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Abstract
The generalisation of spoofing detection solutions to spoof-

ing attacks or recording conditions not seen in training data
has been a focus since the inception of research in this area.
We report our investigation of three strategies to improve upon
generalisation, namely data augmentation, the fine-tuning of a
pre-trained model, and a Siamese model with a cross-attention
mechanism. When evaluated under domain-mismatched condi-
tions, we show that these techniques are all effective in reduc-
ing model overfitting and in encouraging the learning of more
generalisable models by capturing the (di)similarity between
bonafide or spoofed test and known-to-be bonafide reference
utterances. Evaluations using the in-the-wild dataset show that
our model achieves a relative improvement of almost 60% com-
pared to the best results reported in the literature.

Keywords: spoofing detection, generalisation learning,
Siamese network

1. Introduction
Automatic speaker verification (ASV) technology offers a re-
liable and convenient means to biometric person recognition
based on distinctive voice characteristics [1]. However, the
rapid development of spoofing attack algorithms, which aim to
deceive ASV systems with the impersonation of bonafide users,
has raised concerns about security. Spoofing detection systems,
also referred to as countermeasures (CMs) or presentation at-
tack detectors, are nowadays deployed to combat attacks and to
safeguard the integrity of ASV systems.

The ASVspoof [2] community, which includes broad par-
ticipation from all over the world, has made significant ad-
vances in this field. Recent studies [3, 4] proposed the use of
Graph Attention Networks to leverage the discriminative infor-
mation in both temporal and spectral domains of a speech sig-
nal in order to discriminate spoofed from bonafide speech. De-
spite achieving impressive performance for the ASVspoof 2019
LA dataset, various studies have observed significant general-
isation issues when spoofing detection systems are evaluated
using datasets that are different to those with which they are
trained. Müller et al. [5] demonstrated a lack of generalisation
when spoofing detection models trained using the ASVspoof
2019 logical access (LA) databases are evaluated using the in-
the-wild dataset. An equal error rate (EER) for a RawGAT-ST
model rose from 1.2% for the evaluation partition of the same
ASVspoof 2019 LA dataset to 37.1% when evaluated using the
in-the-wild dataset.

A similar lack of generalisation was also reported for other
models. Wang et al. [6] highlighted the influence of domain
mismatch upon spoofing detection performance. They showed

that AASIST-based models trained using the ASVspoof 2019
LA dataset erroneously classify a substantial proportion of the
VoxCeleb2 dataset (of bonafide recordings) as spoofed.

Recent studies have employed fine-tuning strategies to mit-
igate model overfitting in spoofing detection. Tak et al. [7] fine-
tuned the wav2vec 2.0 pre-trained model, a large-scale model
for cross-lingual speech representation learning [8], using the
ASVspoof 2019 LA training set. Experiments performed using
the ASVspoof 2021 LA and DF datasets demonstrate that the
use of pre-trained models leads to consistent improvements in
generalisation to unseen spoofing attacks. Xie et al. [9] pro-
posed a two-phase fine-tuning strategy using the wav2vec 2.0
pre-trained model and a Siamese network architecture. Their
results show that the fine-tuning of a pre-trained model provides
for powerful representation learning that improves spoofing de-
tection performance for the ASVspoof 2019 LA dataset. While
most existing methods [3, 4, 10] approach spoofing detection as
a binary classification between bonafide and spoofed inputs, we
assume that these approaches could lead to limitations in gener-
alizing to unseen spoofing attacks. This is because classification
models work best when the distribution of training and test data
is similar. However, due to the rapid development of spoofing
attack algorithms, it is challenging for the collection of training
sets to keep pace with the development of new attack methods.
Having recognised this, we have explored a blend of different
techniques which improve generalisability to unseen spoofing
attacks.

In this paper, we propose a novel approach to address the
generalisation challenge. First, we establish new training and
evaluation protocols using a combination of the ASVspoof 2019
LA dataset and the in-the-wild dataset. Second, we demon-
strate the merit of a comprehensive data augmentation approach
which is combined with the fine-tuning of pre-trained models.
The augmentation strategies introduce additional variation to
the training data so that models are less prone to overfitting and
can learn more generalisable characteristics, which in turn im-
proves detection reliability in the domain-mismatched scenario.
Fine-tuning leverages the knowledge embedded in a pre-trained
model, providing a solid foundation for the specialized spoofing
detection task.

Third, we formulate spoofing detection as a similarity learn-
ing task [11]. We propose a Siamese-based cross-attention net-
work which operates upon both the audio recording being ana-
lyzed and a bonafide reference recording. The model learns to
map the two inputs to a single output which serves as an indica-
tion of similarity to the bonafide reference utterance - a predic-
tion of whether the test utterance is bonafide or spoofed. This
inherent characteristic enables Siamese networks to better gen-
eralize to new, previously unseen attacks. In addition, Siamese
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networks can effectively utilize the information from two inputs
to make more informed decisions. The hypothesis is that use of
a bonafide reference utterance is beneficial to the learning of
characteristics which help distinguish bonafide test utterances
from spoofs. The cross-attention mechanism [12] further en-
ables the model to focus on the most relevant and discrimina-
tive information between test and bonafide reference utterances.
Our Siamese model is trained according to two different strate-
gies: (1) the bonafide reference utterance belongs to the same
speaker as the training utterance (henceforth denoted Siamese-
S); (2) the bonafide reference utterance can be from any speaker
(denoted Siamese-A). While use of the same-speaker reference
should results in the Siamese-S model better learning speaker
characteristics, the Siamese-A model should better learn how
spoofed utterances differ from bonafide utterances.

The remainder of this paper is organized as follows. Sec-
tion 2 describes previous, related work. The proposed Siamese-
based cross-attention model is described in Section 3. Experi-
ments and results are presented in Sections 4-5. Finally, con-
clusions are presented in Section 6.

2. Related Works

In real-world environments, recording conditions can vary con-
siderably. So too can the techniques used to implement spoof-
ing attacks. Systems that are unable to generalize risk failing in
these settings, potentially leading to security lapses. Addressing
generalisation is crucial for the building of robust and trustwor-
thy voice biometric systems which effectively combat the threat
from increasingly sophisticated spoofing attacks. Although the
ASVspoof 2019 LA dataset facilitates the evaluation of general-
isation to unseen attacks, with an evaluation set generated using
different spoofing algorithms to those used to generate train-
ing and development data, the evaluation of generalisation to
varying recording conditions may require further exploration.
Müller et al. [13] observed a correlation between the character-
istics of non-speech segments and prediction labels. One inter-
pretation of this finding might suggest vulnerabilities to unseen
recording environments. There is hence a risk of overfitting
to the acoustic conditions of data used for model training, in-
stead of more generalisable characteristics which differentiate
bonafide from spoofed speech.

The use of one-class classifiers is also a natural ap-
proach to improve generalisation. These approaches model
only the bonafide class, for which training data is abundant,
with sufficiently dissimilar utterances then being classified as
spoofs. While the performance of one such approach reported
in [14] is competitive, evaluation was performed using only the
ASVspoof 2019 LA dataset, i.e. still an in-domain scenario.
Other results reported in the literature show that the use of
spoofed data for model training is still beneficial and, when
evaluation is restricted to in-domain scenarios, the best two-
class classifiers tend to outperform one-class competitors.

We adopt a relaxed training data policy for the ASVspoof
2019 LA dataset which prioritizes the learning of characteris-
tics which generalize well to unseen scenarios. Our experiments
demonstrate the effectiveness of data augmentation in promot-
ing generalisation. We also investigate the fine-tuning of pre-
trained models, which yields additional benefits. Finally, we
introduce a Siamese-based cross-attention architecture which
achieves, to the best of our knowledge, the best performance
reported in the literature for the in-the-wild dataset.

3. Siamese-based cross-attention model
The Siamese architecture has been shown to be robust in
handling unseen classes in verification systems [11]. Recent
works [9, 15, 16] have adopted this architecture for speaker ver-
ification and spoofing detection, achieving promising results.

Our proposed Siamese model consists of two identical net-
works which share weights and process inputs from both the
test utterance and a bonafide reference utterance. It then learns
to map these inputs to a single output, a measure of their sim-
ilarity (or dissimilarity). This output, indicating the degree of
similarity to the bonafide reference, is used as a prediction of
whether the test utterance is bonafide or spoofed. Figure 1
depicts an overview of the model architecture. Features are
80-dimensional Mel filterbank log-energy coefficients extracted
from both utterances using frames of 400 ms with a 160 ms step
size, and using a 512-tap FFT within the 20-7600 Hz frequency
range. Subsequently, the mean is subtracted along the time axis.

We utilize the well-established ResNet architecture [17]
which is known for its efficiency in image classification and
recently-demonstrated success in speaker recognition [18]. The
ResNet-generator structure in Figure 1 incorporates one convo-
lution layer and four ResNet blocks, adhering to the ResNet34
architecture. The ResNet-generator output is flattened to attain
a feature map H which is subsequently fed to the pair of cross-
attention blocks. The specification of the ResNet34 architecture
is presented in Table 1.

Given the feature maps Henroll and Htest corresponding to
the reference and test utterances respectively, we use cross-
attention to capture inter-dependencies between the two feature
maps, thereby identifying important features within each. At-
tention mechanisms have revolutionized Natural Language Pro-
cessing (NLP) by enabling models to learn global dependencies
between word embeddings in textual sequences. In our case, we
treat feature maps as sequences of frequency bins, with cross-
attention acting to emphasize those which are most informative
for spoofing detection.

We used two cross-attention blocks to emphasize the most
important features in Henroll and Htest. The first block takes
Henroll as Hsource and Htest as Hsupport, as shown in the Figure 2.
The second block takes Htest as Hsource and Henroll as Hsupport.
Each cross-attention block computes three matrices - a query
matrix Q, a key matrix K, and a value matrix V - all the result
of matrix multiplication upon Hsupport and Hsource, as shown in
Figure 2. Once these matrices are computed, attention scores
are calculated. Scores reflect the relative importance of the in-
formation within each frequency bin. The scores are determined
by multiplying the query matrix Q with the transposed key ma-
trix KT , and by scaling by dk (dimensions of the query matrix
Q). A softmax function is then applied to normalize the scores,
ensuring they sum to 1. Finally, the attentive feature map Hattn

is created by multiplying the attention scores with the value ma-
trix V . The cross-attention layer output is computed according
to

Hattn = Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The outputs of the cross-attention blocks Hattn, correspond-
ing to the attentive feature maps of the reference and test utter-
ances, are processed through pooling layers [19] and concate-
nated to obtain a combined embedding according to

h = Concat(Pooling(Hattn enroll), Pooling(Hattn test)) (2)
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Figure 1: The architecture of our proposed Siamese-based cross-attention model. The output of the ResNet-generator, feature maps
H , are fed into cross-attention blocks to calculate the attentive feature maps Hattn. Cross-attention blocks compute attentive feature
maps Hattn for test and reference files, using each own feature map as Hsource, as shown in the Figure 2. The colors in the figure
indicate whether the block is a function or an embedding. Blue ones represent functions, while yellow ones represent feature maps or
embeddings.

The combined embedding h is then fed into an AAM-
softmax loss function [20] with similarity and dissimilarity
classes.

4. Experimental Setup
4.1. Datasets and metrics

For all experiments reported in this paper, we used the
ASVspoof 2019 LA database for training and development.
All evaluation work was conducted using the in-the-wild
dataset [5]. The use of an evaluation dataset different to that
used for training and development helps to explore generalisa-
tion issues related to differences in spoofing attacks and acous-
tic conditions etc. For the fine-tuning of pre-trained models, we
further used the VoxCeleb2 dataset [21], a popular resource for
speaker recognition research. We provide a brief description of
each dataset below.

• The ASVspoof 2019 LA dataset consists of three parti-
tions: training, development, and evaluation. The train-
ing and development sets include bonafide in addition to
spoofed utterances generated using 6 different spoofing
algorithms (labeled A01-A06). The evaluation set also
includes bonafide and spoofed utterances, with the latter
being generated using 13 algorithms (A07-A19).

• The in-the-wild dataset contains approximately 31k au-
dio recordings. Both bonafide and spoofed utterances
are collected from English-speaking celebrities. Spoofed
utterances are collected from 219 publicly available
sources of deepfakes. Corresponding bonafide utter-
ances for each celebrity are scraped from legitimate pod-
casts and recorded speeches available online.

• The Voxceleb2 dataset is by far the most popular for
speaker recognition research, boasting over 1 million ut-
terances collected from 6,112 speakers. Its size facili-
tates the training of powerful models which can discrim-
inate between target and non-target trial pairs in diverse
and even challenging acoustic conditions.

Since we would otherwise have no use for the ASVspoof
2019 LA evaluation partition, and since it has the greatest di-
versity in terms of spoofing attack algorithms, which should
be beneficial to genealisation, we use it for training. The re-
maining training and development partitions from ASVspoof
2019 LA were then pooled and used for validation. Though

Figure 2: The cross-attention block computes the attentive fea-
ture map Hattn based on the feature maps of test and reference
files. The attentive feature map of the test file uses the feature
map of test file as Hsource, the attentive feature map of the refer-
ence file uses the feature map of reference file as Hsource.

147



Layer name Output (C x F x T) ResNet34

Conv2D 32 x 80 x T
[
3× 3, 32

]

ResBlock-1 32 x 80 x T
[
3× 3, 32
3× 3, 32

]
× 3

ResBlock-2 64 x 40 x T/2
[
3× 3, 64
3× 3, 64

]
× 4

ResBlock-3 128 x 20 x T/4
[
3× 3, 128
3× 3, 128

]
× 6

ResBlock-4 256 x 10 x T/8
[
3× 3, 256
3× 3, 256

]
× 3

Flatten (C, F) 2560 x T/8
Pooling 2560 Pooling
Dense 192

AAM-Softmax 2

Table 1: The architecture of ResNet model.

the ASVspoof 2019 LA dataset provides both ASV and CM
protocols, here we are concerned only with spoofing detec-
tion. To align with the ASVspoof 2019 LA CM evaluation
protocol where, for each test utterance there is a correspond-
ing enrollment utterance for the same speaker, we constructed
enrollment-test pairs for the in-the-wild dataset as well. Enroll-
ment utterances (as in the sense of an ASV protocol) are used
everywhere in this paper as bonafide reference utterances, for
spoofing detection only. Details for each dataset are shown in
Table 2. For all experiments, spoof detection performance is
expressed in terms of the equal error rate (EER).

4.2. Data Augmentation

To tackle overfitting to the relatively clean acoustic conditions
of the ASVspoof 2019 LA data, and to encourage generalisa-
tion to those of the in-the-wild database, we employed standard
data augmentation techniques during training. We leveraged
the MUSAN corpus and the real room impulse response (RIR)
database [22, 23] to apply five diverse augmentation methods to
each training utterance:

• Reverberation: utterances are convolved with real RIRs
to simulate reverberation effects associated with propa-
gation in various acoustic spaces.

• Speech: a summation of three to eight different-speaker
utterances are added to each training utterance at signal-
to-noise ratios (SNRs) of 13-20 dB.

• Music: randomly-selected music recordings from MU-
SAN are added to each training utterance at SNRs of 5-
15 dB.

• Noise: randomly-selected noise recordings from MU-
SAN are added to each training utterance at SNRs of
0-15 dB.

• Spectral augmentation: SpecAugment [24] is applied to
input log Mel-spectrograms, randomly masking between

0 and 10 frames in the time domain and between 0 and 8
frequency bin estimates.

4.3. Pre-training and fine-tuning

The fine-tuning of pre-trained models is a well-established tech-
nique to combat overfitting, especially when dealing with lim-
ited training data. In this section, we describe the pre-training
and fine-tuning stages employed to effectively tackle the spoof-
ing detection task.

Pre-training – We trained a ResNet model for speaker recog-
nition using the VoxCeleb2 dataset. The model architecture is
detailed in Table 1. The number of output units matches the
number of speakers in the VoxCeleb2 dataset. Inputs are Mel-
filterbank log-energy coefficients. This representation captures
the spectral characteristics of each utterance. The input is then
processed using a 2D convolution operation, which learns a fea-
ture map incorporating three dimensions: the number of chan-
nels (C); the number of frequency bins (F); the number of time
frames (T). The feature map is subsequently passed through
four consecutive ResNet blocks. These blocks extract progres-
sively higher-level features from the data with skip connections.
Each block includes convolution layers, followed by Batch Nor-
malization and ReLU activation. Finally, a statistics pooling
layer is used to process the learned feature map and to generate
an embedding. This embedding represents the speaker’s unique
characteristics in a condensed form. The embedding is then fed
into dense layers to produce the final output. An AAM-softmax
function is used for the optimization of learnable model param-
eters.

Fine-tuning – We fine-tuned the pre-trained ResNet model
using the ASVspoof 2019 LA evaluation set. Notably, the
Siamese model shares the same architecture of the ResNet-
generator, allowing us to directly load and fine-tune the model
weights.

4.4. Implementation details

While training utterances are randomly segmented into single
4-second clips before being fed to the models, test utterances
are evaluated using the first 4-second clip. The AAM-softmax
loss function is used with hyperparameters loss-scale set to 30
and loss-margin set to 0.2. Our model is implemented using the
PyTorch framework. For optimization, we employ the Adam
optimizer with an initial learning rate of 0.0001 which decays
by 3% per epoch. Fine-tuning is performed with a lower learn-
ing rate of 0.00001 to reduce model over-fitting. Training is
conducted in batches of 32 samples. The model is trained for
80 epochs using 4 RTX 3090 GPUs. Each experiment was run
three times with random seeds. Reported results are averages
computed from the three runs.

5. Results
We report results for three sets of experiments. They are de-
signed to assess the benefit to generalisation of: data aug-
mentation; the fine-tuning of pre-trained models; the proposed
Siamese model.

To examine the impact of data augmentation, we evaluated
three methods: ResNet; AASIST [4]; RawGAT-ST [3]. We
used the authors’ implementations of AASIST and RawGAT-
ST, and adapted them to our protocol and to incorporate data
augmentation. Results for each model with and without data
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Partition Description # Speakers # Bonafide Utts # Spoofing Utts
Train ASVspoof 2019 LA eval 48 5370 63882
Dev ASVspoof 2019 LA train + dev 30 4064 45096
Eval in-the-wild dataset 58 19963 11816

Table 2: Summary of the dataset used in our experiments.

Systems Data Aug EER (%)
ResNet No 37.90

Yes 22.42
AASIST No 46.07

Yes 33.60
RawGAT-ST No 43.03

Yes 29.53

Table 3: Performance of different models in equal error rate
(EER) evaluated on the in-the-wild dataset with and without
data augmentation.

augmentation are presented in Table 3. All methods performed
poorly for the in-the-wild dataset without data augmentation.
This finding corroborates those of Müller et al. [5]. Data aug-
mentation is shown to be beneficial to generalisation, reduc-
ing error rates for the AASIST and RawGAT-ST models by
27% and 31.37% relative. Error rates for the ResNet model are
lowest and, with an EER of 22.42%, the lowest overall when
used with data augmentation. This represents a substantial rela-
tive improvement of 40.84% compared to performance without
data augmentation. This could be because the larger AASIST
and RawGAT-ST models are more prone to overfitting than the
less complex RedNet model. Compared to the best perform-
ing RawGAT-ST model for the in-the-wild dataset as reported
in [5], our ResNet model with data augmentation achieves a rel-
ative gain of 39.65% (22.42% vs. 37.15%).

Next, we assessed the benefit of fine-tuning, using ResNet
and Siamese models. Given the benefit to generalisation, we
trained both models using data augmentation. Results are pre-
sented in Table 4 and show additional improvements to gen-
eralisation. Fine-tuning is used to adapt the pre-trained model
weights (pre-trained for speaker recognition) to the specific task
(spoofing detection) and leads to better representation learning
and generalisation. Relative improvements of 43% and 32.75%
are obtained for the ResNet and Siamese-A models, respec-
tively.

Also shown in Table 4 is a performance comparison for
Siamese and ResNet models with data augmentation. The
Siamese-A model shows better performance than the Siamese-
S model under like-for-like conditions. These results indicate
that the use of same-speaker references is detrimental to per-
formance, with better results being obtained for the Siamese-A
configuration. Without fine-tuning, the Siamese-A model ex-
hibits better performance than the ResNet model, achieving a
relative gain of 17.48%. After fine-tuning, performance for the
Siamese-A model (12.44%) is still slightly better than that of
the ResNet model (12.76%).

6. Conclusions
In this paper we report our investigation of three different
approaches to improve generalisation in spoofing detection,
namely data augmentation, the fine-tuning of pre-trained mod-
els, and a Siamese-based cross-attention model. Our results

Systems Fine-tuning EER (%)
ResNet No 22.42

Yes 12.76
Siamese-S No 20.90

Yes 14.78
Siamese-A No 18.50

Yes 12.44

Table 4: Performance of different models in equal error rate
(EER) evaluated on the in-the-wild dataset with and without
fine-tuning. We conduct two training strategies for our Siamese
models: (1) the bonafide reference utterance belongs to the
same speaker as the training utterance (Siamese-S); (2) the
bonafide reference utterance can be from any speaker (Siamese-
A). Details of fine-tuning can be found in Section 4.3. All sys-
tems were performed with data augmentation.

demonstrate notable improvements stemming from the use of
all three techniques. Our best model, which uses the combina-
tion of all three, achieves what is, to the best of our knowledge,
the lowest error rates reported in the literature for the in-the-wild
dataset. This corresponds to a relative performance improve-
ment of up to 60% in terms of equal error rate compared to the
AASIST and RawGAT-ST models, state-of-the-art competitors
according to results obtained for in-domain evaluation scenar-
ios. Future work should couple the merits of cutting-edge AA-
SIST and RawGAT-ST models for feature extraction with those
of Siamese-based cross-attention models.
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