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Abstract—The emergence of 6G networks heralds a trans-
formative era in network slicing, facilitating tailored service
delivery and optimal resource utilization. Despite its promise,
network slice optimization heavily relies on Deep Reinforcement
Learning (DRL) models, often criticized for their black-box
decision-making processes. This paper introduces a novel Com-
posable eXplainable Reinforcement Learning (XRL) framework
customized for distributed systems like 6G Network Slicing. The
proposed framework leverages Large Language Models (LLMs)
and Prompt Engineering techniques to elucidate DRL algorithms’
decision-making mechanisms, with a specific emphasis on user
profiles. The latter transforms the inherently opaque nature of
DRL into an interpretable textual format accessible not only to
eXplainable AI (XAI) experts but also to diverse network slice
provider stakeholders, engineers, leaders, and beyond. Experi-
mental results underscore the efficacy of the proposed Compos-
able XRL framework, showcasing substantial improvements in
transparency and comprehensibility of DRL decisions within the
context of 6G network slicing.

Index Terms—Explainable Reinforcement Learning, Compos-
able XRL, LLMs, Admission Control, 6G Network Slicing.

I. INTRODUCTION

The emergence of 6G networks marks a significant milestone
in the ongoing evolution of telecommunications technology.
As we venture further into the digital age, the demand for
faster, more reliable, and versatile communication networks
continues to grow exponentially. 6G networks are poised to
answer this call with their promise of unprecedented speeds,
ultra-low latency, and the ability to support a multitude of
emerging applications, such as augmented reality, virtual re-
ality, and the Internet of Things. However, this incredible leap
in connectivity comes with its own set of challenges, with one
of the most critical being network slicing. Network slicing in
5G/6G is the process of dividing a single physical network
into multiple virtual networks to cater to the diverse needs
of various applications and services. Each network slice must
be optimized for specific requirements, such as bandwidth,
latency, and security. This constant pursuit of automation
solutions has sparked extensive research into the applications
of Artificial Intelligence (AI) and Machine learning (ML) in
the context of 5G/6G [1].

With a growing interest in this topic, the regulations set
forth by national and international authorities are continu-
ally evolving. For instance, Article 13 of the EU Regulatory

Framework for AI1 emphasizes the importance of AI systems
being explainable, transparent, and well-documented. In sce-
narios where humans are directly involved, understanding the
inner workings of complex models is essential for experts
to conduct thorough root-cause analysis [2]. This principle
extends to the majority of zero-touch network configuration
and automation scenarios, currently under discussion within the
ETSI ZSM2 (Zero-touch Network and Service Management)
group. Because they involve the use of AI and ML techniques
in automating network and service management tasks. In such
cases, ensuring the explainability of AI models used within the
ZSM framework could be important to understand why certain
automated decisions are made [1].

Current research in the application of Reinforcement Learn-
ing (RL) to network-related tasks (e.g. Network slicing, Load
Balancing, etc.) relies on the use of Deep RL (DRL) algorithms
[3]. These algorithms express their decision-making strategies
through deep neural networks. DRL can handle a broad range
of input types, not limited to finite or discrete sets, and these
neural networks can effectively adapt to novel inputs. Further-
more, DRL can naturally adapt to changes in the system’s envi-
ronment, avoiding the need for explicit mechanisms to monitor
such changes [4]. Nevertheless, a notable drawback of DRL is
that the decision-making process is not explicitly revealed, it
is instead concealed within the neural network’s parameters.
To service developers and users, DRL’s decision-making may
seem like a mysterious ”black box”. Consequently, there is a
demand for methods that can elucidate and interpret the inner
workings of these opaque systems, and shed light on how they
reach their decisions [6].

Providing insights into the decision-making process of DRL
can assist service developers in troubleshooting the reward
function. This understanding helps them uncover the rationale
behind DRL’s specific choices. The effectiveness of DRL relies
heavily on the quality of the problem definition, particularly in
terms of how the reward function is specified. Additionally,
the ability to offer explanations can play a crucial role in
ensuring compliance with regulations. For instance, in the
European Union, service providers are obligated to ensure that
their services adhere to relevant legal frameworks, such as the

1https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-
down-harmonised-rules-artificial-intelligence

2https://www.etsi.org/technologies/zero-touch-network-service-management



General Data Protection Regulation and the upcoming AI Act.
Explanations also enable service users to establish trust. They
can grasp the reasoning behind the service’s outcomes and,
consequently, decide whether to accept or reject those results
[7].

We can categorize explanation formats into two major types
[7], [8]: (i) Visual explanations, which encompass elements
like graphical user interfaces, charts, data visualization, or
heatmaps, and (ii) Textual explanations, which might involve
a natural-language dialogue between the explainer and the
person receiving the explanation. The choice of presentation
method directly impacts how well users comprehend the infor-
mation and, therefore, influences the overall effectiveness of
the explanation. In comparison to visual explanations, verbal
explanations offer several advantages as reported in the lit-
erature [3], [8], including (1) enhanced comprehensibility for
individuals with diverse backgrounds and non-technical users,
(2) increased user acceptance and trust, and finally, (3) more
efficient explanations.

A. Motivation

Numerous initial investigations have been conducted to
develop eXplainable RL (XRL) models and have made no-
table progress in generating explanations. Nevertheless, the
challenge of elucidating the decision-making process of DRL
using natural language remains unaddressed effectively. In the
broader field of XAI, methods for furnishing natural-language
explanations for ML are available [9], [10]. However, it is
essential to note that these XAI approaches are tailored to
supervised learning and not specifically designed for rein-
forcement learning except the work of Metzger et al. in [12],
where they have introduced a framework designed to enhance
the comprehension of DRL decision-making within general
service-oriented systems. Despite the efforts showcased in the
previous work, there is currently a notable gap in the literature
as there are no existing studies that specifically address net-
working services in a general context and, more specifically,
the intricacies of 5G/6G slicing. Moreover, XAI methods like
SHapley Additive exPlanations (SHAP) and Local Interpretable
Model-Agnostic (LIME) often yield outputs that require a high
level of technical expertise for interpretation. Unfortunately,
this expertise is not always readily available among various
stakeholders within companies. In many instances, human
intervention is necessary to elucidate decisions made by DRL
models, particularly in strategic decisions. This is where Large
Language Models (LLMs) prove invaluable. LLMs can offer
personalized explanations to all company stakeholders, includ-
ing leaders and experts, in the form of intelligent chatbots.
These chatbots take into account the diverse backgrounds and
profiles of individuals, ensuring that explanations are tailored
to the specific needs and understanding levels of each user. The
end goal is to augment transparency and streamline automation,
while minimizing the need for constant human intervention in
these systems.

In a broader sense, a significant research gap emerges in
the domain of networking when considering the provision
of natural language processing-based explanations. This gap
becomes particularly pronounced when we recognize the ne-
cessity for user-friendly explanations tailored to individual
user profiles. To instill trust in DRL decisions, especially those
involving strategic choices that demand critical thinking, it is
imperative to bridge this gap. The networking field, with its in-
tricate technical intricacies and high-stakes decisions, calls for
the development of interpretable and personalized explanations
that can empower users to comprehend and trust the decisions
made by DRL systems. Therefore, ”the ultimate goal of this
paper is to motivate the use of natural language explanations
of DRL black-box models in the 5G/6G networking realm”.

B. Novelty
In contrast to the approach taken in [12], our framework

uses a different explainable RL method than XRL-DINE to
generate pseudo-explanations that will serve as input data to the
prompt engineering and LLM modules as detailed in Section
III-A3. Furthermore, the authors used in their framework a
”Question Analyzer” module that interacts with the LLM to get
information about the explanation type (either local or global
through the timestep), which sometimes can be misleading to
LLM if the user input is not clear enough. Conversely in our
approach, we use different analogy that interact with the end
user to get the accurate explanation type through the query
templates bank.

To the best of our knowledge, this research represents the
first effort to pave the road for a powerful approach named
”Composable XRL” that tries to shed light on producing a
human-friendly textual explanation of DRL decisions in the
context of 5G/6G network slicing through leveraging three
distinct modules including LLMs, Prompt engineering, and
XRL. These explanations are designed in the format of a
chatbot that considers the user profile regardless of his type (AI
expert, Network Slice engineer, shareholder, etc.). The main
goal is to enhance the transparency and trustworthiness of such
DRL systems.

C. Key Contribution
The key contributions of this paper can be succinctly sum-

marized as follows:
• We collect a dataset during the runtime of a DRL ”Black-

Box” model for network slice admission control.
• We adopt a novel XRL technique that employs reward

decomposition to identify the features influencing the
agent’s decision-making process.

• We propose a new approach that harnesses the capabilities
of XRL, LLMs, and Prompt Engineering to provide per-
sonalized user-aware explanations in the form of a Chat-
bot that takes into consideration different backgrounds
and profiles of company actors (technical/non-technical
AI/XAI experts).

• Through a proof-of-concept, we test the effectiveness
of the proposed framework to explain DRL decisions



concerning the admission control problem of network
slices in 5G/6G networks.

The remainder of the paper is organized as follows: Section
II introduces the black-box DRL solution for the admission
control problem. Section III provides an overview of our
Composable XRL framework design. Section IV, with a dual
focus, first details the experiment setup, and subsequently,
presents and discusses the obtained results. Finally, Section
V concludes the paper.

II. EXPLAINABLE DEEP REINFORCEMENT LEARNING FOR
NETWORK SLICING

In the context of 6G, Network Slice Providers (NSPs) are
tasked with handling network slice Requests (NSLRs) for NSL
instances designed to support various use cases, including
the next-generation Enhanced Mobile Broadband (eMBB+),
Massive Machine Type Communication (mMTC+), and Ultra-
Reliable Low Latency Communication (URLLC+) [5]. Each
instance comes with its unique Quality of Service (QoS)
requirements. To efficiently manage these requests, NSPs
must establish an Admission Control mechanism to determine
whether to accept an NSLR, factoring in the ability to meet
QoS demands and the availability of physical resources, as
illustrated in Fig. 1. This adaptive and self-optimizing approach
ensures that network slices meet their service-level agreements
while reducing the need for constant human intervention,
which contributes to the efforts aimed at achieving the ZSM
automation vision.

In response to the challenge of understanding DRL deci-
sions, some efforts have been made to provide explanations
for these intricate algorithms [6]. However, a significant issue
persists: the existing solutions are often far from user-friendly.
While they may offer some insight into the decision-making
process, they lack consideration for the end user’s profile.
This oversight results in explanations that are not tailored to
individual needs and preferences, rendering the systems less
transparent and less effective in building trust.

The overarching goal of these developments is to enhance
transparency and trustworthiness among users across the spec-
trum, not just limiting it to AI experts. When users can
interact with and comprehend AI decisions, it fosters a sense
of trust and empowers them to make informed choices. Such
explainable systems have the potential to revolutionize the way
individuals from various backgrounds engage with and benefit
from AI-driven technologies, contributing to a more inclusive
and transparent AI ecosystem.

A. Admission Control Problem

In this section, we expound on the formulation and modeling
of the control admission problem from [11] as a case study, in
order to analyze and validate our framework.

1) System Model: The 5G core network is modeled as
an undirected graph with labels and weights, denoted as
SN = {N,L}, where N represents the set of nodes
N = {n1, n2...nm}, and L represents the set of links

Fig. 1: DRL framework for Admission Control in 5G/6G
Network Slicing

L = {(n1, n2), (n1, n3)...(nl, nm)}. Each node, ni ∈ N is
characterized by a processing capacity denoted as CPU(ni).
The bandwidth of a link between nodes ni and nj is expressed
as BW (ni, NJ).

A NSL Request is defined by nslr = {stype, To, G}. The
stype identifies the 5G use case, such as eMBB, URLLC, or
mMTC. To specifies the requested operational time, indicating
the duration of a network slice. G = {F, V } forms a labeled
and weighted undirected graph representing an NSL (Network
Slice). Here, F is the set of Virtual Network Functions (VNFs),
and V is the set of virtual links connecting them. Nodes in this
graph are labeled to signify the amount and type of resources
demanded by a VNF, with edges weighted to represent the
bandwidth requested by the virtual link. The processing capac-
ity required by a VNF is denoted as cpu(vnfi), and the node
type a VNF requests is represented by type(vnfi). Similarly,
bw(vnfi, vnfj) designates the bandwidth demanded by the
virtual link connecting VNFs vnfi and vnfj .

2) DRL-based Solution: The previously mentioned opti-
mization challenge can be addressed by employing the DRL
framework, wherein the configuration of state and action
spaces, along with the reward, is outlined below (see Table
I):

• State Space: Characterizes resources in the 5G core
network, In the context provided, cpu(E) signifies the
processing capacity available within the collection of
edge nodes (E), while cpu(C) denotes the available
processing capacity within the core node set (C). Addi-
tionally, bw(L) represents the available bandwidth within
the group of links (L).

• Action Space: DRL agent selects weights (Wstype ) for
different use cases to maximize profit.

• Reward: The reward value represents the monetary profit
achieved by the DRL agent’s action on a given state.
The DRL agent aims to maximize the NSP profit while
optimizing resource utilization. The final reward is the
sum of profits p(nsli) obtained for each accepted NSL,



normalized by the maximum profit i.e. maxP (SN, T )
achievable when utilizing all resources in the substrate
within a specified period.

TABLE I: DRL Framework Parameters

Parameter Type
State Space S = {(cpu(E), cpu(C), bw(L)}
Action Space A = {WURLLC ,WeMBB ,WmMTC}
Reward p(nsli) = (revi − csti)× To

csti =
∑m

j=0 cpu(vnfj)× fcpuj +∑n
j=0 bw(vj)× fbw × h

R =
∑k

i=0 p(nsli)

maxP (SN,T )

• rev: The income generated by the NSP for provisioning
the nsli.

• cst : The operating expenses incurred by the NSP for
running the nsli on the underlying infrastructure.

• m,n: The number of VNFs, and virtual links within the
nsli, respectively.

• fcpuj : The processing cost of the VNF instance j.
• fbw: The bandwidth cost of the virtual link j.
• h: The number of hops in the path where the virtual link

j is allocated.
• cpu(vnfj): is the cpu need of vnfj in nsli.
• bw(vj): is the bandwidth need of virtual link vj in nsli.
The Deep Q-Network (DQN) serves as a DRL algorithm

utilizing a neural network to estimate the Q-value associated
with each action in a specific state. The agent selects the action
at with the highest estimated Q-value, receives a reward Rt

for the action taken, and observes the ensuing state st+1. The
objective is to admit NSLRs that yield the highest profit. Time
is discretized, and the algorithm takes a set of NSLRs within
a designated time window as input. The algorithm’s output
comprises the accepted NSLRs that maximize profitability and
minimize the running cost.

III. COMPOSABLE AI FRAMEWORK FOR EXPLAINABLE RL
(COMPOSABLE XRL)

Composable AI is a pioneering approach to Artificial In-
telligence (AI) that emphasizes modularity and collaboration
within an AI system. This framework integrates diverse AI
subsystems to work together harmoniously, with each sub-
system specializing in a specific task or domain. By com-
bining the strengths of various components, Composable AI
has the capacity to tackle complex problems in a holistic
and flexible manner. This approach not only enhances the
adaptability and problem-solving capabilities of AI systems but
also allows for the seamless integration of new AI technologies
and components as they emerge. Composable AI represents
a versatile and forward-thinking paradigm that promises to
revolutionize AI by making it more agile, effective, and capable
of addressing a wide range of challenges in today’s rapidly
evolving technological landscape.

In our case, the proposed framework regroups three cutting-
edge AI techniques: LLM, Prompt Engineering, and an eX-
plainable RL. These components work collaboratively to pro-

vide clear and comprehensible explanations of DRL decisions
regarding the ”Admission Control of network slices where the
end goal is to optimize the 5G/6G service provider’s profit”.

The LLM in our framework serves as an AI chatbot, capable
of delivering natural-language explanations for DRL decisions
in response to user inquiries. The unique advantage of AI
chatbots is their ability to provide responses in a conversational,
human-like manner. However, they are not without their chal-
lenges. One of these challenges is the potential for the LLM
to ”hallucinate”, which means generating nonsensical text that
may not accurately reflect the provided source input. This can
result in explanations that exhibit low fidelity, undermining the
trustworthiness of the AI system.

To overcome these challenges and ensure that the explana-
tions are both faithful and stable, our framework incorporates a
dedicated prompt engineering module for the AI chatbot. Our
mechanism involves providing a set of targeted, initial ques-
tions (prompts) before the actual user question. This approach
is designed to increase the correctness of the answers generated
by the chatbot, resulting in explanations with higher fidelity
and stability. Additionally, we carefully select and optimize
the hyper-parameters of the underlying LLM to further enhance
the quality and accuracy of the explanations. This combination
ensures that users receive natural-language explanations that
are not only understandable but also reliable, promoting trans-
parency and trust in the decision-making processes of DRL.

A. System Design

As prerequisites for the successful implementation of this
framework, two fundamental components are paramount.
Firstly, the dataset collection phase stands as an essential foun-
dation. Secondly, an equally critical requirement is a clear and
comprehensive description of the network slicing environment
carefully prepared by domain experts. This description serves
as a ”context meta-data” that guides the Prompt Generator and
eventually the LLM.

As illustrated in Fig. 2, the workflow of the proposed
framework can be summarized as follows:

1) Dataset Collection and Pre-processing: We train the
DRL black-box model which is in our case Deep Q-Networks
(DQN) algorithm on the admission control management of
NSLs where we capture and collect a dataset during runtime.
To begin, the dataset should encompass diverse and represen-
tative scenarios, that the DRL agent is expected to encounter
during its training process. In our scenario where a Network
Slice Provider (NSP) seeks to optimize the admission control
for network slicing, it is imperative to cover various states,
actions, and outcomes such as operational time, cost associated
with running the slice, and the number of VNFs to ensure
the model’s robustness. Moreover, it is essential to ensure
that the dataset encompasses a range of policy variations,
including both successful and less successful ones. Once the
DRL training is complete, the collected dataset can be utilized
in the eXplainable RL model, where the reward decomposition
method can help disentangle the influence of different factors



Fig. 2: The Proposed Composable XRL framework that leverages LLMs, Prompt Engineering, and Explainable RL to produce
personalized natural language explanations of DRL decisions about the admission control of 6G slices.

(e.g. state-action-reward, Cst, OT, nbr of VNF, etc.) on the
agent’s decision-making. Careful dataset curation is pivotal to
the effectiveness of this process, enabling meaningful insights
into the DRL agent’s behavior and facilitating informed adjust-
ments and optimizations.

2) Query Interpreter: The ”Query Interpreter” plays a
pivotal role in the initial phase of the framework. Its primary
function is to decipher critical information from the user
query, specifically identifying the user’s profile and the desired
explanation type. To streamline this process, end users are
guided to follow a designated query template. This template
instructs the user to start by specifying their profile, such
as ”AI expert” or ”NSL leader,” and then to indicate their
preferred explanation type (for technical profiles), whether it’s
a ”local explanation” (providing insights into a single decision
within a single timestep) or a ”global explanation” (covering
a sequence of decisions across several timesteps). Once the
user has inputted this essential information, they can proceed
to submit their query to the framework.

Upon handling the user input, the ”Query Interpreter”
forwards the processed query to the Prompt Generator module
and dispatches an XRL Request to the XRL module, including
the relevant timestep (T ) information.

3) eXplainable RL (XRL) Module: After receiving the
XRL Request, the collected dataset is used as input for our
Explainable RL model. This model employs a well-known
method called ”Reward Decomposition” to analyze the dataset
using the timestep specified in the XRL Request.

Reward Decomposition, initially introduced with the goal

of enhancing learning effectiveness. Then, it was employed by
Juozapaitis et al. to enhance explainability [13]. It is a method
that aims to break down the overall reward signal received by
an agent into its constituent parts, enabling a deeper under-
standing of what factors contribute to the agent’s performance.
In essence, it dissects the reward into individual components,
shedding light on which actions or states are responsible for a
particular outcome. What makes this method particularly useful
is its versatility across various DRL algorithms.

In our case, we employ one of these reward decomposition
methods, specifically the Q-value decomposition method. This
approach plays a pivotal role in elucidating the workings of the
Deep Q-Network (DQN) black-box model. To achieve this,
we leverage the runtime dataset that has been meticulously
collected during the training of the DQN model. The Q-value
decomposition method breaks down the reward signal into
various components, allowing us to discern how specific state-
action pairs influence the agent’s decision-making process and
its overall performance. This in-depth understanding of the
Q-value decomposition is a crucial step in making the DQN
model more transparent and explainable, ultimately enhancing
its utility in the context of managing admission control of
network slices.

In our framework, the outcome of the XRL module is a
JSON file that contains information on the contribution of
various factors, such as income cost (cst), operational time,
CPU-related computational costs, and bandwidth-related costs,
to the overall reward received by the DRL agent.



4) Prompt Generator: The Prompt Generator assumes a
crucial role in this framework by processing three vital pieces
of information:

• The Prompt Generator receives the descriptive context
of the network slicing environment, which serves as the
foundation for subsequent interactions with the LLM.

• It takes in the processed user query, incorporating the
user’s input into the prompt generation process.

• It receives the XRL reply, comprising explanations of
NSL decisions in a JSON file format tailored to the
specified timestep, as previously discussed.

With all this information at its disposal, the Prompt Genera-
tor goes on to craft a well-structured prompt designed to elicit
the desired information from the LLM. This prompt serves as
the bridge between the user’s query, the network context, and
the LLM’s capabilities. Once the prompt is generated, it is
transmitted to the LLM, where this module awaits the LLM’s
response.

Upon receiving the LLM’s response, the Prompt Generator
module finalizes its task by compiling a user-aware explanation
that integrates the LLM’s insights, the network context, and
the user’s original query. This synthesized explanation is then
delivered to the end user in a textual format, ensuring that
the user receives a comprehensible and contextually relevant
response to their query.

B. XRL Query Templates (Bank)

The diversity in query templates holds a crucial significance
in the interaction between users and AI systems. One of the
key factors influencing the choice of query templates is the
user type. Depending on their role and objectives, different
users may seek distinct types of explanations from the AI. For
instance, an AI expert may have different information needs
compared to an NSL leader. Leaders often prefer relevant and
non/few technical explanations that can assist them while mak-
ing strategic decisions to improve the company’s profitability
and ensure a positive user experience. In contrast, NSL domain
experts may require more technical explanations to enhance
their NSL system and implement the instructions provided by
the leaders. This disparity in user preferences necessitates a
dynamic approach in generating query templates.

One more substantial element that influences query tem-
plates is the type of explanation required, whether local or
global taking into consideration the timestep if relevant, as
shown in the examples below:

• Single Timestep: ” At timestamp 11, why did the model
choose to terminate the URLLC slice? ”

• Sequence of Timesteps: ”For timesteps 10,00—10,500,
how many slices have been admitted?”

This distinction is especially important in the context of
technical explanations, where the choice of explanation type
can significantly impact the accuracy of the results obtained
from the AI model.

The dynamic flexibility inherent in LLM serves as a cor-
nerstone of our system’s capabilities, enabling it to respond

TABLE II: Query Types and Templates

Query Type Query Template Bank

Data Used for Training

”What data was used to train the system?”
”Tell me about the training data.”
”What is the source of the training data?”
”How were the labels/ground-truth pro-
duced?”
”What is the sample size of the training
data?”
”What dataset(s) is the system NOT using?”
”What are the potential limitations/biases of
the data?”

System Outputs

”What kind of results does the system pro-
vide for DRL decisions?”
”Explain the outcomes related to decision-
making.”
”What is the significance of the system’s
output?”
”How do other system components use the
output?”
”In what ways is the output employed by
other system components?”
”What’s the most effective way to make use
of the system’s output?”
”How can the system’s output be integrated
into my work process?”

System Performance

”How precise are the predictions made by
the system?”
”Tell me about the system’s performance in
terms of prediction accuracy.”
”How frequently does the system make er-
rors?”
”Under what circumstances is the system
prone to accuracy/inaccuracy?”
”What types of errors the system is inclined
to commit?”
”Is the system’s performance sufficient
for...?”

Counterfactual Explana-
tions (What-ifs)

”What would have happened if we changed
a certain input?”
”What might the system forecast if this
instance were to alter to...?”
”What could the system anticipate if a spe-
cific feature were modified to...?”
”What would be the system’s prediction for
a distinct instance?”

General Questions

”Why do instances A and B receive identical
predictions?”
”How does the system function?”
”What leads the system to make particular
predictions?”
”Why does the system refrain from deliver-
ing predictions in certain scenarios?”

effectively to a diverse array of query types. To address this
variability and cater to diverse user intentions, Table II presents
a comprehensive set of query templates that serve as a query
bank.

IV. PERFORMANCE EVALUATION

This section outlines the assessment of our Composable
XRL framework. Initially, we introduce the metrics employed
to evaluate its performance. Subsequently, we provide the
specifics of the experimental setup, followed by a discussion
of the results obtained in the experiments.



A. Metrics

The chosen metrics to evaluate the efficacy of our framework
draw inspiration from state-of-the-art practices in explainable
AI [15]. These metrics encompass:

1) Sensitivity: Sensitivity measures how changes in input
features affect the explanations. It evaluates whether the XAI
system appropriately adjusts the importance assigned to fea-
tures when there are changes in the input. The correlation be-
tween changes in input features and changes in the importance
scores assigned by the XRL system can be used as a sensitivity
metric. A higher correlation indicates better sensitivity.

2) Stability: This metric assesses the consistency of ex-
planations across different instances or perturbations of the
input data. A stable explanation system should provide similar
explanations for similar instances or when the input data
is slightly modified. Stability is often tested by introducing
small variations to the input data and observing whether the
explanations remain consistent.

3) Comprehensibility: We measure the comprehensibility
metric by evaluating the clarity of explanations, influenced by
the intended audience (e.g., AI experts or leaders), and the
concise nature of explanations (measured by factors like the
number of rules, words, etc.). Additionally, the customization
of explanations based on end users’ profiles, providing either
technical details or serving as a general decision assistant, is
considered in the assessment.

B. Experiment setup

In our experimental setup, we implemented a proof-of-
concept realization of our Composable XRL framework using
Python and the LangChain3 framework, integrating the Ope-
nAI4 API key to leverage the powerful GPT 3.5 Turbo (175B)
as our LLM. The latter is built upon the robust foundation of
the transformer architecture. Boasting an impressive 175 billion
parameters, this language model has been meticulously trained
on an extensive dataset comprising both text and code, enabling
it to adeptly comprehend and generate human-like language
across diverse domains. With a maximum output length of
4,096 tokens, the model exhibits a remarkable capacity for
generating lengthy and coherent text [14]. This combination
of immense parameter count, diverse training data, and rapid
response times positions this LLM at the forefront of cutting-
edge natural language processing technology. LangChain was
chosen for its efficiency in streamlining the development of ap-
plications utilizing LLMs, ensuring faster response generation
and the capacity to deliver more comprehensive answers [14].

To assess Composable XRL’s performance, we investigated
three key independent variables. First, we examined the impact
of prompting, comparing the prompt provided by the users
(Zero-shot prompting) to the prompts available in the query
bank. This analysis aimed to determine how much Composable
XRL’s effectiveness is influenced by prompt engineering and
to assess its overall robustness independent of specific prompt

3https://python.langchain.com
4https://platform.openai.com/

Fig. 3: Example of a User-LLM interactions

modifications. Second, we evaluated Composable XRL’s ability
to generate explanations for diverse end-user profiles by vary-
ing the question form. Lastly, we scrutinized the framework’s
performance under different hyperparameter settings, specif-
ically exploring temperature values within the range 0, 0.2,
0.6, 1. Additionally, we maintained a maximum token limit of
350 to strike a balance between answer length and processing
efficiency.

C. Results & Discussion

Figure 3 illustrates an example of User-LLM interactions
where users from different backgrounds can ask for explana-
tions based on their profiles. The system tries to clarify and
simplify the DRL agent’s actions and can go further by replying
to follow-up queries about the user’s needs due to the LLMs’
general knowledge capabilities.

1) Prompt engineering effect: When comparing the Stabil-
ity, Sensitivity, and Comprehensibility metrics between Users’
Prompt (zero-shot prompting) versus Prompt from the Query
bank, a clear trend emerges. User prompts show moderate
Sensitivity initially (see Fig. 4a), peaking at 92 for Temperature



(a) Sensitivity using Users’ Prompt (zero-shot) vs. Prompt from the
Query bank at Different Temperatures.

(b) Stability using Users’ Prompt (zero-shot) vs. Prompt from the
Query bank at Different Temperatures.

(c) Comprehensibility using Users’ Prompt (zero-shot) vs. Prompt
from the Query bank at Different Temperatures.

(d) Number of Hallucinations when using queries from the Query
Bank vs using Users’ Prompt (zero-shot).

Fig. 4: Performance Evaluation of Four Metrics with varied Temperature values: Assessing the usefulness of the proposed Query
Bank guiding system users (especially non-technical).

0.2, while query bank prompts consistently maintain high
Sensitivity, reaching 94 at Temperature 0.2. Query prompts also
demonstrate superior Stability, starting at 88 for Temperature
0 and staying above 90, as illustrated in Fig. 4b. Moreover, in
the Comprehensibility case depicted in Fig. 4c, query prompts
outperform user prompts across various temperatures.

This consistent superiority in all the metrics underscores
the effectiveness of Prompt Engineering in providing precise
and accurate explanations, outperforming the users’ Prompting
under various conditions.

Furthermore, clarifying the type of user in the prompt,
whether a network slice leader or engineer, has a profound
impact on the generation of personalized explanations and
eventually its enhancement on comprehensibility levels. By
specifying the user profile, the LLM can tailor its responses
to cater to the distinct needs and expertise levels of these
stakeholders. Network slice leaders may benefit from higher-
level, strategic insights, while engineers might require more
technical details. This customization not only enhances the
relevance of generated explanations but also significantly con-
tributes to overall comprehensibility for end-users. The clarity
achieved through personalized prompts ensures that the LLM’s
responses align with the specific expectations and requirements
of different user roles, thereby optimizing the utility of gen-

erated explanations in decision-making processes within the
complex domain of next-generation network slicing.

2) Impact of Temperature Variations: This hyperparameter
controls the randomness of the text generated by the model.
Higher values introduce more creativity but may increase the
risk of hallucinatory outputs, while a temperature of 0 ensures
deterministic text generation5. The impact of temperature vari-
ations, as observed in Fig. 4a, Fig. 4b, and Fig. 4c provides
valuable insights into the behavior of LLMs. In the context of
regular Prompting, the positive correlation between tempera-
ture increases and improved Sensitivity and Stability suggests
that higher temperatures enhance the model’s adaptability and
responsiveness. This aligns with the nature of LLMs, known
for their ability to capture intricate patterns and variations in
data. The observed improvements indicate that, under elevated
temperatures, the model explores a broader and more diverse
set of responses, contributing to heightened sensitivity and
stability in explaining decisions related to network slicing
tasks.

Conversely, the impact of temperature on Prompt Engineer-
ing reveals a different dynamic. The consistently high Sen-
sitivity and Stability values across all temperature variations
suggest that the effectiveness of Prompt Engineering is less

5https://community.openai.com/t/openai-temperature-parameter/287485



contingent on temperature changes. This resilience aligns with
the inherent nature of LLMs, particularly when guided by
tailored prompts. Prompt Engineering, being a deliberate and
customized approach, leverages the model’s capabilities effec-
tively, demonstrating robust and stable performance irrespec-
tive of temperature fluctuations. This nuanced understanding of
the impact of temperature variations underscores the intricate
interplay between model architecture, training, and the nature
of input queries in shaping the behavior of LLMs in explaining
decisions critical to network slicing and profit optimization.

3) Hallucinations: The number of hallucinations data re-
veals a distinct contrast between scenarios where end users
employ a predefined template and those where users inde-
pendently engage with the system without providing sufficient
contextual information. It’s important to highlight that for the
assessment of this metric, we engaged technical experts from
EURECOM 5G facility [16]. Their expertise was pivotal in
conducting this experiment. As presented in Fig. 4d, when
end users utilize one of the queries from the template bank,
the system exhibits a notably lower number of hallucinations,
with only 15 instances out of 200 queries. This outcome
can be attributed to the structured and specific nature of the
queries within the template bank, guiding the model toward
focused and accurate responses and reducing the likelihood of
generating hallucinations.

On the other hand, when end users decide to chat with
the system independently, without leveraging the provided
templates and without furnishing ample context for their
queries, the number of hallucinations increases to 30. This
escalation aligns with the inherent tendency of LLMs to
produce responses that may not precisely align with the user’s
intended task, particularly when operating without specific cues
or constraints. The observed correlation between increasing
temperature values and a higher number of hallucinations in
this scenario underscores the model’s heightened creativity and
flexibility under elevated temperatures, leading to a greater
likelihood of generating responses that might be considered
hallucinatory.

In summary, the lower number of hallucinations when
utilizing the template bank emphasizes the effectiveness of
structured and directed input queries in mitigating undesired
outputs. However, it is noteworthy the LLM is able to satisfy
all stakeholder users, thus reducing the need for specialized
human intervention to understand the typical outputs of XRL.

V. CONCLUSION

This paper tackles the intricacies of 6G network man-
agement, with a particular emphasis on understanding and
elucidating the decision-making processes of DRL models.
In this light, it introduces the concept of Composable XRL,
specifically exploring the application of XRL and LLMs, in
tandem with Prompt Engineering to illuminate DRL algorithm
decisions within the context of network slicing. The proposed
approach renders human-understandable explanations for the
decisions made by DRL agents, thereby transforming the

inherent black-box nature of DRL into an interpretable for-
mat. This initiative is pivotal in fostering trust, accountability,
and enhancing overall network performance. The case study
demonstrates improved transparency and comprehensibility of
DRL agents’ actions, thereby providing valuable insights for
network operators, regulators, and stakeholders. For future
works, we aim to assess the efficacy of the proposed framework
in addressing other 5G/6G challenges (green resource alloca-
tion, scheduling, etc.) with more advanced LLMs including
GPT-4 and Llama 3 (8B, 70B). The overarching goal is to
develop a comprehensive and globally applicable explainable
RL chatbot specialized in networking.
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[11] W. F. Villota Jácome, O. M. Caicedo Rendon, and N. L. S. da Fonseca,
“Admission control for 5G network Slicing based on (deep) reinforcement
learning,” 2021. doi: 10.36227/techrxiv.14498190.v1.

[12] A. Metzger, J. Bartel, and J. Laufer, “An AI chatbot for explaining Deep
Reinforcement Learning decisions of service-oriented systems,” arXiv
[cs.LG], 2023. [Online]. Available: http://arxiv.org/abs/2309.14391

[13] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. DoshiVelez, “Explain-
able reinforcement learning via reward decomposition,” in IJCAI/ECAI
Workshop on Explainable Artificial Intelligence, 2019

[14] J. Ye et al., “A comprehensive capability analysis of GPT-3 and
GPT-3.5 series models,” arXiv [cs.CL], 2023. [Online]. Available:
http://arxiv.org/abs/2303.10420

[15] G. Vilone and L. Longo, “Notions of explainability and evaluation
approaches for explainable artificial intelligence,” Inf. Fusion, vol. 76,
pp. 89–106, 2021.

[16] S. Arora, “A 5G Facility for Trialing and Testing Vertical Services and
Applications”,” IEEE Internet of Things Magazine, 2022.


