ε−1. By analogy, Chernoff-DP is maximized

for − logEP [Z
α−1] where the prior is 1

2ε log
1+ε
1−ε .

Note that, either expansion of Cα(., .) leads ultimately to
the same Chernoff information due to its symmetry property.
Here the effect of different expansions are emphasized on the
optimal value of parameter α. Theorem 2 can be interpreted
as necessary condition for ε−DP to imply Chernoff-DP which
is dependent on the relation between the prior probability α
and the privacy parameter ε to hold.

Proof. To obtain Chernoff DP via ε-DP of (1), we need to re-
write Chernoff DP as a function of Radon-Nikodym derivative
Z. With the expectation in (32) over its range [e−ε, eε],
Cα(P,Q) becomes

Cα(P,Q) =
1

α+ 1

(
eε(α+1) − e−ε(α+1)

)
(36)

Substituting (36) into Chernoff DP, for the first expansion as
a function of (32), we get

C(P,Q) = max
α

{
log(α+ 1)− log

(
eε(α+1) − e−ε(α+1)

)}
,

(37)
or equivalently,

C(P,Q) = max
α

{
log(α+ 1) + ε(α+ 1)− log

(
e2ε(α+1) − 1

)}
.

(38)
Unfortunately, the optimization in (38) does not yield a closed-
form solution for α as a function of the privacy parameter.
To be able to characterize the optimal prior, we upper bound
the Chernoff-DP in step (38) since the logarithmic function is
monotonically increasing and the following inequality holds



log(x + 1) ≤ x for any positive x. Hence, the first term of
(38) is upper bounded as

log(α+ 1) ≤ α. (39)

Thus, we have for C(P,Q), the following upper bound

Cub(P,Q) = max
α

{α+ ε(α+1)− log
(
e2ε(α+1) − 1

)
} (40)

where C(P,Q) ≤ Cub(P,Q). In order to find the optimum
value α, we take the derivative of Cub(P,Q) and seek for the
value of α as a function of the privacy parameter ε that equals
the derivative to zero as follows.

dCub(P,Q)

dα
= 1 + ε− 2εe2ε(α+1)

e2ε(α+1) − 1
(41)

We obtain the value of prior probability that maximizes the
upper bound on Chernoff-DP as a function of the privacy
parameter as α∗

ub,I = 1
2ε log

1+ε
1−ε − 1. Given that, α is the

prior probability assigned to null hypothesis, α∗
ub,I should be

confined in (0, 1]. On the l.h.s. of 0 < α∗
ub,I ≤ 1, we obtain

ε > 0 whereas on the r.h.s., we obtain

1

2ε
log

(
1 + ε

1− ε

)
≤ 2 (42)

1− 1− ε

1 + ε
≤ 4ε (43)

where in (43), we lower bounded the l.h.s. of (42) by log x ≥
1 − 1

x where x ∈ R>0. This results in ε ≥ −.5 which obeys
the range we obtain from α∗

ub,I > 0 and compatible with
Definition 7.

As for the second expansion (33), where the expectation of
the Radon-Nikodym derivative is based on P , we get

Cα(P,Q) =
1

α

(
eεα − e−εα

)
(44)

Plugging (44) into C(P,Q) = max
α

{− logCα(P,Q)}, we
obtain the following expression, as in the first expansion with
no explicit solution of maximization based on α.

C(P,Q) = max
α

{
log(α)− log

(
eεα − e−εα

)}
(45)

= max
α

{
log(α) + εα− log

(
e2εα − 1

)}
(46)

By upper bounding the first natural logarithm for any positive
real number via log x ≤ x − 1, we obtain Cα(P,Q) ≤ α −
1 + εα − log

(
e2εα − 1

)
. Plugging this expression into (46)

and optimizing based on α, we have

α∗
ub,II =

1

2ε
log

1 + ε

1− ε
(47)

For the prior probability based on ε in (47) to be valid, α∗
ub,II

must be confined in (0, 1]. Accordingly, α∗
ub,II > 0 is guar-

anteed by a positive privacy parameter, which is compatible
with Definition 7. As for the upper bound on (47),

1

2ε
log

1 + ε

1− ε
≤ 1 (48)

1−
(
1 + ε

1− ε

)
≤ 2ε (49)

which again yields ε > 0. In (49), the l.h.s. is lower bounded
via the following property of natural logarithm function
log x ≥ 1 − 1

x where x ∈ R>0. The symmetry in Chernoff
information of Definition 11 is preserved in Chernoff-DP
hence, substitutions of both priors into the upper bounds on
two different expressions (38) and (46) result in

C(P,Q) ≤ C∗
ub(P,Q)

=

(
1

2ε
+

1

2

)
log

1 + ε

1− ε
− 1 + log

(
2ε

1− ε

)
(50)

where we denote the optimal upper bound on Chernoff-DP
by C∗

ub(P,Q). Note that, the symmetry property of Chernoff
information is carried on the optimal upper bound on the DP
metric due to the identical bounding step applied on both
expansions.

B. Numerical Comparison of DP Metrics

Through Definition 1 of (ε, δ)−DP for δ = 0, we have
derived Chernoff information based privacy metric and proved
its valid dependent on a relationship between optimal α
and the privacy parameter ε. For the sake of demonstrat-
ing a numerical comparison between different upper bounds
on C(P,Q) through ε−DP in (38), the logarithmic term
log

(
e2ε(α+1) − 1

)
can be bounded by using log x ≥ 1− 1/x

for x = log
(
e2ε(α+1) − 1

)
. This bound when plugged into

C(P,Q) upper bounds the optimal prior probability in terms
of the privacy parameter by

α∗
alt ≤

1

2ε
log

(
4ε+ 2

ε+ 1

)
− 1 (51)

where we denote the alternative bounds maximum point by
α∗
alt. By analogy, for C(P,Q) of (46), we get the optimal at

α∗
alt +1. In Figure 2, we present numerical evaluation results

of two alternative upper bounds proposed on Chernoff-DP re-
derived via ε−DP. Once again, the symmetry in the original
definition is maintained in the upper bounds on the DP metric,
so that the two different expansions of Cα(P,Q) yield upper
bounds that ultimately coincide.

Figure 2 depicts the numerical comparison of various di-
vergence based DP metrics. Accordingly, Chernoff-Cuff refers
to (38) whereas UB I and UB II represent the two alternative
upper bounds on C(P,Q) obtained via α∗

alt and α∗
ub,I , respec-

tively. Additionally, D(P ||Q) of (28) is plotted via its product
with (1−α) and appears as KL-Cuff in the legend of Figure 2.
D(P ||Q) and −D(Q||P ) correspond to derivatives of C(P,Q)
for α = 0 and α = 1, respectively. The corresponding curves
are plotted via the products α·D(Q||P ) and (1−α)·D(P ||Q).
Lastly, the curve represented by α = 0.5 in the legend is the
Bhattacharya divergence which is C(P,Q) for α = 0.5.

Besides preservation of the symmetry property, Figure 2
also confirms that representation of Chernoff in terms of
ε−DP, mirror the behavior of the curve as a function of the
privacy parameter. Doubtlessly, α∗

alt leads to a significantly
worse protection as opposed to α∗

ub which can be observed by
comparing UB I and UB II.
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Fig. 2. Numerical comparison of different upper bounds on C(P,Q) derived
through ε−DP, KL-DP and Bhattcharya-DP which is C(P,Q) with α = .5.

V. ADVERSARIAL CLASSIFICATION WITH DP

As the discussion initiated in Section II-C, the motivation
behind the interest in privacy metrics based on Chernoff and
Kullback-Leibler divergences lies in best error exponents for
binary classification. Imagine the following scenario, where a
powerful adversary is able to benefit from privacy protection
mechanism employed by the defender to avoid being correctly
detected. Accordingly, the adversary is aware of the privacy
protection and the main goal is to adjust the impact of its attack
as a function of the privacy budget of the targeted mechanism
so that the defender fails to correctly detect the attack [6].
Here the attack refers to the modification applied on the
dataset by the adversary. In this part, we present a numerical
comparison between KL-DP and Chernoff DP for the problem
of adversarial classification in Laplace mechanisms. Laplace
mechanism is reminded the reader by the following definition.

Definition 8. Laplace mechanism [3] is defined for a function
f : D → Rk and i.i.d. Laplace random variables Ni ∼
Lap(b = s/ε), i = 1, · · · , k as follows

Y(x, f(.), ε) = f(x) + (N1, · · · , Nk) (52)

where Y represents the randomization mechanism and s is the
global sensitivity of the function f that is ∥f(x)−f(x̃)∥1 ≤ s.

An input dataset denoted by Xn = {X1, · · · , Xn} is
perturbed by Laplace noise N ∼ Lap(0, b) with the corre-
sponding output Y(x, f(.), ε) = Y = f(Xn) +N where f(.)
denotes the query function. An adversary modifies this infor-
mation by inserting or deleting one record where the modified
data is denoted by Xa reflecting on the output that becomes
Ya = f(Xn +Xa) +N . Representing this problem with two
hypotheses on the distribution of the Laplacian perturbation
allows the defender to determine the threshold of correctly
detecting the attacker as it also allows the adversary to fool
the classifier and avoid being detected [27]. Accordingly, the

hypotheses are set to decide whether the defender fails to
detect the attack or correctly detects it.

In case of a linear f(.), even if the adversary only has
access to the published output, it is possible to determine the
threshold of detection by using the likelihood ratio function.
The performance criterion of such a test are different error
probabilities, each of which is related either to Kullback-
Leibler divergence or to Chernoff information. The main
distinction between the two is the use and accessibility of
prior probabilities for the opposing hypotheses, namely α and
1− α. But ultimately, the effect of prior probabilities washes
out and converges to zero [26] as a function of the size of the
sequence of i.i.d. observations M .

For the problem described above, one can consider the
notion of neighborhood as the datasets before and after the
alteration applied by the adversary. In this case, the corre-
sponding probability distributions to each hypothesis is the dis-
tribution of DP noise with and without the inserted record Xa

considering a linear query function. Ultimately, in the classical
approach, the probability distribution N ∼ Lap(µ0, b = s/ε)
is tested against Lap(µ1, θb) for θ > 1 where in the Bayesian
setting the null and alternative hypothesis are weighed by the
corresponding prior probabilities α and 1−α, respectively. The
difference in the mean denoted ∆µ = µ1 − µ0 is a result of
the addition or deletion of Xa and µ0 = 0. Kullback-Leibler
divergence between two Laplace distributions is derived in
detail in [6] as

D(P ||Q) = log θ − 1 +
|∆µ|
θb

+
1

θ
e−|∆µ|/b (53)

As for the Chernoff information between two Laplace distri-
butions, we have from [20], the following expression adapted
to our problem

C(P,Q) =
|∆µ|
θb

− log

(
1 +

|∆µ|
θb

)
. (54)

In Figure 3, we present the numerical comparisons of (53)
and (54), as a function of the privacy budget, the parameter θ
that shows the change in the variance after attack and ∆µ, the
shift in the mean due to the addition or (removal if negative)
of Xa as a multiplier of sensitivity s. Accordingly, increasing
∆µ with respect to the sensitivity, firstly closes the gap with
the upper bound and for the extreme case of ∆µ = 3 ∗ s
and θ > 1, both Kullback-Leibler and Chernoff divergences
surpass the upper bound ε. For all three scenarios, Chernoff is
much tighter than Kullback-Leibler divergence as a function
of privacy budget.

VI. CONCLUSIONS AND FUTURE WORK

We studied the best average error exponent for adversarial
classification, which is the well-known Chernoff information,
in terms of the Radon-Nikodym derivative in relation with
ε-DP. We showed that ε-DP implies Chernoff DP depending
on the relation between the privacy parameter ε and the prior
probability that conforms the classes associated with each
hypothesis, which in our scenario, corresponds to whether or
not the defender correctly detects the attack. The constraint
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Fig. 3. Numerical comparison of KL-DP and Chernoff DP

on the privacy budget is introduced due to the prior probabil-
ities. The optimal value to determine the best average error
exponent for the prior probability and the corresponding ε
could not be derived in a closed from, instead Radon-Nikodym
derivative based Chernoff information is upper bounded prior
to optimization. Future work will involve tighter bounding
techniques.

Subsequently, we have demonstrated numerical comparison
results for the well-known Kullback-Leibler divergence and
Chernoff information for classification in Laplace mechanisms
as a function of the privacy budget, global sensitivity and
the absolute value of the modification applied on the data
by the adversary. Accordingly, even when the absolute value
of the impact of the attack is tripled in terms of the query’s
sensitivity, in the high privacy regime, i.e. for small values
of ε, Chernoff information remains to obey the upper bound,
unlike the Kullback Leibler divergence.
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