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Abstract—In extremely large-scale multiple-input multiple-
output (XL-MIMO) systems, channel estimation poses a key
challenge due to the introduction of the unknown distance
parameter in near-field scenarios. We propose a beamforming
codebook that includes pre-compensated distances, which allows
the application of the traditional beamspace multiple signal
classification (BMUSIC) to near-field channel estimation. To
determine the optimal pre-compensation distance, we introduce
three strategies: Maximizing the correlation integral (MCI),
maximizing the minimum correlation (MMC), and exceeding the
minimum correlation threshold (EMCT). In addition, we develop
a two-stage BMUSIC algorithm and a switch transformation
design to further reduce the time-intensive 2-dimensional (2D)
search processes and avoid the overlaps of multiple coherent
paths. Simulation results confirm that the proposed method
not only diminishes computational complexity but also notably
outperforms existing methods in terms of estimation accuracy.

Index Terms—Extremely large-scale MIMO (XL-MIMO),
near-field, channel estimation, two-stage bemspace MUSIC.

I. INTRODUCTION

EXTREMELY large-scale multiple-input multiple-output
(XL-MIMO) is a promising technology to achieve the

exceptional performance expected from 6G [1]. Equipped
with a substantial number of antennas, XL-MIMO can achieve
unprecedented array gain via beamforming [2]. The extensive
array size introduces characteristics of near-field spherical
waves, which alter the channel structure. To fully exploit XL-
MIMO, acquiring accurate near-field channel state information
(CSI) is essential, representing a challenge for research.

Recent studies have focused on near-field channel estima-
tion [3]–[5] and beam training [6]–[8]. In [3], Cui et al.
introduced a near-field polar-domain codebook along with a
polar-domain orthogonal matching pursuit (P-OMP) algorithm
for estimating the near-field channel. Similarly, Lu et al. [4]
depicted the XL-MIMO channel employing a mixed line-of-
sight (LoS) and non-LoS (NLoS) path components model,
utilizing the P-OMP algorithm for NLoS component esti-
mation. With the polar codebook, a look-ahead P-OMP is
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applied to XL- reconfigurable intelligent surface (RIS) aided
MIMO channel estimation [5]. However, the inherent column
coherence of the codebook limits the estimation accuracy of P-
OMP. Besides, near-field beam training is also a conventional
way to obtain CSI. To reduce the training overhead based on an
exhaustive search with the two-dimensional (2D) polar-domain
codebook, Zhang et al. developed a two-phase beam-training
strategy that decouples the angular and distance dimensions
[6]. Nonetheless, the scheme in [6] suffers from a scarcity of
distance sampling points, leading to inadequate resolution and
lower estimation accuracy. Additionally, increasing the number
of distance sampling points significantly raises the training
overhead. Subsequent research [7], [8] further proposed hi-
erarchical codebook designs to reduce the training overhead,
albeit at the expense of performance.

Unlike the above approaches, 2D multiple signal classifica-
tion (MUSIC) algorithm stands out as a robust method for
near-field channel estimation [9]. It remains unaffected by
the coherence of distance domain codewords and does not
require extensive pilot overhead. When integrated with the
XL-array, 2D MUSIC provides ultra-high resolution, precisely
estimating both the distance and angle of near-field paths.
Nevertheless, its main drawbacks include the time-intensive
2D search and the complexity of Eigenvalue Decomposition
(EVD). Although Zhang et.al. proposed a reduced-dimension
near-field MUSIC approach, it is only applicable to full-digital
systems where the antenna spacing is less than 1

4 wavelength
[10]. This approach is ill-suited for the hybrid precoding
structures in practical XL-MIMO systems, which are designed
to reduce radio frequency (RF) chains and thereby reducing
power consumption and hardware complexity. To the best of
our knowledge, there is no near-field MUSIC algorithm that
avoids 2D search and also suit hybrid precoding structures.

Considering the above, this letter considers an XL-MIMO
system with hybrid precoding and focuses on the near-field
channel estimation. We aim to use the beamspace MUSIC
(BMUSIC) technique [11] for tackling channel estimation. We
introduce the pre-compensation distance to modify the DFT
codebook to enhance the applicability of BMUSIC in the near
field. The optimal pre-compensation distance is determined
by three strategies: maximizing the correlation integral (MCI),
maximizing the minimum correlation (MMC), and exceeding
the minimum correlation threshold (EMCT). To address the
high complexity of the 2D search, we introduce a two-stage
BMUSIC strategy, effectively simplifying it into manageable
1D search problems. Furthermore, considering the signal co-
herence in multipath environments, we draw inspiration from
spatial smoothing techniques to implement antenna subarray
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Fig. 1. Illustration of an XL-MIMO communication system, where a
user is located in the near-field region.

selection via a switch transformation matrix. Simulation results
demonstrate that our proposed method can improve estimation
performance and reduce computational complexity.

II. SYSTEM MODEL AND BMUSIC METHOD

Consider a near-field XL-MIMO communication system
shown in Fig. 1. The base station (BS) is equipped with Nt-
antenna uniform linear array (ULA) to communicate with a
single-antenna user. The BS employs the hybrid precoding
structure, where Nt antennas are connected to NRF RF chains
with NRF ≪ Nt. The channel estimation is performed by BS
using the uplink pilot transmission from the user, with T time
slots allocated for the uplink training process. Denoting the
pilot signal at t-th time slot as x(t), such that |x(t)| = 1, the
signal output of the RF chains can be expressed as

y(t) = WHhx(t) +WHn(t), t = 1, 2, · · · , T, (1)

where W ∈ CNt×NRF represents the adopted analog com-
bining matrix at BS; each element Wi,j satisfies the constant
modulus constraint |Wi,j | = 1√

Nt
; n(t) denotes the complex

Gaussian white noise with zero mean and covariance σ2I; and
h is the considered near-field channel modeled as [3]

h =

√
1

L

L∑
l=1

αla(θl, rl), (2)

where L denotes the number of paths; αl, θl and rl represent
the gain, the direction and the distance of the l-th path to
the BS, respectively; a(θ, r) ∈ CNt is the near-field steering
vector at the direction θ and distance r defined as

a(θ, r) =

[
e−j2π

d1−r
λ , e−j2π

d2−r
λ , . . . , e−j2π

dNt
−r

λ

]T
, (3)

where dn =
√
r2 + (δn∆)2 − 2rδn∆sin θ and δn =

2n−Nt+1
2 for n = 0, 1, . . . , Nt − 1. Here, ∆ = λ

2 denotes
the antenna spacing, and λ is the carrier wavelength.

In the following, we recall the conventional BMUSIC
method for near-field communication, which delivers useful
insights for the beamforming and channel estimation design.
Following the MUSIC approach, the received pilot signals are

collected to evaluate the covariance matrix, given as [11],

Ry ≜ E
{
y(t)y(t)H

}
≈ 1

T

T∑
t=1

y(t)y(t)H . (4)

By stacking all the direction and distance information pairs
as A = [a(θ1, r1), · · · ,a(θL, rL)] ∈ CNt×L and stacking the
associated complex path gain as b =

√
1
L

[
α1, · · · , αL

]T ∈
CL, the covariance matrix can be rewritten as

Ry = WHAE
{
s(t)s(t)H

}︸ ︷︷ ︸
Rs

AHW + σ2I,
(5)

where s(t) = bx(t). Take the EVD of the covariance matrix
given in (5), we can obtain

Ry = [USUN ]

[
ΣS

ΣN

]
[USUN ]

H
, (6)

where US and UN represent the eigenvectors associated with
the L largest eigenvalues, denoted by ΣS , and the remaining
NRF − L smallest eigenvalues, denoted by ΣN , respectively.
Multiplying UN in the right side of (5) and (6), we have
RyUN = σ2UN and RyUN = WHARsA

HWUN +
σ2UN , which indicates that WUH

NWHARsA
HWUN = 0.

So, when Rs is non-singular, AHWUN = 0. In other
words, each path vector aH(θ, r) correlated with the beam-
forming matrix W contributes a zero to the null spectrum
aH(θ, r)WUNUH

NWHa(θ, r). Then the angle and distance
pairs

[(
θ̂1, r̂1

)
, · · · ,

(
θ̂L, r̂L

)]
can be estimated by finding

the L peak points in the BMUSIC spectrum1

P (θ, r) =
1

aH(θ, r)WUNUH
NWHa(θ, r)

. (7)

Furthermore, the path gain can be estimated as

b̂ =
1

T

T∑
t=1

pinv
(
WHÂ

)
y(t), (8)

where pinv(·) denotes pseudo-reverse operation. Then the
estimated channel can be written as ĥ = Âb̂.

Obviously, the performance of the BMUSIC method is
related to the beamforming matrix W. In the conventional
BMUSIC method for far-field channel estimation, W is gen-
erally generated from a DFT codebook [11] with Nt well-
selected direction-related parameters {ϕNt}

Nt
i=1

2. However,
the conventional DFT codebook mismatches with the near-
filed channel structure, thereby resulting in significant gain
loss for each signal path and consequently, substantial errors
in channel estimation. To address this issue we propose
introducing pre-compensation distance rc,θ for each angle θ
and re-formulated the beamforming codebook as

C = [a(ϕ1, rc,ϕ1),a(ϕ2, rc,ϕ2), · · · ,a(ϕNt , rc,ϕNt
)], (9)

1L is assumed to be known which can be obtained by the minim description
length principle or the magnitude of the eigenvalues in practice [11].

2 The angle range needed to construct W can be determined through a
wide-beam search by activating a limited subset of antennas in the center of
XL-array during the initialization phase[ [12]. W can be obtained by selecting
appropriate columns from C based on the angle range.



where ϕi is the uniform sampling angle satisfying that sinϕi =
2i−Nt−1

Nt
, i = 1, 2, · · · , Nt. In the following, we will propose

three different strategies for optimizing rc,θ.

III. PRE-COMPENSATION DISTANCE OPTIMIZATION

According to the previous analysis, the goal is to maximize
the gain (correlation) of the fine-tuned codebook C in the near
field. This involves maximizing the correlation coefficient be-
tween the steering vector corresponding to rc,θ and the focus-
ing vector corresponding to the true distance r. This ensures
that the near-field signals are maximally strengthened through
the combining matrix W. Afterward, the signal subspace can
be preserved as completely as possible and BMUSIC can
be performed. Define ρ(rc,θ, r) as the correlation coefficient
between the steering vector corresponding to (θ, rc,θ) and the
steering vector corresponding to the true distance (θ, r),

ρ(rc,θ, r) = |a(θ, rc,θ)Ha(θ, r)|. (10)

We aim to maximize ρ(rc,θ, r) where r is any true near-
field distance. Similar pre-compensation distance methods are
mentioned in [6], where far-field steering vectors are used, i.e.,
rc,θ = ∞. It is obvious that it is not the optimal choice and
we should find a more suitable rc,θ. When the distance range
of paths in the near field [rmin, rmax] is known 3, we propose
the following three strategies:

1) MCI: This strategy is to find rc,θ ∈ [rmin, rmax]
that maximizes the integral of ρ(rc,θ, r) in [rmin, rmax],
i.e. maximizing the sum of the correlation between the
pre-compensation steering vector and all potential true
steering vectors. The problem can be formulated as
max
rc,θ

∫ rmax

rmin
ρ(rc,θ, r)dr. Further, take the square of ρ(rc,θ, r),

we have ρ2(rc,θ, r) = a(θ, rc,θ)
Ha(θ, r)a(θ, r)Ha(θ, rc,θ).

The problem can be equivalently written as

max
rc,θ

∫ rmax

rmin

ρ2(rc,θ, r)dr = min
rc,θ

− a(θ, rc,θ)
HMa(θ, rc,θ)

(11)
where M =

∫ rmax

rmin
a(θ, r)a(θ, r)Hdr is a definite integral.

This is a problem of finding the minimum of a single-
variable function within a fixed interval and the function has
a continuous derivative. Employing multiple initial points for
the gradient-based local search to obtain the global optimal
solution, which can be achieved by the Global Optimization
Toolbox in MATLAB.

2) MMC: The MMC strategy aims to maximize the mini-
mum value of ρ(rc,θ, r) in [rmin, rmax], i.e.

max
rc,θ

min
r∈[rmin,rmax]

ρ(rc,θ, r). (12)

Furthermore, Lemma 1 in [3] has derived that ρ(rc,θ, r) =
|G(β)| = 1

β |C(β)+jS(β)|, where C(β) and S(β) are Fresnel

functions, β =

√
N2

t d
2 cos2(θ)
2λ

∣∣∣ 1
rc,θ

− 1
r

∣∣∣. And |G(β)| shows

an approximately monotonically decreasing trend with the

3The distance range can be obtained through several methods, including
but not limited to.: the near-field operational range of BS, the predictability
of user-dense areas (e.g. shopping malls), and BS traffic analysis prediction.
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Fig. 2. The correlation schematic by different rc over [rmin, rmax].
MCI aims to maximize the sum of correlations between rc and
all true distances, i.e. maximize the area under the blue region in
Fig. 2; however, this can lead to poor correlation at some distances.
MMC aims to maximize the minimum correlation between rc and
all distances, thus avoiding the drawbacks of MCI. EMCT is an
extension of MMC, designed to ensure that the minimum correlation
between rc and all distances exceeds a certain threshold, i.e. the curve
in Fig. 2 always remains above the blue line in the range [rmin, rmax].

increase of β. Clearly, the increase or decrease of β depends on
| 1
rc,θ

− 1
r |. So we have that ρ(rc,θ, r) exhibits an approximately

monotonically increasing trend when r < rc,θ and a decreasing
trend r > rc,θ, which is also shown in Fig. 2. For such a
trend, the minimum value appears at the ends of [rmin, rmax].
Then the problem can be approximated as simultaneously
maximizing both ρ(rc,θ, rmin) and ρ(rc,θ, rmax).

Similarly, since r ∈ [rmin, rmax], when rc,θ increases,
| 1
rc,θ

− 1
rmin

| increases while | 1
rc,θ

− 1
rmin

| decreases, resulting
that ρ(rc,θ, rmin) decreases while ρ(rc,θ, rmax) increases. So,
ρ(rc,θ, rmin) and ρ(rc,θ, rmax) have opposite trends with rc
varies. Therefore, the solution to the problem is the balance
state where rc,θ satisfies ρ(rc,θ, rmin) = ρ(rc,θ, rmax), i.e.,∣∣∣∣ 1

rc,θ
− 1

rmin

∣∣∣∣ = ∣∣∣∣ 1

rc,θ
− 1

rmax

∣∣∣∣ . (13)

Hence, we can obtain an approximate closed-form solution

rc,θ =
2rminrmax

rmin + rmax
, ∀θ. (14)

3) EMCT: This strategy aims to find rc,θ that ensures
the minimum value of ρ(rc,θ, r) in [rmin, rmax] exceeds
a threshold ϵ ∈ [0, 1]. Based on the analysis in MMC,
EMCT strategy is equal to make that ρ(rc,θ, rmin) > ϵ
and ρ(rc,θ, rmax) > ϵ simultaneously. Utilizing numerical
methods to solve ρ(rc,θ, rmax) = ϵ and ρ(rc,θ, rmin) = ϵ in
[rmin, rmax], we can obtain rθc1 and rθc2, respectively. Accord-
ing the increasing and decreasing properties of ρ(rc,θ, rmin)
and ρ(rc,θ, rmax), we have{

rc,θ > rθc1, when ρ(rc,θ, rmax) > ϵ

rc,θ < rθc2, when ρ(rc,θ, rmin) > ϵ
(15)

Therefore, the EMCT strategy obtains that rc,θ ∈ [rθc1, r
θ
c2].

IV. TWO-STAGE BMUSIC

With the optimized rc,θ, the channel can be estimated
through the BMUSIC method introduced in Section II. Com-
pared to the conventional 2D MUSIC [9], BMUSIC reduces
the complexity of EVD from N3

t to N3
RF. However, the time-

consuming 2D search still remains. Additionally, a funda-
mental premise for effective MUSIC estimation is that Rs



is non-singular, i.e. rank(Rs) = L. However, according to
s(t) = bx(t), rank(Rs) is always 1. This implies that when
multiple coherent paths are present L > 1, the aforementioned
method becomes ineffective. To address the two drawbacks,
we first propose a two-stage BMUSIC method to reduce the
computational complexity of the 2D search and then deal with
the issue of multipath coherence.

A. Two-stage BMUSIC
Specifically, we decouple the 2D search described in Eq.

(7) into two distinct 1D searches. The initial stage involves
searching for angles by leveraging the pre-compensation dis-
tance rc,θ given in Section III to determine the path direction.
Subsequently, the second stage focuses on searching for dis-
tances with the path angles obtained from the first stage. Thus,
the two-stage BMUSIC can be summarized as: Stage 1: Find
the peak point of the spectrum function f(θ) given as Eq. (16)
to get the direction vector θ̂ = [θ̂1, · · · , θ̂L]:

f(θ) =
1

aH(θ, rc,θ)WUNUH
NWHa(θ, rc,θ)

, θ ∈ Ωθ, (16)

where Ωθ is the angle search space4, UN is defined in Eq.
(6).

Stage 2: Find the peak point of the spectrum function g(r)
given as Eq. (17) to get the distance vector r̂ = [r̂1, · · · , r̂L]:

g(r) =
1

aH(θ̂, r)WUNUH
NWHa(θ̂, r)

, r ∈ Ωr, (17)

where Ωr is the distance search space.

Remark 1. As stated in [13], there exists a direct relationship
between ρ(rc,θ, r) and the angle estimation error in the first
stage; specifically, a larger ρ(rc,θ, r) results in a reduced angle
estimation error. This observation aligns with the analysis in
Section III, thereby justifying the direct application of rc,θ from
Section III in the two-stage BMUSIC.

B. Switch Transformation for Multipath Coherence
To mitigate the issue of multipath coherence identified in

the BMUSIC algorithm, we propose to leverage the concept
of spatial smoothing, that is, employing a switching circuit at
the BS. This enables dynamic selection of the active antenna
subarray from the Nt-element antenna array. Specifically, we
define Q transformation matrices Zq, q = 1, 2, · · · , Q as

Zq =
[
0K×(q−1)|IK |0K×(Q−q)

]T ∈ RNt×K , (18)

where K = Nt − Q + 1, 0 denotes the zero matrix. Each
transformation matrix Zq represents the state of the switching
circuit. In this regard, a new dimensional-reduced beamform-
ing matrix W̃ ∈ CK×NRF is generated by taking the first K
rows of W. Therefore, the actual weight matrix configured on
the antennas is ZqW̃. For clarity, we denote the signal arriving
at the antenna as ŷ(t) = hx(t) + n(t) ∈ CNt . Assuming that
the switching circuit changes Q times within a coherence time
duration, each of them gives us a signal output as

ỹq(t) = W̃HZT
q ŷ(t). (19)

4Ωθ can be the angle range corresponding to W.

TABLE I: Complexity Comparison.

Method Computational Complexity

Proposed method O
(
N3

RF + N2
RF(G1 + G2)

)
RD-MUSIC [10] O

(
N3

t + NtG1G2

)
2D-MUSIC [9] O

(
N3

t + N2
t G1G2

)
P-OMP [3] O (TNRFNtG1G2)

Accordingly, the average covariance matrix for the Q outputs
can be written as

R̃y =
1

Q

Q∑
q=1

1

T

T∑
t=1

ỹq(t)ỹq(t)
H

= W̃H 1

Q

Q∑
q=1

ZT
q R̂yZqW̃ = W̃H 1

Q

Q∑
q=1

R̂qW̃,

(20)

where R̂y = 1
T

∑T
t=1 ŷ(t)ŷ(t)

H , and R̂q = ZT
q R̂yZq . When

multipath coherence occurs, the estimated covariance matrix
R̂y exhibits rank deficiency. By adopting the switch trans-
formation, we obtain 1

Q

∑Q
q=1 R̂q , i.e., the classical forward-

smoothed covariance matrix (Eq. (31), [14]). Forward smooth-
ing can restore the rank of the matrix, thereby resolving the
issue of multipath coherence [14]. Then, using R̃y for EVD
in (6), and employing W̃ and rc,θ for the 1D searches in (16)
and (17), we can obtain the estimated parameters5.

Remark 2. Switching the switching circuit in the coherence
time maybe a challenge. A practical approach is conducting
switch transitions across various pilot phases. Specifically, the
pilots can be divided into Q segments, with each segment using
a distinct switch state Zq to obtain W̃HR̂qW̃. Furthermore,
to ensure effective decorrelation, Q is generally recommended
to be more than twice the number of paths L [14].

C. Complexity Analysis

The main computational complexity of the proposed al-
gorithm comes from: 1) the complexity of EVD in (8),
which is O

(
N3

RF

)
; 2) the complexity of the grid search

in (16) and (17), which is O
(
G1N

2
RF + LG2N

2
RF

)
, with

G1, G2 standing for the grid number of angle and distance;
3) the complexity for the path gain estimation, which is
O
(
L3

)
. Due to the characteristics of sparse channels, L is

usually small. Therefore, the total complexity is expressed as
O
(
N3

RF +N2
RF(G1 +G2)

)
. Table I shows the computational

complexity of different methods which demonstrates that the
proposed method achieves a significant reduction in computa-
tional complexity.

V. SIMULATION RESULTS

In this section, we provide simulation results for validating
the performance of the proposed method. The simulation
parameters are set as: fc = 60 GHz, Nt = 256, NRF = 10.
Furthermore, we set Q = 5, following the parameter settings
from reference [14]. We assume that all path distances are

5The dimension of the steering vector used for 1D search should match the
dimension of the column vectors of W̃.
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Fig. 3. NMSE performance comparison versus SNR, T = 10, the
MMC strategy is used in the proposed methods.
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Fig. 4. NMSE performance comparison versus pre-compensation
distance (a) and user distance (b), T = 10, L = 1, SNR=10 dB.

generated within [10, 60] meters and the path angles are
generated within [−π

3 ,
π
3 ]. We adopted the normally distributed

channel path gain in this work. The normalized mean square
error (NMSE) is chosen as the metric, i.e. E

{
∥h−ĥ∥2

2

∥h∥2
2

}
. For

clarity, we denote the method without the switching circuit
as Two-stage BMUSIC A, and the method employing the
switching circuit as Two-stage BMUSIC B. The original 2D
MUSIC [9], RD MUSIC [10], P-OMP [3], and beam training
[6] algorithms are chosen for comparison. The Genie-aided-
LS algorithm serves as the performance lower bound where
the path distances and angles are perfectly known.

In Fig. 3(a), we show the NMSE performance versus the
SNRs for all algorithms with L = 1. It can be observed that the
proposed algorithm outperforms the comparison algorithms.
Since the RD MUSIC algorithm experiences angle ambiguity
in systems with half-wavelength spacing, its performance
is significantly poor. Our proposed method with the MMC
strategy achieves nearly the same performance as 2D MUSIC
with a much lower complexity when the SNR is greater than -
5dB. Additionally, both proposed method A and method B are
applicable in this scenario. The results for a multipath scenario
with L = 2 are shown in Fig. 3(b). Clearly, the coherence
caused by multipath greatly diminishes the performance of all
algorithms related to MUSIC. The proposed method B, which
introduces a switch transformation matrix, can effectively
counteract multipath effects and demonstrates performance
closest to the lower bound.

In addition, the NMSE performance with respect to different
pre-compensation distances when θ = 0 is evaluated in
Fig. 4(a). For the EMCT, we establish a threshold value of
ϵ = 0.52. Among different pre-compensation distances, the
EMCT and MMC strategies can achieve the best estima-
tion performance. This indicates that the minimum value of
ρ(rc,θ, r) plays a pivotal role in determining overall estima-

tion accuracy. Fig. 4(b) provides a comparison of different
schemes’ performance as a function of user distance. It can
be seen that MCI has poor estimation performance when the
user distance is less than 12 m. This is due to the MCI
strategy yielding low correlations ρ(rc,θ, r), for certain user
distances. For the same reason, when rc = rmin and rc = ∞,
estimation performance degrades at certain user distances.
Moreover, due to the sparseness of the distance sampling
points, the performance of P-OMP fluctuates with the user
distance. In contrast, the proposed two-stage BMUSIC method
using MMC or EMCT has stable performance and outperforms
the comparison methods.

VI. CONCLUSIONS

In this letter, we propose a BMUSIC-based near-field chan-
nel estimation method for hybrid XL-MIMO. We introduce a
pre-compensation distance and detail three strategies for de-
termining it. Additionally, we simplify the 2D search problem
into 1D searches with a two-stage strategy. To tackle signal
coherence in multipath environments, we develop a switch
transformation matrix for effective antenna array selection.
Simulation results show that the proposed methods improve
estimation performance and reduce computational complexity.
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