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ABSTRACT
The surge in demand for cost-effective long-term archival
media, coupled with density limitations of contemporary
magnetic media, has resulted in synthetic DNA emerging as
a promising new alternative. Despite its benefits, storing data
in DNA poses several challenges as the technology used for
reading/writing data on DNA are highly error prone. Thus, it
is important to design pipelines that can efficiently use redun-
dancy to mask errors without amplifying read/write cost. In
this work, we present Columnar MOlecular Storage System
(CMOSS), a novel, end-to-end DNA storage pipeline that can
provide error-tolerant data storage at low read/write costs.
CMOSS differs from state-of-the-art (SOTA) on three fronts
(i) a motif-based, vertical layout in contrast to nucleotide-
based horizontal layout, (ii) integrated consensus calling and
decoding enabled by the vertical layout, and (iii) a flexible,
block-based data organization for random access over DNA
storage in contrast to object-based organization. Using an
in-depth evaluation with several simulated and real wet lab
experiments, we demonstrate the benefits of CMOSS design.

CCS CONCEPTS
• Information systems→ Information storage technologies;
Storage architectures; •Hardware→Memory and dense stor-
age; • Computer systems organization → Redundancy;
Reliability.
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1 INTRODUCTION
The global datasphere is expected to reach 125ZB by
2025 [16]. However, over 80% of data generated is “cold”,
and corresponds to data that needs to be archived to meet
safety and compliance requirements [25]. Archival data is the
fastest growing segment with over 60% cumulative annual
growth rate [46]. Thus, as enterprises continue migrate to
the cloud, cloud vendors are in need of storage technologies
that can provide durable, low-cost storage of archival data for
decades. One such novel storage medium that has received
a lot of attention recently is synthetic DNA. DNA can store
up to 1EB of data in a cubic millimeter [13], making it seven
orders of magnitude denser than tape [15]. It can last several
millennia when stored under proper conditions. DNA is read
by a process called sequencing, and the sequencing technol-
ogy is decoupled fromDNA, the storage medium, itself. Thus,
DNA will not suffer from media obsolescence, as we will al-
ways be able to read back data stored in DNA. Finally, using
common, well-established biochemical techniques, it is very
easy to replicate DNA rapidly. Thus, data stored in DNA can
be easily copied. Given these benefits, several researchers
have demonstrated the feasibility of using DNA as a long-
term archival storage medium [6, 9, 13, 19, 21, 23, 30, 41].

The biochemical processes used for writing (synthesis) and
reading (sequencing) DNA are not precise and introduce sev-
eral errors. In order to provide reliable data storage despite
such errors, it is necessary to use redundancy in both writing
(using error control coding) and reading pipelines (in the
form of high sequencing coverage). The added redundancy
has the undesirable side effect of amplifying the read/write
cost. Thus, efficient handling of errors is crucial to reducing
overall cost. Similarly, given the high density of DNA, an
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archive stored in DNA can contain millions of files. However,
real-world scenarios often demand access to only a fraction
of the information, like a single table from a database, or a
specific document from an archive. Thus, the implementation
of reliable random access is crucial in making large-scale,
cost-efficient DNA-based storage feasible [18, 38]. In this
work, we make three contributions.
• Using data from real wet lab experiments, we perform a
quantification of random-access errors in DNA storage.
Prior studies have done quantification of substitution, dele-
tion, and insertion errors introduced by synthesis and
sequencing. However, there has been little focus on per-
forming a systematic quantification of errors introduced
by Polymerase Chain Reaction (PCR)–the procedure used
to achieve random access in DNA storage–over a complex
DNA pool storing files of various sizes. We bridge this gap
by presenting such an analysis (Section 2).

• We present ColumnarMOlecular Storage System (CMOSS),
an end-to-end pipeline for DNA storage that provides sub-
stantially lower read/write costs than SOTA. The key as-
pects of CMOSS that distinguish it from SOTA are: (i) a
motif-based, vertical layout in contrast to the nucleotide-
based, horizontal layout used by SOTA, and (ii) an inte-
grated consensus and decoding technique that exploits
the vertical layout to incrementally recover data at low
sequencing coverage, and (iii) a fixed-size, block-based
random access organization for DNA storage instead of a
variable-sized, object-based access used by SOTA.

• We perform several simulated and wet lab experiments to
generate complex oligo pools. We use these experiments to
(i) validate the CMOSS design by ensuring successful data
recovery, (ii) compare CMOSS with SOTA in terms of read
and write costs, and (iii) perform a systematic study of
the impact of using PCR for randomly accessing fixed-size
blocks in contrast to variable-sized objects. In doing so, we
show that (i) the motif-based vertical layout and integrated
consensus calling and decoding makes CMOSS resilient
to errors caused by consensus bias, and (ii) the fixed-size,
block-based random access organization of CMOSS makes
it resilient to errors caused by PCR bias. We make the
CMOSS pipeline 1publicly available for further research.

2 BACKGROUND
When used as a storage medium, DNA introduces different
types errors for providing different functionalities. In this
section, we will provide an overview of these errors, while
making a distinction between errors that are common to all
DNA storage pipelines (Section 2.1), and errors specific to
pipelines that support random access (Section 2.2).

1https://gitlab.eurecom.fr/marinele/oligoarchive-columnar.git

2.1 Errors due to Consensus Calling
In all SOTA pipelines, binary data is stored in DNA by trans-
forming it into a quaternary sequence of nucleotides (nts)
(Adenine, Guanine, Cytosine, Thymine) using an encoder.
Subsequently, these sequences are utilized in the fabrication
of DNAmolecules, commonly referred to as oligonucleotides
(or "oligos"), through a chemical process known as synthesis.
The retrieval of data stored in DNA is accomplished by first
sequencing the oligos to produce reads, which are sequences
that correspond to the nt composition of oligos. Both syn-
thesis and sequencing are not precise, and they introduce
several types of errors: (i) multiple copies of each oligos are
synthesized and library preparation before sequencing often
amplifies oligos resulting in duplication, (ii) substitution er-
rors can cause some nts to be substituted with others, (iii)
insertion and deletion errors can cause some spurious nts to
be inserted or existing nts to be deleted. The rate of each er-
ror type varying depends on the synthesis (column vs array,
enzymatic vs phosphoramidite) and sequencing (short read
vs long read) technologies used. As the outcome of sequenc-
ing, we receive reads, which are noisy replicas of the original
encoded sequences. Thus, in all SOTA pipelines, the first
step in the decoding process is clustering so that duplicate
reads belonging to the same sequence are groped together.
Several clustering algorithms have been proposed for this
purpose [2, 3, 17, 20, 26, 27, 33, 34, 40, 43, 55].
After clustering, each cluster of noisy reads is processed

independently in order to perform consensus calling to deter-
mine the most probable original sequence. Several solutions
have been proposed in literature for this trace reconstruc-
tion problem [4, 22, 28, 29, 32, 44, 45, 49]. Figure 1 shows
an example of such a reconstruction algorithm applied to a
cluster of three strings. When the noisy reads contain mostly
substitution errors, and coverage (number of reads that cor-
respond to an oligo) is sufficient, we can infer the correct nt
at each position through majority voting. For instance, in
the example, we can assume that the first nt is 𝐴, as both the
first and third strings have an 𝐴 as their first nt. This same
procedure applies to the rest of the column (nts).
Handling cases with insertions or deletions is more com-

plex. In Figure 1(b)-(d) we have the same three strings but
with insertion and deletion error. When we apply consensus
to the first character, we can assume that the first nt inferred
is an 𝐴 as there are no errors (Figure 1(b)). However, at the
second position (Figure 1(b)), we see that the three strings
differ, as the first and third string have a𝐺 , while the second
string has a 𝑇 . At this point we have to make an assump-
tion. One possibility is to assume that the𝑇 was an insertion
error in the second string. We can correct the insertion by
deleting 𝑇 in the second string which will result in 𝐺 being
identified as the consensus output. However, we could have
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AGATCGATG
ATGATCGAT
AGACGATG
— — — — — 
A

AGATGGATG
CGATCGATG
AGATCGATG
— — — — — 
AGATCGATG

AGATCGATG
AGATCGAT
AGACGATG
— — — — — 
AG

AGATCGATG
AGATCGAT
AGACGATG
— — — — — 
AGA…

(a) (b) (c) (d)

Figure 1: Example of consensus algorithm applied to
a cluster of three strings in case of substitution errors
only (a) and insertion/deletion errors (b)-(d).

also assumed something different, for example a substitution
error in the second string, where instead of 𝐺 we have 𝑇 .
This would lead to a different consensus string.

Thus, every attempt to correct an error in our strings is
based on an assumption, which means that there is a pos-
sibility of misinterpreting the error type. With such misin-
terpretation, an error can propagate through the read, as
one wrong insertion or deletion call can result in a total mis-
match in the remainder of two strings. Lin et al. [30] called
this the reliability bias and showed that this is an intrinsic
property of the trace reconstruction problem when insertion
and deletion errors are present irrespective of the consensus
algorithm used.

The reliability bias has significant repercussions for DNA
data storage because the probability of errors in a read in-
creases as we move further along the read, and is directly
related to the length of oligos. Thus, as new synthesis and
sequencing techniques improve and enable the creation and
readout of longer oligos, reliability bias becomes more pro-
nounced as errors early on in a read can propagate through
its length. This, in turn, necessitates higher sequencing cover-
age to enable consensus algorithms to successfully infer the
original sequences. This increased coverage directly trans-
lates to higher sequencing costs. Thus, we need techniques
that can allow us to limit the error propagation caused by
reliability bias.

2.2 Errors due to Random Access
Having described the reliability bias caused by consensus
that affects all DNA storage pipelines, we now focus specifi-
cally on pipelines that support random access. A single DNA
pool is capable of storing several Petabytes to Exabytes of
data. However, it is often necessary to retrieve only a small
amount of data. Prior work has achieved this by assuming an
object-based get/put interface to DNA storage and relying
on the use of PCR for achieving random access of individual
objects[38, 51]. The central idea is to associate a distinct pair
of short DNA sequences, also called primers, to all oligos be-
longing to each distinct object. Random access is performed
by using PCR to selectively amplify the DNA containing the
target primers corresponding to the object that is requested.

Table 1: The number of oligos and corresponding data-
base and table primers in Exp. 1.

Table# Table primer Database name/primer
SSB/CAATG TPCH/GATGA SYN/GTGAG

1 TTAAG 14 6 304
2 GAATT 16 18 312
3 AAGGT 42 18 302
4 ACAGA 2594 10 302
5 AGAGA 34 20 298
6 CAGTT 14 300
7 CATAC 34 298
8 CGATA 16 306

Prior studies have quantified the nature and frequency
of substitution, insertion and deletion (indel) errors intro-
duced by different sequencing technologies and used such
quantification to configure the amount of redundancy in-
troduced during encoding/decoding[24]. Studies have also
looked at oligo drop outs caused by coverage bias[11]. Cov-
erage bias refers to the fact that after sequencing, original
sequences are covered at very different rates, with some
sequences being covered by multiple sequenced reads and
others completely missing. Coverage bias is a well-known is-
sue in DNA storage, with duplication during both synthesis,
and library-preparation for PCR, contributing to it. The issue
with uneven coverage distribution is the fact that consen-
sus calling might not be able to successfully infer sequences
with inadequate coverage due to reliability bias described
earlier, leading to data loss. Thus, prior work has modeled
coverage bias for specific synthesis and sequencing technolo-
gies and proposed methods to optimize redundancy levels
to guarantee full recovery.
However, there has been limited work on systematically

quantifying coverage bias introduced by PCR-based random
access [51] in complex oligo pools containing objects of vary-
ing sizes. In order to study this, we conducted a wet lab
experiment (Exp. 1) where we stored three databases: SSB,
TPCH, and SYN, comprising five, eight, and eight tables, re-
spectively. The SSB and TPC-H databases were chosen from
the industry-standard TPC-H benchmark, and they represent
a size distribution typical in a data warehousing application.
The SYN database contains randomly generated records and
was configured to have table with fixed sizes. Our intention
in using these databases was to isolate and study the sensi-
tivity of PCR to the complexity of the oligo pool created by
varying file sizes.

The databases were converted using Goldman et al’s[21]
rotational encoding approach to generate 5258 sequences of
110nt each. Each sequence consists of a data payload in the
middle, flanked by the database primer (DBP), table primer
(TBLP), universal forward primer (UFP), and universal re-
verse primer (URP) on the sides (Figure 2). The UFP and
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Figure 2: The oligo structure for object based abstrac-
tion. UFP/URP: universal forward/reverse primer, DBP:
database primer, TBLP: table primer.

URP are identical across all oligos allowing the selection of
the full set (three databases). Table 1 shows the table and
database primers used and the number of oligos generated
for each table. We utilized primers derived from Illumina
adapter sequences, as they inherently adhere to the neces-
sary biological constraints of DNA synthesis and sequencing.
The sequences were synthesized by Twist Bioscience and the
oligos were sequenced in all experiments described below
using Illumina NovaSeq. Error analysis confirmed a high-
quality synthesis and sequencing with a low error rate inline
with SOTA work on DNA storage (0.0033 for substitutions,
0.0003 for indels), enabling us to reliably quantify coverage
bias in the complex pool.
Quantitative definition of coverage bias.We use the term
“population fraction" [11] (popfrac) to refer to the proportion
of the data that belongs to a specific object (for example, a
database or a table) within the entire archival dataset. Given
𝑛 objects, the popfrac of object 𝑖 , denoted as 𝑝𝑖 , is computed
as 𝑝𝑖 = 𝑁𝑖/

∑𝑛
𝑗=1 𝑁 𝑗 , where 𝑁𝑖 represents the number of

sequences belonging to the specific object 𝑖 . We compute
two popfracs. First, we compute a popfrac using the number
of encoded sequences belonging to each table or database.
We refer to this as the raw popfrac, donated as 𝑝𝑟𝑖 for object
𝑖 . Second, we take all the reads obtained from sequencing
the synthesized oligos, and align them to the encoded se-
quences to determine read coverage (number of reads that
correspond to each sequence) using Accel-Align [52, 53].
We aggregate per-sequence coverage to compute per-table
and per-database coverage. Finally, we use this to compute
post-sequencing popfrac as the proportion of sequenced reads
corresponding to each table/database. To distinguish this
from 𝑝𝑟𝑖 , we refer to it as 𝑝𝑠𝑖 for object 𝑖 . The ratio of the post-
sequencing popfrac to the raw popfrac is defined as popfrac
change. Formally, the popfrac change of object 𝑖 , denoted
as 𝑐𝑖 , is computed as 𝑐𝑖 = 𝑝𝑠𝑖 /𝑝𝑟𝑖 . In the absence of coverage
bias, we expect this ratio to be one. For instance, if 40% of
the oligos belong to table 𝑖 in a database, then after PCR and
sequencing, we expect 40% of the reads will still belong to
table 𝑖 , meaning they can be aligned to the oligo of table 𝑖 . If
popfrac change is too high, it indicates that some objects are
over represented, and if it is too low, that some objects are
under represented.
Coverage bias observation in real wet lab experiment.
To investigate coverage bias when the whole dataset is re-
trieved, we used the UFP (Figure 2) during PCR amplification

to sequence all oligos. Using the reads, we determined the
post-sequence popfrac for each database as shown in Table 2.
Clearly, coverage is uneven and biased, as some databases
are over represented, like SYN, while others become under
represented, like TPCH, after sequencing.

Table 2: For each database in Exp. 1, the table lists the
number of oligos, raw population fraction, number of
reads, post-sequencing population fraction, and frac-
tion change.

Database #Oligos Raw Pop Frac #Reads Pop Frac Frac Change
SSB 2700 0.514 654335 0.388 0.76

TPCH 136 0.026 19576 0.012 0.45
SYN 2422 0.461 1013152 0.601 1.30

Next, to study coverage bias under random access, we em-
ployed the UFP in conjunction with a DB primer (Figure 2))
during PCR to amplify only oligos belonging to one particu-
lar database and sequenced the amplified pool. We used the
reads to determine post-sequenced popfrac for each table
across the three databases as shown in Figure 3.
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Figure 3: The population fraction change (y-axis) and
the number of oligos (x-axis) of each table in Exp. 1.

As can be seen, databases with tables of varying sizes
exhibit a huge variation in popfrac change. For instance, for
the SSB database, tables vary in size from 14 oligos to 2594
oligos. The average popfrac change is 0.71 (ideally 1) with a
stdev of 0.73 (ideally 0); some smaller tables are significantly
under represented (min. popfrac change of 0.01), while some
large tables are over represented (max. popfrac change of
1.72). For the TPCH database, it is similar, with a min. popfrac
change of 0.03, max. of 2.4, average of 0.92, and stdev of 0.94.
In contrast to these two databases, the SYN database with its
uniform table sizes exhibits a uniform distribution of popfrac
change (shown as ‘+’ in Figure 3 with overlapping points),
with an average of 1, and a stdev of 0.14.
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These observations expose a natural limitation of naively
storing objects on DNA and using PCR-based random access
without considering their sizes. Coverage bias can result in
drastically different popfrac change for objects of different
sizes, and smaller objects can get significantly under rep-
resented. Such under representation can in turn affect the
effectiveness of random access by making smaller objects
difficult to retrieve leading to data loss. In contrast, the SYN
database tables show that using uniformly-sized units of
storage can substantially minimize this bias and ensure a
more uniform representation of oligos.

3 DESIGN
Having described the reliability and coverage bias issues
of DNA storage, we now present CMOSS. Our approach to
archiving data in CMOSS differs from SOTA based on the
key observation that the separation of consensus and decod-
ing is a direct side-effect of the data layout, that is the way
oligos are encoded. Mapping a coded block of data to a group
of oligos results in that group becoming a unit of recovery.
Thus, before data can be decoded, the entire group of oligos
must be reassembled by consensus, albeit with errors. The
two key ideas in our system are to (i) use short sequences
we refer to as motifs as building blocks of oligos instead of
individual nucleotides, and (ii) change the layout from the
horizontal, row-style SOTA layout (Figure 4(c)) to a verti-
cal, column-style cross-oligo layout (Figure 4(d)). Our DNA
storage system encodes and decodes data as a collection of
motifs vertically across several oligos instead of horizontally.
The key benefits of these two changes, as we show later
in this section, are the fact that (i) we can merge decoding
and consensus into a single step, where the error-correction
provided by decoding is used to improve consensus accu-
racy, and the improved accuracy in turn reduces the burden
on decoding, thereby providing a synergistic effect, and (ii)
it naturally leads to a random access organization where
each unit of random access is a fixed-size extent instead of a
variable-sized object, thereby benefiting automatically from
a more balanced coverage across extents. In the rest of this
section, we will explain the design of our system and its
advantages by presenting its read and write pipelines.

3.1 Write Pipeline
The top half of the Figure 5 shows the data writing pipeline
of CMOSS. The input to the write pipeline is a stream of
bits. Thus, any binary file can be stored using this pipeline.
The first step in processing the input involves grouping bits
into chunks. The chunk size depends on the error-correcting
code adopted, as we will see later in this section. Each chunk
of input is then pseudo-randomized in order to maximize
the separation between the encoding oligos. This approach

enhances the accuracy of read clustering in the data decod-
ing stage, as detailed in Section 3.2. After randomization,
error correction encoding is applied to each chunk to protect
the data against errors. Due to this encoding, each chunk
functions as a unit of error control, becoming the smallest
recovery unit in CMOSS. The choice of code is orthogonal to
the design of CMOSS, and any large-block length code can
be used to add redundancy. In our system, we support both
Reed-Solomon (RS) and Low-Density Parity Check (LDPC)
codes. We parameterize the RS code with the same block
length and symbol size used by Organick et al. [38](65,536
symbols with 16 bits per symbol) in the work on random
access in DNA storage. We parameterize the LDPC code
with a chunk size of 256,000 bits, similar to prior work by
Chandak et. al. [9], which has demonstrated that such a
large-block-length LDPC code is resilient to both substitu-
tion/indel errors, that cause reads to be noisy copies of origi-
nal oligos, and synthesis/sequencing-bias-induced dropout
errors, where entire oligos can be missing in reads due to lack
of coverage [9, 36]. For the rest of this section, we will focus
on using the LDPC code to discuss the rest of the stages. In
Section 4.4, we present an evaluation of CMOSS with both
LDPC and RS codes.
The LDPC encoded bit sequence is fed into the oligo-

encoder, which converts bits into oligos. While SOTA ap-
proaches design each oligo as a random collection of nts,
our oligo-encoder designs oligos using composable building
blocks calledmotifs. Each motif is a short oligo that obeys all
the biological constraints enforced by synthesis and sequenc-
ing. Multiple motifs are grouped together to form a single
oligo. We use motifs rather than single nts as building blocks
because, as discussed later in Section 3.2, the integration of
decoding and consensus relies on alignment which cannot
be done over single nt. To convert bits into motifs, the oligo-
encoder maintains an associative array with a 30-bit integer
key and a 16 nucleotide-length motif value. This array is
built by enumerating all possible motifs of length 16nt (AAA,
AAT, AAC, AAG, AGA...) and eliminating motifs that fail to
meet a given set of biological constraints. We configure our
encoder to admit motifs that have up to two homopolymer
repeats (AA,CC,GG, or TT), and GC content in the range
of 0.25 to 0.75 [35, 37]. We also experimented with avoid-
ing secondary structure formation at the motif level. These
help reduce errors during synthesis and sequencing, and
enhances the stability of the synthesized DNA sequences
[38]. Thanks to the randomization of input, the motifs se-
lected in each oligo are randomized as well. So we do not
have secondary structures issues at the oligo level as well.
With these constraints, using 16nt motifs, out of 416 possible
motifs, we obtain 1,405,798,178 that are valid. By mapping
each motif to an integer in the range of 0 to 230 − 1, we can
encode 30-bits of data per motif. Thus, at the motif level, the
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Figure 4: Figure shows the raw input data being grouped into blocks (a), and each block being encoded to generate
parity (b). (a) and (b) are common to both SOTA and CMOSS. (c) shows each encoded block being mapped to
multiple oligos with SOTA. (d) shows each block being mapped to one column of motifs with CMOSS. Multiple
such columns of motifs form one Oligo-Block. Multiple Oligo-Blocks are grouped into one Oligo-Extent. Every
Oligo-Extent is extended with a pair of primers, that makes it addressable.

encoding density is 1.875 bits/nt. Although it is possible to
increase this density by increasing the motif size, we have
limited ourselves to this configuration for two reasons: (i)
the memory limitation of our hardware, as the current asso-
ciative array itself occupies 100GB of memory, (ii) the motif
design is orthogonal to the vertical encoding, which is the
focus of this work.
While Figure 4(d) shows all columns of motifs storing

only the LDPC blocks, a small subtlety in the practical im-
plementation is that the first column in every oligo-block is
dedicated to storing indexing information. This indexing in-
formation orders oligos during encoding and hence enables
reordering during decoding.
The second major difference of our approach compared

to SOTA is the layout of motifs, which spread vertically in
columns across a set of oligos. The motifs generated from an
error-control coded data block are used to extend oligos by
adding a new column as illustrated in Figure 4(d). This pro-
cess is repeated until the oligos reach a configurable number
of columns, after which the process is reset to generate the
next batch of oligos starting again from the first column. We
refer to such a batch of oligos as a oligo-block (OB). OB rep-
resents the minimum granularity of decoding in our CMOSS
pipeline, where all columns (i.e. LDPC blocks) belonging to
an OB must be encoded before starting a new OB. Similarly,
all columns (i.e. LDPC blocks) belonging to an OB must be
decoded in order from left to right to guarantee successful
data recovery as detailed in Section 3.2.

To scale to large datasets, we designed CMOSS as a flexi-
ble, hierarchical DNA storage system. For this purpose, we
group one or more OBs into a higher-level structure, termed
as oligo-extent (OE). While an OB serves as the unit of encod-
ing and decoding in CMOSS, an OE functions as the unit of
random access. Each OE is designed to be a self-contained,
fixed-size (configurable during encoding) and addressable
DNA storage partition. Thus, each OE becomes randomly
addressable by adding an unique pair of primers at two ex-
tremities of every oligo in all OBs within that OE. All oligos
within the OE are addressed using the indexing strategy as
described earlier.
This hierarchical storage approach offers several advan-

tages. First, it facilitates the storage of exceptionally large
files while maintaining a relatively low primer count, as the
number of primer pairs required is proportional to the num-
ber of OEs, which can be minimized by grouping more OBs
into a single OE. Second, it allows flexibility in choosing
random access granularity during design time, ranging from
one OB to multiple OBs. Third, using OE as the granularity
of random access is equivalent to partitioning the DNA into
fixed-sized storage units. As described in Section 2.2, this
fixed-sized, extent-based random access approach mitigates
the impact of PCR coverage bias.

3.2 Read Pipeline
Data stored in DNA is read back by sequencing the DNA
to produce reads, which are noisy copies of the original oli-
gos that can contain insertions, deletions and substitutions.
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Figure 5: CMOSS data writing pipeline (top) showing various steps in the encoding path using an example where
input data is LDPC encoded (2), indexed and split into 4-bit chunks (3), and mapped into motifs to produce oligos
in a vertical fashion (4). CMOSS reading pipeline (bottom) showing DNA to binary decoding path using an example
that assumes 1× coverage (1 read per oligo) from sequencing (5), applies clustering to separate reads (6) and indexing
to group reads per oligo-block (7). Then, each oligo-block is decoded separately in a vertical fashion by performing
motif-based consensus to get a column of motifs (8), motif decoding to map motifs to bits (9), and LDPC decoding
for error correction (10) to recover input bits. The corrected bits are reencoded (11, 12) to generate the correct
column of motifs, which is then used to fix errors in reads via alignment (14). The whole process starting from
motif consensus (8-14) is repeated for the next column of motifs (green nts) until all columns in one oligo-block
are processed.

Due to the hierarchical structure, decoding begins by first
grouping the reads based on their OE. To achieve this, the
reads are aligned at both ends to unique primer pairs that
designate each OE. Since data within different extents are
independent, decoding can proceed concurrently across mul-
tiple OEs, significantly speeding up the operation. For sake
of simplicity, in the rest of this section we focus on decoding
of a single OE with a single OB.

Recall that an OB consists of multiple oligos organized as
several columns of motifs. Since each oligo can be covered
by multiple reads, the first step in decoding is clustering
to group related reads together. We utilize a string cluster-
ing solution that uses randomized embedding similar to the
one developed in prior work [42]. It should be noted that
any other read clustering solution can be applied and is in-
dependent of the work presented here. The output of this
algorithm is a set of clusters of reads, each corresponding to
an unknown original sequence.

After the clustering stage, other SOTA methods typically
apply consensus methods within each cluster to infer con-
sensus sequences from reads. This is then followed by de-
coding using the consensus sequences. During decoding,
SOTA methods use error-correction codes to recover from
any residual errors that might be present after consensus.
Thus, decoding ultimately produces the original input bits.
It is important to note that SOTA methods do not use the
decoded bits from one error-control block to improve the
decoding of further downstream encoded blocks. To illus-
trate this with an example, let us consider the first three
sequences (in green) in Figure 4(c). These sequences encode
the LDPC-block-1 depicted in Figure 4(b). In order to decode
and correct this block of bits, SOTA approaches first per-
form consensus calling to infer the first three full sequences;
then, they can convert the inferred sequences into encoded
bits, and finally perform decoding with error-control codes
to recover back the original input bits. However, once the
original bits for the green block are retrieved, they are only
used as part of the final output, which is the reconstructed
original input file.
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In CMOSS, we leverage the motif design and vertical lay-
out of oligos to integrate consensus and decoding progres-
sively, as shown in the lower part of Figure 5. Unlike other
approaches, our system processes reads column by column.
Thus, the first step is motif-based consensus where the set
of reads is processed to generate the first column of motifs.
The choice of consensus algorithm is orthogonal to CMOSS
design. We employ an alignment-based algorithm for motif-
based consensus calling previously proposed in literature [5].
This algorithm extracts a motif-length segment from each
read within a cluster, aligns them, and derives a consensus
motif by a position-wise majority voting. As each cluster
corresponds to an oligo, this process is done for each cluster
to determine one consensus motif per cluster, and hence all
consensus motifs for the first column of motifs. These motifs
are then fed to our CMOSS oligo-decoder, which is the inverse
of the encoder, as it maps the motifs into their 30-bit values.
Notably, despite consensus, inferred motifs can still contain
errors leading to incorrect 30-bit values. These errors are
rectified by the LDPC-decoder, which takes the 30-bit values
corresponding to one LDPC block as input and outputs the
error-corrected, randomized input bits. Subsequently, these
bits undergo derandomization to retrieve the original input
bits for that block.
Different from SOTA, in CMOSS, the decoded bits are

reencoded again by passing them through the LDPC-encoder
and the oligo-encoder. This process reconstructs the correct
first column of motifs, similar to the encoding process in
the write pipeline. Subsequently, these correct motifs are
utilized to realign reads within each cluster, ensuring that
the subsequent round of decoding for the second column
start at the correct offset. This entire process is iteratively
repeated for all subsequent columns.
The intuition behind realignment is as follows. An inser-

tion or deletion error in a consensus motif affects not only
that motif but also all subsequent motifs due to variations in
length. For instance, consider the sequenced reads in step (6)
of Figure 5, we see a deletion error in the first read𝐺𝑇𝐴𝐶𝐴−
𝑇𝐺𝐴𝑇𝐶𝑇 which should have been 𝐺𝑇𝐴𝐶𝐴C𝑇𝐺𝐴𝑇𝐶𝑇 (ac-
cording to the oligos generated in step (4) of the same figure).
This results in the second motif being incorrectly interpreted
as 𝐴𝑇𝐺𝐴 instead of 𝐴𝐶𝑇𝐺 . Left uncorrected, this error will
spill over to the third motif which will be read as 𝑇𝐶𝑇 ...
(instead of 𝐴𝑇𝐶𝑇 ). Thus, with SOTA approaches, an error
early in a consensus oligo keeps propagating leading to the
reliability bias as explained in Section 2.1. On the contrary,
in CMOSS, every column stores a full LDPC block, and we
decode one column at a time. Thus, we can use the decoded
bits from one column to regenerate the correct motifs by
reencoding them during decoding. We can use the correct
motifs to fix these errors by realigning the correct motifs
against reads. This realignment will determine the position

where current motif ends and the next motif begins, and
hence, determine the starting point for the next column. As
a result, any consensus errors in one column can be fixed by
realignment and do not propagate downstream limiting the
impact of positional bias.

Notably, this realignment is only possible because we use
motifs, as two sequences can be aligned accurately only if
they are long enough to identify similar subsequences. Thus,
vertical layout without motifs, or with just nts, would not
make realignment possible. Similarly, integrating consensus
and decoding is possible only because of the vertical layout,
as the SOTA layout that spreads a LDPC block across several
oligos cannot provide incremental reconstruction.
Finally, a refinement to the decoding procedure we have

described so far is the special handling about indexing in-
formation, particularly when an OE contains multiple OBs.
Recall that OE serves as the unit of random access, while
OB is the unit of decoding. And the indexing information
is stored in the first column of motifs across the entire OE.
Therefore, in cases where an OE comprises multiple OBs,
primers are used to identify OE, while this index is used
to indirectly identify the OB of each oligo within that OE.
Decoding the first column of motifs is distinctive because it
generates the indexing information across all OBs within an
OE. This index information is crucial for separating reads into
constituent OBs. And from the second column, we switch to
per-OB processing. The whole process is illustrated with a
simple example in Figure 5.

4 EVALUATION
In this section we present a thorough evaluation of CMOSS.
First, we present the results from two wet lab experiments
to study the ability to achieve full data recovery (Sec. 4.1 and
Sec. 4.2). Next, we compare CMOSS with various SOTA ap-
proaches with respect to read cost andwrite cost to show that
our design can lead to substantial cost reduction (Sec. 4.3).
Following this, we isolate and analyze the advantage of using
a vertical design by comparing CMOSS with a horizontal
pipeline (Sec. 4.4).We conduct all the experiments on a lo-
cal server equipped with a 12-core CPU Intel(R) Core(TM)
i9-10920X clocked at 3.50GHz, 128GB of RAM. The core
components shown in Figure 5 have been implemented in
C++17.

4.1 Small-Scale Wet-Lab Validation
As the first prototype test, we used the TPC-H DBGEN utility
to generate a compressed 1.2MB database which was then
encoded by CMOSS, configured with 30% LDPC redundancy,
into 44376 oligos of length 200nt partitioned into 16 OEs.
The oligos were synthesized by Twist Biosciences and sub-
sequently sequenced using Oxford Nanopore PromethION
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Figure 6: Statistics for Exp. 2. a) The histogram of coverage across oligos (x-axis: sequence coverage, y-axis: number
of oligos with that coverage). b) Error rates per read position. c) Comparison of the error rates with previous work.

platform with Ligation Sequencing Kit V14 (SQK-LSK114),
producing a total of 43M reads (Exp. 2).
Error Pattern. To perform error characterization, we
aligned the sequenced reads generated from Exp. 2 to
the original oligos using Accel-Align [52] sequence aligner.
99.9999% reads were aligned to a reference oligo, indicat-
ing a very high quality of the generated read set. Figure 6.a
shows the coverage histogram and it can be observed that
each reference oligo is covered by at least one read, with
a median coverage of 951×, minimum coverage of 5×, and
a maximum coverage of 2500×. We deliberately sequenced
the oligos at such high coverage to test recovery at various
coverage levels as we present later.

The average error rates are 0.003 for substitutions, 0.0008
for deletions, and 0.001 for insertions computed by BBmap
[8]. The error rate per position is illustrated in Figure 6.b.
Note that while the data-carrying payload had a length of
160, our reads are longer as they include the primers that
were appended at both ends of the oligo for sequencing and
other sequencing adapters that were used for multiplexed
sequencing. As these primers and adapters get trimmed out
during read preprocessing, the error rate of relevance to us
is the middle portion of the read which corresponds to the
encoded, data-carrying portion of the oligo. We see that in
this portion, the substitution rate is dominant, which is 3×
higher than insertion and deletion rates. Figure 6.c compares
our error rates with those reported in prior work on DNA
storage [19, 21, 23, 24, 38]. We calculated these statistics us-
ing raw reads without any quality-based filtering. As can be
seen, our substitution error rate is lower than Grass et al.,
Erlich et Zielinski. and Organick et al., while the inserion and
deletion rate are slight higher due to the use of array synthe-
sis and Nanopore sequencing, although they have improved
in accuracy over the past few years, with Nanopore Prome-
thION platform offering single-read accuracy of over 99%
with LSK114 kit[50]. It is hard to attribute a precise fraction
of improvement in error rate to synthesis and sequencing
without an isolated comparison of each with other studies.
However, we can see that the overall trends of relative errors
are similar.

Data Recovery. In order to test end-to-end decoding, we
first used the full 43M read dataset generate from Exp. 2 as
input to the decoding pipeline. We were able to achieve full
data reconstruction, given the ability of CMOSS to handle
much lower coverage levels and higher error rates. In order
to stress test our decoding pipeline and identify theminimum
coverage that allows fully reconstruction of data, we repeated
the decoding experiment on smaller reads sets which were
derived by randomly sampling a fraction of reads from the
43M read dataset. In doing so, we found that CMOSS was
able to perform full recovery using just 200K reads, which
corresponds to a coverage of 4×. At this coverage, nearly
3500 out of 44376 reference oligos were completely missing.
However, the LDPC code and vertical decoding were able to
successfully recover data. As further reduction in coverage
led to data loss, we validate 4× as the minimum coverage
CMOSS can handle with our wet lab experiment. Computing
the costs for minimum coverage, we get a read cost of 2.82
nts/bit, and a write cost of 0.70 nts/bit.

4.2 Large-Scale Wet-lab Validation
As a large-scale test of random access, we stored a 13MB tar
archive containing culturally significant documents, includ-
ing images, PDF files, and text documents, sourced from a
national archive (Exp. 3). Employing a methodology simi-
lar to that of Exp. 2, we encoded the input with just 10%
LDPC redundancy, lower than the one adopted in Exp. 2.
The reason of a lower redundancy is that in Exp. 2 we al-
ready proved a full reconstruction with a very low coverage
at 30% redundancy. Thus, for this experiment we tested our
system with a lower redundancy overhead. This resulted in
a total of 262,836 sequences of 240nt stored in 14 OB. For
the purpose of this experiment, given the limited number
of extents, we made the number of OE and OB identical.
This means that with each OB and hence, each OE, store
468KB of information (15 256000 bit LDPC blocks per OB).
This becomes the unit of random access. To identify each
OE/OB individually, we added a 20nt 5’-primer and a 20nt
3’-primer to each sequence (for a total of 280nt oer oligo)
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Figure 7: Statistics for Exp. 3. a) The error rate of the reads per extent. b) The population fraction change (y-axis)
and #oligos (x-axis) per extent. The yellow points are overlapping as Exp. 3 has 14 extents of uniform size and
their population fraction changes are all close to 1. Metrics from Exp. 1 (Figure 3) are also included for comparison.
c) The min. coverage required for full data recovery per extent.

Table 3: Write cost (#𝑛𝑡𝑠 − 𝑖𝑛 − 𝑜𝑙𝑖𝑔𝑜𝑠)/(#𝑏𝑖𝑡𝑠) and read cost (#𝑛𝑡𝑠 − 𝑖𝑛 − 𝑟𝑒𝑎𝑑𝑠)/(#𝑏𝑖𝑡𝑠) of CMOSS vs SOTA.

Reference Binary Size #Oligos Oligo Length (nt) Recovery
Coverage

Write
Cost
(nt/bit)

Read
Cost
(nt/bit)

Church et al. [14] (2012) 658 KB 54,898 115 3000 1.17 3513.66
Goldman et al. [21] (2013) 650 KB 153,335 117 51 3.37 171.83
Grass et al. [23] (2015) 85 KB 4,991 117 372 0.84 311.97
Bornholt et al. [7] (2016) 150 KB 16,994 80 40 1.11 44.26
Yazdi et al. [54] (2017) 3.55 KB 17 1000 200 0.58 116.91
Erlich and Zielinski [19] (2017) 2.11 MB 72,000 152 10.4 0.62 6.43
Organick et al. [38] (2018) 200 MB 13,448,372 110/114 5 0.91 4.57
Anavy et al. [1] (2019) 22.5 B 1 42 100 0.23 23.33
Choi et al. [12] (2019) 135.4 KB 4,503 111 250 0.45 112.66
S. Chandak et al. [10] (2019) 192 KB 11,892 n.a. 5 0.78 4.46
THIS WORK (Exp2) 1.2 MB 44,376 160 4 0.70 2.82
THIS WORK (Exp3) 13 MB 262,836 240 9.5 0.57 5.49

which were synthesized with Twist Biosciences. To evalu-
ate data recovery per extent, we conducted 14 independent
wet lab experiments. Each wet lab used one extent’s distinct
left and right primers during PCR amplification to randomly
select that extent. Subsequently, the amplified oligos were
sequenced using the same Oxford Nanopore PromethION
platform to produce 6.1M reads.
Error Pattern. Figure 7.a shows the average substitution,
deletion, and insertion error rates of reads per extent. As can
be seen, the rates are similar across extents and comparable
to the results of Exp. 2 shown in Figure 6.b.
Coverage Bias. As we explained in Section 2.2, file-based
random access suffered from a high coverage bias when files
are of varying sizes. To investigate bias under block-based
random access with CMOSS, we aligned all 6.1M sequenced
reads fromExp. 3 to their original oligos usingAccel-Align in
order to determine their original extents. We used this align-
ment to calculate population fraction change. Figure 7.b is an
extension of Figure 3 with the points for each of the fourteen

extents from Exp. 3 added. As each extent has the same num-
ber of oligos, all points cluster together on the x-axis. Due
to the uniform extent size, the population fraction change
across all extents is close to 1, with a standard deviation of
0.278. This result is in clear contrast to TPCH and SSB data-
base results, where population fraction change varies a lot
with standard deviations of 0.71 and 0.94. The low standard
deviation in Exp. 3 case with CMOSS signifies that the oligos
now have a more uniform coverage across extents after the
PCR process due to the fact each unit of random access has
an identical number of oligos, just like the simulated SYN
database with uniform table sizes.
Data Recover per Extent. We utilized all available reads
for each extent to independently reconstruct the data blocks
stored within them using the CMOSS read pipeline. The aver-
age coverage of each extent is 30x, with a minimum coverage
of 17x and a maximum coverage of 42x. We compared the
decoded bits with corresponding segments of the original
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binary file to confirm that every segment of the file was
accurately reconstructed.
To evaluate the robustness of our system, we conducted

an experiment to determine the minimal read coverage re-
quired at the extent level for complete data recovery. This
was achieved by progressively reducing the number of reads
sampled from available pool of reads of each extent until the
lowest count necessary for full extent recoverywas identified.
Utilizing this dataset, we calculated the minimum coverage
per extent. The findings, illustrated in Figure 7.c, reveal the
minimum coverage necessary to achieve full recovery for
each extent. From our analysis, we can see that the minimum
coverage across all extents is around 9.5x, and this is consis-
tent for each individual extent, demonstrating the uniformity
and reliability of CMOSS.

4.3 SOTA Comparison
Having discussed the results from our real-world wet lab ex-
periments, we will now present a comparison of CMOSS
with SOTA approaches in terms of reading and writing
cost [9, 30, 38]. Writing cost is defined as #𝑛𝑡𝑠−𝑖𝑛−𝑜𝑙𝑖𝑔𝑜𝑠

#𝑏𝑖𝑡𝑠
,

where the numerator is the product of the number of oli-
gos and the oligo length, and the denominator is the input
data size. Thus, higher the redundancy and encoding over-
head, higher the write cost. The reading cost is defined by
#𝑛𝑡𝑠−𝑖𝑛−𝑟𝑒𝑎𝑑𝑠

#𝑏𝑖𝑡𝑠
. The numerator is the sum total of all read

lengths, and denominator is the input size. Thus, higher the
coverage required, higher the read cost.

Table 3 shows the read andwrite cost for CMOSS and other
SOTA algorithms. We would like to emphasize here that our
goal in reporting these results is not to directly compare our
work with SOTA based on these metrics; an apples-to-apples
comparison is not possible given differences in all stages of
the DNA storage pipeline. Rather, our goal is to position our
results in the broader context. For CMOSS, we compute these
costs based on Exp. 2 and Exp. 3. We only include these
two results as they are from real wet lab experiments and
not simulation studies. For Exp. 2, we compute the write
cost using the 44376 oligos synthesized to encode a 1.2MB
archive and for read cost the minimum number of reads
(corresponding to a coverage 4x) needed to fully reconstruct
the original data. Similarly, for Exp. 3we computed the write
cost by considering the 262,836 oligos used to encode the
13MB archive while the read cost was based by considering
the minimum coverage that allows us to fully recover the
entire archive. We do not report data for Exp.1 in Table 3,
as it was used to demonstrate coverage bias and did not use
CMOSS to encode data. For SOTA approaches, we reproduce
the costs from their publications where available. There are
several observations to be made.

First, let us compare CMOSS with horizontal SOTA ap-
proach that also uses LDPC (by S. Chandak et al. [9]). Both
these cases use the same LDPC encoder configured with 30%
redundancy. The cost reported here is for around 1% error
rate in both cases. Clearly, the CMOSS approach has both a
lower write and read cost. The difference in write cost can
be explained due to the fact that in the horizontal LDPC
approach, the authors also added additional redundancy in
each oligo in the form of markers which they used in their
decoder. CMOSS is able to achieve 100% data reconstruction
using the same LDPC encoder at a much lower coverage
level without such markers as demonstrated by the lower
read cost.

Among SOTA, two other pieces of related work that have
competitive read/write cost are the large-block RS coding by
Organick et al. [38] and fountain codes by Erlich et al. [19].
Comparing CMOSS with these, we see that CMOSS Exp. 2
with 30% redundancy provides better read cost than both,
but worse write cost than the fountain coding approach.
CMOSS Exp. 3 has worse read cost than Organick et. al.
but a better write cost than both as it uses 10% redundancy.
As we mentioned earlier, we can further improve the write
cost for CMOSS using several approaches. First, the CMOSS
results from Exp. 2 in Table 3 were obtained with a 30%
redundancy based on its ability to handle even 12% error
rate. For lower error rates (less than 1%), as was the case
with the Fountain coding work, even 10% redundancy would
be able to fully restore data at extremely low coverage (3×
as shown in Figure 8). Second, as mentioned in Section 3,
scaling the motif set by using longer motifs (17nt and 33
bits) could allow us to increase bit-level density further from
1.87 bits/nt to over 1.9 bits/nt. These two changes would
lead to further reduction in write cost without any adverse
effect on the read cost. As this work was predominantly
about reducing the read cost, we leave these optimizations
to future work.
Lin et al. [30] recently presented the Gini architecture

which interleaves nts across oligos in order to minimize
the impact of consensus errors. We also tried to compare
CMOSS with Gini, but we could not derive the read/write
cost for Gini, which was also not reported, due to lack of
statistics about reads. However, as our evaluation methodol-
ogy is identical to Gini, we present a direct comparison of
results in terms of minimum coverage required by both ap-
proaches. Figure 10 shows the minimum coverage required
by CMOSS, Gini, and a baseline without Gini reported by Lin
et al. [30], to perfectly recover data at various error rates. At
18.4% redundancy based on RS coding, the reported baseline
needed a coverage of 30× to recover data at 12% error rate.
Gini, in contrast, provided a 33% improvement as it needed
a minimum coverage of 20× at 12% error rate to guarantee
full recovery. CMOSS configured at 30% redundancy with
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Figure 8: Min. coverage required by
our vertical and horizontal imple-
mentations at 10% redundancy.
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Figure 9: Min. coverage required by
our vertical and horizontal imple-
mentations at 30% redundancy.
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Figure 10: Min. coverage required
by CMOSS, Gini and the Gini-
baseline [30] at various error rates.

LDPC encoding provides a 40% improvement over Gini, it
requires only 12× coverage. Comparing Figure 10 with Fig-
ure 8, we see that CMOSS provides 25% less coverage (15×)
even at 10% redundancy compared to Gini. Thus, CMOSS has
a much lower read cost, thanks to the integrated consensus
and decoding enabled by vertical organization.
Finally, we would like to mention that there are other

SOTA approaches that we tried to add to Table 3 [2, 4, 31, 39,
47, 48]. But we could not find all the information necessary
for computing the read and write costs. Hence, we did not
report these methods in Table 3.

4.4 Benefits of Vertical Design
In order to ensure that the benefits of CMOSS are due to
the vertical design and not other parameters, we have devel-
oped a horizontal version of the pipeline shown in Figure 5,
where we fixed all other parameters (clustering and consen-
sus algorithms, LDPC block size, motif set, etcetera), and
only changed two aspects to make it similar to SOTA: (i)
replace CMOSS encoder with horizontal encoder that maps
one LDPC block to multiple oligos, (ii) perform consensus to
infer entire oligos first, and then decode separately.

In order to compare the vertical and horizontal pipelines,
we perform an end-to-end DNA storage simulation study
using both pipelines. First, we use both pipelines to generate
the oligos for a 3MB TPC-H archive file (3MB size was chosen
based on calculations that ensure that both pipelines produce
the same number of oligos). We configure LDPC encoder to
generate two datasets, with 10% and 30% redundancy. Then,
we encode the two datasets using both pipelines, while fixing
the oligo length to 50 motifs per oligo (800nt), generating
four oligos datasets, two containing 18773 oligos (horizon-
tal/vertical at 10% redundancy), and the other two containing
22187 (horizontal/vertical at 30% redundancy) oligos.

We compare the horizontal and vertical pipelines by evalu-
ating the minimum coverage required at 10% and 30% redun-
dancy levels to achieve 100% error-free reconstruction of the
input data at various the error rates (1% to 12%). Similarly
to SOTA [9, 30], for each error rate and for each of the four

oligo sets, we generate read datasets at various coverage
levels(1× to 25×). First, we duplicate each oligo according to
the coverage levels, Then, we inject random errors (insertion,
deletion and substitution with an equal probability) at ran-
dom positions in each read. The number of errors injected
per read follows a normal distribution with mean set to the
configured error rate. We then decode the read datasets us-
ing both pipelines and identify the minimum coverage level
required to fully recover the original data. We repeated each
experiments three times and the minimum coverage level
remained constant for every run. We reported these values
in Figure 8 and Figure 9.
Figure 8 shows the minimum coverage for data encoded

with 10% redundancy. Clearly, vertical encoding outperforms
the horizontal one, as it reduces the coverage required up
to 40% for high error rates. This reduction in minimum cov-
erage can be intuitively explained as follows. Horizontal
encoding maps an LDPC block into multiple oligos. This
implies that a single erroneous oligo can lead to a data loss
of up to 1500 bits (50 motifs per oligo × 30 bits per motif).
As explained in Section 3, all that is required for an oligo
loss is a single insertion/deletion error in the first motif after
consensus. On the other hand, an oligo loss in CMOSS only
causes a loss of 30 bits in each of the LDPC blocks, thanks to
the vertical encoding. Further, the integrated consensus and
decoding can fix consensus errors in early rounds so that
they do not affect future rounds. Due to these reasons, the
LDPC decoder works much more effectively when paired
with vertical layout rather than horizontal encoding. The
results are similar for data encoded with 30% redundancy as
well, as shown in Figure 9. Notice that in the 30% case, both
horizontal and CMOSS pipelines have a minimum coverage
lower than the 10% redundancy case. This is expected, as a
higher redundancy implies a higher tolerance to errors.
Our work is orthogonal to current efforts in designing

optimal codes. Our core contributions include the vertical
layout, integrated consensus, and block-based random access,
all of which can be applied to any error-control codes. To
demonstrate this, as we mentioned earlier, we have also
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Figure 11: Min. coverage required by our vertical and
horizontal encoders with RS code at 10% redundancy.

implemented RS code with the same block length and symbol
size as used in Organick et al. [38](65,536 symbols with 16
bits per symbol) in both vertical and horizontal encoding
implementations of CMOSS. For this experiment, we encoded
the same 3MB TPC-H archive file, using the same block
length as Organick et al.[38], while maintaining an oligo
length of 800nt. As a result, we generated 34,951 encoding
oligos with the redundancy for RS code configured to 10%.
We used our simulator to vary the error rate between 1%
and 12% similar to the LDPC experiment. For each error
rate, and for each of the two layouts (vertical/horizontal),
we generated read datasets at various coverage levels (from
1x to 25x). As shown in Figure 11, the trend of minimum
coverage for various error rates is similar to the experiment
conducted using LDPC; vertical encoding with its integrated
consensus outperforms the horizontal implementation even
for RS as it requires lower coverage to fully decode the input
data for all the error rates simulated. This shows that the
vertical layout and integrated consensus aspects of CMOSS
design are orthogonal to the choice of error-control codes.
In order to compare the performance of our vertical im-

plementation with the horizontal one, we measured the run
time for the experiments presented in Figure 9. By varying
the error rates and therefore the coverage required to recon-
struct the data, the vertical layout runtime varies between
35-39 minutes while the horizontal implementation takes
5-6 minutes. The difference in time is due to the fact that in
the vertical version, every LDPC block stored in columns is
re-encoded during the decoding process as shown in Figure 5
in steps (11)-(12). Moreover the freshly generated column
of motifs is aligned against reads to fix the starting point of
the next column of motifs (Figure 5, steps (12)-(13)). Given
the same number of oligos and coverage, vertical encoding
will have a constant decoding time overhead compared to
horizontal encoding. However, this is not a scalability issue
because (i) sequencing takes much longer than decoding,
(ii) OB decoding can be easily parallelized, and (iii) in the
context of long-term storage, decoding will be done once
after several years or decades, and hence the performance of
decoding is not a limiting factor.

Finally, we conclude this section by mentioning that in our
large-scale wetlab experiments (Exp. 3) we limit the size to
13MB due to budget limitations, given the high cost of DNA
synthesis. However, we also did a larger-scale simulation
study where we converted a random 100GB binary file into
586M oligos spread across 26,421 OB. Using these oligos, we
simulated random access with errors using a DNA storage
simulator and successfully tested the ability of CMOSS to
decode a few specific OB. We omit further details here due
to lack of space, but would like to mention that we have
validated the efficacy and scalability of CMOSS in decoding
large files.

5 CONCLUSION
All SOTA approaches for DNA data archival use an object-
based interface and a nucleotide-based, horizontal layout
approach for mapping input bits onto oligos. In this paper,
we showed how these assumptions (i) amplify PCR coverage
bias under a complex pool with files of multiple sizes, and
(ii) lead to a strict separation of consensus calling and decod-
ing, which, in turn, results in lost opportunity for improving
read/write cost. We presented CMOSS, an end-to-end DNA
storage pipeline that uses a vertical oligo layout using mo-
tifs as building blocks, and a fixed-size, block/extent-based
random access over DNA storage. Using a full system evalu-
ation, we highlighted the benefit of our design and showed
that CMOSS can reduce read-write costs compared to SOTA
approaches. The CMOSS pipeline is publicly available at
https://github.com/paper-submi/dna-storage-system.git.
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