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Abstract—Efficient resource allocation among slices/users with
different Service Level Agreements (SLAs) is a critical task in 5G+
networks, which has prompted recent research into Deep Neural
Networks (DNNs). However, challenges arise when dealing with
edge resources, including the ability to rapidly scale resources
(in the order of milliseconds), and the cost of transmitting large
data volumes to a cloud for centralized DNN-based processing.
Addressing these issues, we introduce a novel architecture based
on Distributed Deep Neural Networks (DDNN). This architecture
features a compact set of DNN layers located at the network’s edge,
designed to function as an autonomous resource allocation unit.
Complementing this, there is an intelligent offloading mechanism
that delegates a fraction of hard decisions to additional DNN
layers situated in a remote cloud (when needed). To implement
offloading, we propose a theoretically informed method that learns
to mimic an oracle that knows which sample will benefit from
additional processing in the cloud. We compare this to a previously
proposed heuristic, based on a Bayesian-confidence mechanism.
We investigate the interplay of (offline) joint training of the DDNN
exits and the ML-based offloading mechanism, and demonstrate
that our architecture resolves more than 50% of decisions at the
edge with no additional penalty compared to centralized models
as well as consistently outperforms previous methods.

Index Terms—Network Slicing, Resource Allocation, Dis-
tributed Deep Neural Network, Offloading Mechanism, 5G Net-
works

I. INTRODUCTION

The advent of 5G and the evolution towards 5G+/6G net-
works introduces key architectural changes, emphasizing vir-
tualization and resource slicing to support numerous tenants
with diverse Quality of Service (QoS) requirements and Service
Level Agreements (SLAs). This shift facilitates the use of Vir-
tual Network Functions (VNFs) for enhanced network flexibil-
ity and opens up new possibilities for data-driven optimization
in wireless network resource allocation. Moving away from
traditional models, modern Machine Learning (ML) methods,
including deep learning [1], [2], [3], and reinforcement learning
[4], [5], [6], are being explored for tasks like slice resource
allocation and resource orchestration, marking a significant
advancement in the field.

However, within this framework, optimization objectives are
driven by the requirements stipulated in SLAs and frequently
exhibit an asymmetric nature. The discrepancy between the
costs of under-provisioning, which may lead to SLA violations,
and over-provisioning costs, representing resource wastage, ne-
cessitates a tailored approach in training Deep Neural Networks

(DNNs). Additionally, implementing a centralized, heavy-duty
DNN for network optimization faces several hurdles. These in-
clude stringent latency requirements, especially for tasks within
the Radio Access Network (RAN) where low latency is crucial.
This contrasts with higher latency-tolerant application layer
tasks that can be offloaded to central clouds. Another challenge
is the data transmission overhead; transmitting raw data over
potentially congested edge and wireless links to a deep-core
network-based DNN architecture can pose a significant obstacle
to practical implementation.

Therefore, our focus shifts towards Distributed Deep Neural
Networks (DDNN), which aim to overcome these challenges
while retaining DNN efficiency as discussed in [7], [8], [9].
DDNNs distribute DNN layers across various locations, allow-
ing for local predictions at the edge when stringent latency
requirements or network congestion dictate, or remote (cloud)
predictions when heightened accuracy is essential, which neces-
sitates joint training of both local and remote layers. Building
upon this research, we recently explored in [10] a distributed
adaptation of the architecture presented in [11] and [12],
incorporating a 3D Convolutional Neural Network (3D-CNN)
for slice resource allocation. The primary objective of this paper
is to introduce, train, and analyze a distributed architecture
designed to address a data-driven edge resource allocation prob-
lem, which demonstrates the generality of this methodology by
utilizing a more sophisticated DNN architecture for the same
task based on LSTM (Long Short Term Memory) units. Our
main contributions are outlined as follows:

• (Architecture) We propose and train a distributed LSTM
architecture that includes a small number of LSTM units
at the network edge, featuring a “local exit” for rapid
inferences. Additionally, it encompasses a larger number
of units and a “remote exit” located in the central cloud.
We selected LSTM for its proven effectiveness in handling
time series data and also to generalize our initial findings.

• (Offline Optimization) We demonstrate the importance of
fine-tuning the joint training hyperparameters for local
and remote exits, aiming to strike a balance between
empowering the local layers to make a sufficient number
of accurate allocation decisions as well as generating
valuable features that can be effectively utilized by the
remote layers, particularly when there is a requirement



for enhanced decisions.
• (Online Optimization) We propose an ML-based offload-

ing mechanism that learns to “hand-pick” the few samples
that could benefit from additional processing in the cloud,
enough to amortize the additional communication and
latency costs this implies. This decision is made blindly
at the edge, before actually sending anything to the cloud.
Our mechanism is trained using past data samples, trying
to mimic an oracle for this task. We implement and
compare our method to a previously proposed heuristic
based on dropouts, and show that the proposed mechanism
consistently outperforms the heuristic, better matching the
oracle performance.

The remainder of this paper is organized as follows: Section
II discusses the problem setup, and Section III elaborates our
LSTM-based DDNN architecture. Section IV explores both
the offline joint training and the online offloading. Section
V validates the architecture with real traffic data. Section VI
presents future work and the conclusion.

II. DATA-DRIVEN RESOURCE ALLOCATION

Slice Resource Allocation with DNN: We assume a network
infrastructure scenario where a provider hosts multiple network
slices, each comprising various Virtual Network Functions
(VNFs). We conceptualize each VNF as a discrete-time sig-
nal or time series, with values reflecting the computational
resources (such as CPU and memory) required by these VNFs.
We denote the set of VNFs as K = {1, ...,K} and represent
the resource demand of VNF k at time t as dkt . We maintain
a record of the previous N traffic samples for all VNFs. Our
objective is to leverage this archive of past demands to effi-
ciently allocate resources for all K VNFs using a DNN-based
architecture. We formulate the DNN-based resource allocation
problem as follows:

ŷkt = F(dk
t,N ;θ), (1)

where dk
t,N is the DNN input. dk

t,N = {dkt−N , ..., dkt−1} in-
cludes the N traffic samples of VNF k ∈ K before the time t. N
is the input vector size and is fixed during the model training.
F(·;θ) represents the DNN as an approximation function, with
θ being the vector of model parameters (i.e., weights of the
DNN). ŷkt , the DNN’s forecast for network element k at time
t, aims to balance the costs of under- and over-provisioning
against the expected (unknown) demand dkt at that time.

Objective Function for Slice Resource Allocation: In the
realm of standard traffic forecasting, the objective is to predict
traffic at a given time t based on a series of past N traffic
samples, with the aim for the predicted value ŷt to closely
approximate the actual traffic dt. This is traditionally achieved
through training a DNN with a least squares objective function.

f(ŷt, dt) = (ŷt − dt)
2. (2)

A distinction of our work from conventional models lies
in the asymmetric nature of the costs of underestimating
and overestimating the demand (unlike in Eq. (2)). Under-
provisioning (when the predicted traffic ŷt is less than the actual
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Fig. 1: LSTM network is distributed over Edge and Cloud.

demand dt) can lead to insufficient resource allocation for a
network slice, potentially violating the tenants’ SLAs. Over-
provisioning (when the predicted traffic ŷt is more than the
actual demand dt) results in an excess allocation of resources,
leading to inefficiencies and resource wastage. To address this,
a DNN is tailored to optimize objectives that vary based on the
cost implications of SLA violations (under-provisioning) and
resource wastage (over-provisioning). Without loss of general-
ity, we will adopt the following objective function:

f(ŷt, dt) =

{
c1 · (ŷt − dt)

2 if (ŷt − dt) ≤ 0

c2 · (ŷt − dt) if (ŷt − dt) > 0,
(3)

where higher penalties are applied for SLA violations through
quadratic terms and the “opportunity cost” of wasted resources
is linear (e.g., the money that another tenant would be willing
to pay per unit)1.

III. PROPOSED DISTRIBUTED DEEP NEURAL NETWORK

To address the challenges and drawbacks of centralized
DNNs, we adopt a distributed DNN. We assume that edge com-
puting capabilities can accommodate a portion of the DNN’s
computational workload, although not its entirety, enabling it
to make an immediate and valid resource allocation decision
via its early exit feature. Consequently, this necessitates the
partitioning of the DNN across two geographically distant
locations: the edge and the remote cloud.

We assume a 5G network in which a set of VNFs requires
some resources (e.g., CPU, Memory, and Bandwidth). Each
VNF at time t demands an amount of resources, dk

t , to fulfill its
corresponding user’s SLAs. We have the past N demand values
dk
t,N . Traffic demand samples are random and possibly non-

stationary. The vector dk
t,N is given to the DDNN to determine

the allocated resources for each VNF at time t, ŷkt . We can
describe the DDNN with the following equation:

(ŷkL,t, ŷ
k
R,t) = F(dk

t,N ;θDDNN), (4)

where the F(·;θDDNN) is the approximation function that mod-
els the DDNN, and θDDNN represents the model parameters.
Observe that, compared to the standard DNN of Eq. (1), the
DDNN function has two outputs: ŷkL,t and ŷkR,t, which are the
outputs of the local exit and the remote exit, respectively.

Our DDNN architecture is based on LSTM components
that can naturally capture long-term dependencies between

1Note that our architecture is adaptable to various non-symmetric objective
functions, similar to those in [11], [12].



samples. The detailed architecture can be found in Fig. 1. This
architecture includes a very small initial DNN module located
at the edge, responsible for making a local allocation decision:

ŷkL,t = FL(dk
t,N ;θL), (5)

where FL(·;θL) represents the local DNN, with its parameters
θL. For some samples, this local decision might not be deemed
appropriate (i.e., have a relatively high cost). In such cases, the
output of the local LSTM (e.g., zkt as shown in Fig. 1) is sent
to a much larger DNN module, assumed to be located remotely
from the decision-required site (e.g., BS). This remote module
provides its own allocation decision as follows:

ŷkR,t = FR(zkt ;θR), (6)

where zkt is the output of the LSTM block in the local com-
ponent that is given as the input to the remote part. FR(·;θR)
represents the remote DNN, with θR as its parameters.

Local Exit: In a DDNN, the local exit is part of the initial
layers of the neural network situated at the network edge.
Without loss of generality, the local component of our DDNN
includes a single LSTM block with just one hidden unit. The
output from this block, zkt , is routed to both the local Fully
Connected (FC) block and the remote layers (see Fig. 1). The
output of the local FC is termed the local prediction or local
exit inference, i.e., ŷkL,t.

Remote Exit: In a DDNN, the remote exit is part of
the network architecture that is located in a central cloud.
Without loss of generality, the remote component of our DDNN
comprises two LSTM blocks with 256 and 128 hidden units.
Following these, there are four Fully Connected (FC) blocks.
The first three FC blocks are configured with 128, 64, and 32
hidden neurons, all utilizing the Rectified Linear Unit (ReLU)
activation function. The final FC block is linear. The output of
the remote linear FC block, termed the remote prediction or the
remote exit inference, i.e., ŷkR,t (see Fig. 1).

IV. DDNN TRAINING AND INFERENCE

A. Offline DDNN Joint Training

Training a DDNN is more complex than a centralized DNN,
as it involves the concurrent training of both local DNN and
remote DNN modules with a unified objective. This joint
training process requires carefully balancing the contributions
of both local and remote exits in the objective function and
enabling the backpropagation of loss through the respective
layers of each DNN module. The DDNN loss is calculated
as:

DDNN Loss =
K∑

k=1

wL · f(FL(dk
t,N ;θL), d

k
t )

+wR · f(FR(zkt ;θR), d
k
t )

=

K∑
k=1

wL · f(ŷkL,t, d
k
t ) + wR · f(ŷkR,t, d

k
t ).

(7)

Joint training of local exits alongside standard remote/final
exits was initially introduced in [13], [14] (GoogleNet), and
[15] (BranchyNet), primarily as a regularization technique, not
intended for use during inference. In contrast, our architecture
integrates the local exit as a key component in the inference
process. Unlike those works, our joint training approach is
designed to achieve a specific performance trade-off between:

• Backpropagating the performance of the local exit to its
layers (i.e., θL) to ensure the reliability of local decisions
ŷkL,t, even though they are made by a smaller/simpler DNN
module.

• Backpropagating the remote exit’s performance to both
remote (i.e., θR) and local layers (i.e., θL), enhancing
the remote layers inferences (ŷkR,t), and ensuring the local
layers produce valuable intermediate features (i.e., zkt ) for
further remote processing.

In Eq. (7), the “local weight” (wL) and “remote weight” (wR)
are critical in determining the influence of the local and remote
exits on the overall loss during the DDNN’s joint training.
These weights, constrained within [0, 1] where wR = 1−wL,
are pivotal in the optimization process. Setting wL = 0 (and
hence wR = 1) makes the DDNN function similarly to a cen-
tralized DNN, focusing on optimizing remote exit performance.
Conversely, setting wL = 1 (and wR = 0) shifts the focus to
optimizing local exit performance. The selection of optimal wL

and wR values is crucial for achieving desired outcomes, such
as reliable local predictions, effective local resource allocation,
and accurate remote predictions.

Our approach differs from that in [16] (distributed learn-
ing), as we concentrate on distributing the actual architecture
between the edge and the core/cloud, rather than focusing on
distributed training, although it remains a feasible option.

B. DDNN Online Inference

After training the local and remote DNN modules for effec-
tive collaboration, a critical decision remains during the forward
pass at the local exit. Whether the allocation decision made at
this stage is sufficient or if the process should extend to the
remote DNN layers for further refinement2.

This decision-making process, in principle, is an unsuper-
vised learning task. It involves choosing between relying on the
local decision or escalating to the remote layers for additional
processing, without prior knowledge of the potential benefits or
extent of this extra processing.

Oracle-based Offloading: Initially, we assume an “oracle”
with the knowledge of the potential added value of remote
processing for each sample, which we will utilize as a reference
in our analysis. We can calculate the loss difference:

L =

K∑
k=1

(f(ŷkL,t, d
k
t )− f(ŷkR,t, d

k
t )) = CL − CR, (8)

2Note that we are not predicting the traffic load, we are predicting the
allocation of resources that will minimize the total cost, ideally balancing under-
provision costs and SLA penalties with over-provision costs due to wasted
resources.
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Fig. 2: DDNN Inference Scheme (Online Optimization): In both configurations,
only the remote block is located in the cloud, while all other blocks are
deployed at the edge.

we then compare the loss difference, L, to the round trip
transmission cost (from edge to cloud and back), CT , which
is known because of oracle assumption. We offload the sam-
ples for which L < CT , indicating that the overall cost of
local resolution is lower than that of remote resolution, and
conversely, L > CT suggests that decisions made remotely
are more beneficial. Hence, if such an oracle existed, it would
enable us to consistently make correct decisions about whether
a sample should be offloaded locally or should be forwarded
to the remote layers.

Bayesian Confidence-based Offloading: In practice, we
lack such an oracle, meaning the remote decision ŷkR,t and
its associated costs (remote cost and transmission cost) remain
unknown at the edge. This information is ascertained only by
transmitting the sample to the remote cloud. To this end, the
authors in [10] propose a Bayesian confidence metric based
on random dropouts, applied to the local forward pass (this is
different from the dropout regularizer block). The confidence
block, consisting of a dropout block with dropout probability
p = 0.4 and a linear FC block, processes the intermediate
signal zkt to perform inferences on each input sample ten
(J = 10) times. The inferences of the confidence block vary
each time due to the random nature of dropout. For each VNF
k ∈ K, the standard deviation (σk) is calculated, and the
average of these values across all K VNFs is defined as the
Uncertainty (U = 1

K

∑K
k=1 σk). The confidence mechanism

assesses the measured uncertainty (U ) against a predefined
confidence threshold (η). If U < η, the local decision is deemed
confident (green path in Fig. 2(a)). If not, the intermediate
signal zkt is forwarded to remote layers, where it is presumed
to make accurate decisions (red path in Fig. 2(a))3.

ML-based offloading: We propose an offloading mechanism
leveraging the power of neural networks. We train a “binary
classifier” that decides whether the samples should be resolved
locally or remotely, subsequent to the DDNN training.4. During
the (offline) DDNN training all samples go through both the
local and remote layers, therefore after the training, for the
training set samples, the local cost CL =

∑K
k=1 f(ŷ

k
L,t, d

k
t ),

3It is important to note that in allocating resources for multiple correlated
elements, the decision is binary: either all K decisions are made locally or
all are made remotely. In future work, we plan to investigate more complex
hierarchies of layers, with potentially partial views.

4This binary classifier is trained subsequent to the DDNN, to ensure the
stability of the entire data path, considering the DDNN’s training sensitivity to
the choice of local/remote exit weights, as we shall see.

the remote cost CR =
∑K

k=1 f(ŷ
k
R,t, d

k
t ), and the transmission

cost CT are known.
The classifier uses the training samples and categorizes

samples into two classes: class 0: CT < CL −CR, the remote
cost is small enough to amortize the cost CT , therefore it is
better to resolve the sample in the remote cloud. Class 1:
CT ≥ CL − CR, indicates the remote cost is very high and
it is beneficial to resolve the sample locally. Without loss of
generality, we choose a neural network with three FC layers for
the binary classifier. Its output, denoted by p, is a probability
indicating the likelihood of offloading a sample either locally
or remotely (this employs a supervised learning method).

As shown in Fig. 2(b), during inference (online mode) the
input signal (dk

t,N ) is given to the local DNN and also to
the ML-based offloading block. The offloading mechanism
computes the p and makes the decision for offloading. If the
decision is to avoid the edge-cloud round trip, the intermediate
signal zkt will be forwarded to the local FC and the resources are
allocated based on ŷkL,t (green path in Fig. 2(b)). Conversely,
if the classifier deems that the sample necessitates additional
processing layers, the intermediate signal zkt will be forwarded
to the remote DNN and the remote inference ŷkR,t is the
allocation decision (red path in Fig. 2(b)).

Although this approach requires an offline training step and
some additional hardware to implement the classifier, unlike
the Bayesian Confidence-based Offloading, it does not require
J costly forward passes of the local FC. Therefore, at inference
time, it is faster and adds minimal latency.

The online use of the offloading block at the edge raises
a critical question: does the latency saved by bypassing the
central cloud outweigh the additional latency introduced by
this block? In a centralized system, decision-making time is
the sum of the round-trip transmission time (RTT) to the cloud
and the processing time for all samples through the full model.
In contrast, the DDNN’s total time includes processing time for
the offloading mechanism, processing time for locally resolved
samples, RTT to the cloud for remotely resolved samples, and
processing time for remotely resolved samples. We delve into
this latency trade-off in the next section.

V. PERFORMANCE EVALUATION

A. Preliminaries

Data Preparation: To train and test the architecture, we
utilize the publicly available Milano dataset [17], frequently
used in related studies [10], [18]. LSTMs yield good results
with short time series, typically between 100 and 300 samples
in a sequence. We use the past 144 samples (the daily measured
samples) to predict the next sample for 16 base stations
together, i.e., we set N to 144 and K to 16. Therefore, the input
of the DDNN is an array with dimensions (Number of samples,
16, 144), and the output is an array with dimensions (Number
of samples, 16, 1). We set the quadratic coefficient c1 = 50
and linear coefficient c2 = 1 in Eq. (3) (It is important to set
the quadratic coefficient high because all traffic demand time
series are normalized to [0,1]). We use Python and PyTorch to
implement our models. We run the models on Google Colab



server using an Nvidia V100 GPU, 16 GB HBM2, and 32 GB
RAM.

Performance Metrics: Our two metrics are the percentage
of samples resolved locally and the overall cost of the DDNN:

CDDNN =

M∑
m=1

Im · Cm
L + (1− Im) · Cm

R , (9)

where, for sample m, Cm
L and Cm

R are the local and remote
exit costs, respectively, and Im indicates whether the sample
exited locally or not.

Im =

{
1 if the sample m exited locally
0 else.

(10)

We implement and compare the following models:
DeepCog: A fully centralized DNN based on 3D-CNN that

was proposed in [11] for a similar resource allocation task.
It also uses a pre-processing methodology and arranges the
time series data into an appropriate “image”-like frames for
input. We implement both as well. The model is entirely
cloud-based; it lacks edge prediction capabilities, resulting in
a local resolution percentage of zero. For quick reference, the
architectures are summarized in Table I.

Centralized LSTM: A fully centralized version of our
LSTM architecture without local exits, indicating that all data
samples are processed and resolved within the cloud. Notably,
this model does not incorporate joint training. Being exclusively
cloud-based, it cannot make edge predictions, and consequently,
the local resolution percentage is zero. It is important to note
that this model is distinct from resolving all samples remotely
in a DDNN, due to differences in their architecture and training
methodologies.

Oracle-based DDNN: A DDNN with the offline optimal
offloading policy that operates under the premise of having
complete knowledge of both exits. This model, referred to as the
“Oracle”, is idealistic as it assumes perfect information, which
is unrealistic in real-world scenarios. The offloading decision
within this model hinges on comparing the transmission cost
(CT ) with the differential cost between local (CL) and remote
(CR) exits. As CT increases, the model tends to favor local
resolutions.

Random-based DDNN: A DDNN with random offloading
policy where the offloading decision for each sample is modeled
as an independent and identically distributed (i.i.d.) Bernoulli
random variable with a success probability p. Consequently,
with a constant p, the proportion of samples processed locally
is effectively L = p. Our simulations explore the implications
of this Random policy across a range of p values within [0, 1],
delineating a spectrum of costs.

Confidence-based DDNN: A DDNN with the confidence-
based offloading policy, which was explained in the previous
section. The offloading policy is based on uncertainty. The
uncertainty value U is compared to a confidence threshold (η).
By increasing η, more samples are resolved locally.

ML-based DDNN: A DDNN with the ML-based offloading
policy that was explained in the previous section. The offload-
ing mechanism operates based on the output of the binary

TABLE I: Models for Performance Comparison

Model Joint Training Edge Offloading Cloud Offloading Realizability
Centralized LSTM × × ✓ ✓

Centralized DeepCog × × ✓ ✓
Oracle-based DDNN ✓ ✓ ✓ ×

Random-based DDNN ✓ ✓ ✓ ✓
Confidence-based DDNN ✓ ✓ ✓ ✓

ML-based DDNN ✓ ✓ ✓ ✓

classifier. When CT is modified, the classifier’s behavior alters,
consequently influencing the output decisions. By increasing
CT , more samples are resolved locally.

B. Experiments

Experiment 1 (Resource Allocation Trade-off): After train-
ing the model, we plot trade-off curves to illustrate total loss
versus local sample resolution percentage. The model processes
the test set, yielding output samples that are handled either
locally or remotely based on the offloading mechanism, and
calculates the total loss using Eq. (9). We obtain the offline
oracle-based trade-off curve by using Oracle-based Offloading,
where changing the transmission cost (CT ) alters local sample
resolution rate. This curve is the lower bound baseline. The
trade-off curve based on a random policy is derived by ad-
justing the probability parameter p from 0 to 1, as previously
discussed. This approach establishes an upper bound baseline
for performance evaluation. Any offloading policy that results in
costs exceeding this curve is deemed ineffective5. By applying
Bayesian Confidence-based Offloading and adjusting η (the
confidence threshold) within the range of [0, 1], we generate
the online confidence-based trade-off curve. The online ML-
based trade-off curve is generated by employing the ML-
based Offloading, where increasing the transmission cost (CT )
modifies the curve.

Figs. 3(a) and 3(b) show trade-off curves for models with
training weights (wL, wR) set to (0.9, 0.1) and (0.8, 0.2) re-
spectively. Notably, at the operational point where no samples
are predicted locally on the x-axis, the LSTM architecture
consistently outperforms the 3D-CNN-based model. More im-
portantly, simply introducing a local exit during training im-
proves the baseline performance by 20-50%, even though in
this scenario all samples are also resolved remotely6.

Key observation 1: The positive impact of incorporating
local exits, even in a fully centralized DNN, as observed
in past work for different DNN architectures and objectives,
is also clearly evident for the problem at hand, despite its
aforementioned differences detailed in the previous sections.

The comparison between the Oracle and Random offload-
ing policies in both cases leads to a crucial insight: certain

5While it’s theoretically possible to devise a less efficient offloading policy,
such as consistently selecting the more costly exit, this would not yield a
meaningful or practical benchmark for comparison.

6Our distributed model’s superior performance compared to a centralized
LSTM, achieved with lower overhead, is due to the local exit’s influence
on gradient flow. This effect, noted in other studies [7], [15], [19], shows
that the local exit enhances operational efficiency and adds a regularization
effect, which results in improved performance with reduced overhead, creating
a beneficial “win-win” situation.



(a) (wL, wR) = (0.9, 0.1) (b) (wL, wR) = (0.8, 0.2) (c) (wL, wR) = (0.1, 0.9)

Fig. 3: Trade-off curves (Total loss vs Percentage of samples predicted locally) for three weight pairs

offline offloading strategies can surpass the performance of the
Random policy. This observation underscores the potential for
developing online offloading policies that closely approximate
the efficacy of the Oracle, suggesting room for significant
advancements in this area. Conversely, if the performance of
the Random and Oracle policies were identical, it would imply
a lack of opportunity for any online offloading policy to offer
improvements.

Moreover, in both Figs. 3(a) and 3(b), we observe that both
offloading mechanisms (confidence-based and ML-based) are
able to achieve close-to-optimal performance when up to 40%
of samples are resolved locally. However, in more challenging
scenarios where a greater proportion of samples are processed
locally, a deviation from the optimal bound is observed in
both methods. Notably, the theoretically-motivated ML-based
scheme consistently outperforms the heuristic confidence-based
scheme across all scenarios and operating points.

Key observation 2: The capability for online decision-
making in determining which and how many samples to process
locally offers very important performance trade-offs (e.g., re-
solving 40% of decisions locally “for free”, without any impact
on the total provisioning cost).

Key observation 3: The ML-based offloading mechanism
consistently outperforms heuristics in all scenarios, as expected,
since it stems as a solution of the optimization problem that the
oracle knows beforehand.

In Fig. 3(c), where the training weights are set to (wL, wR) =
(0.1, 0.9), indicating very low strength on local layers (unlike
in Figs. 3(a) and 3(b), where higher weights are given to local
layers), the significant impact of weight selection on overall
DDNN performance is evident. While pinpointing the optimal
weight pair (in this case the pair (0.9, 0.1)) cannot be pre-
determined, our analysis across various scenarios consistently
demonstrates the necessity of assigning higher weights to the
local exit for optimal functioning.

Key observation 4: The selection of training weights
(wL, wR) plays a pivotal role in the performance of the model.

Experiment 2 (SLA Violations Avoidance): Fig. 4 demon-
strates the actual demand (d), local allocations (ŷL), and remote
allocations (ŷR) for one of the base stations in the dataset under

(a) (wL, wR) = (0.9, 0.1) (b) (wL, wR) = (0.1, 0.9)

Fig. 4: Traffic demand predictions for a base station using two weight pairs:
Data forwarded without offloading mechanism

two distinct training weight sets: (wL, wR) = (0.9, 0.1) and
(wL, wR) = (0.1, 0.9). To facilitate the generation of both local
and remote predictions for all samples, the offloading block is
deactivated. As observed in Fig. 4(a), the local exit performs ef-
fectively under the weight pair (wL, wR) = (0.9, 0.1), enabling
a significant number of allocations to be processed locally.
Conversely, Fig. 4(b) reveals decreased efficiency in the local
exit under the weight pair (wL, wR) = (0.1, 0.9), resulting in
higher costs for local allocations, which aligns with the trade-
off curve presented in Fig. 3(c).

Key Observation 5: It is critical to prioritize the local
weight over the remote weight (wL > wR) to compensate for
the simplicity/shallowness of the local module, enabling it to
outperform the centralized DNN.

Key Observation 6: The models prioritize preventing SLA
violations over matching demand (as an MSE objective would),
aligning with the objective function’s emphasis on the higher
cost of under-provisioning.

Experiment 3 (Latency Reduction): As explained in Sec-
tion IV-B, we assess whether our model reduces or increases
latency by analyzing both “communication” and “computation”
times. For communication time, we refer to a recent systems-
oriented study [20], which estimates the average round-trip
transmission time (RTT) from edge to cloud at 42.46 ms per
sample. Computation time is evaluated by running each model
multiple times on the same server and calculating the average



TABLE II: Latency Comparison (milliseconds per sample)

L (%) 5 20 40 50 60 80 95 Centralized LSTM DeepCog
T (ms) 40.40 34.05 25.43 21.09 16.78 8.20 1.75 42.67 42.63

processing time per sample across various models7.
Table II presents our findings, where “L” denotes the percent-

age of samples processed locally and “T” signifies the average
time taken to resolve a single sample under each scenario. For
instance, with 40% local resolution, “T” equates to the sum of
{the average offloading block processing time per sample, 40%
of the average local inference time per sample, 60% of the RTT,
and 60% of average remote inference time per sample}. The
data clearly indicate that an increase in local sample resolution
leads to a decrease in inference latency. Notably, when 50%
of samples are handled locally by the DDNN, it matches the
cost of centralized baselines while achieving a 49% reduction
in inference latency.

Key Observation 7: The inference latency diminishes as an
increasing number of samples are processed locally.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we have developed and implemented a Dis-
tributed Deep Neural Network (DDNN) specifically tailored for
forecasting future traffic demand in order to manage resource
allocation in 5G networks. The proposed DDNN is character-
ized by its multiple exits architecture, encompassing a local exit
(e.g., at the Edge) and a remote exit (e.g., in the Cloud). To
ensure the DDNN fulfills its intended objectives, it undergoes
a process of joint training, during which distinct weights
are allocated to both the local and remote exits. We have
demonstrated that a DDNN based on LSTMs is able to resolve
a large amount of resource allocation decisions locally, with
a lightweight component, greatly improving overall latency
and communication footprint, compared to fully centralized
architectures. We also demonstrated that properly designing the
offloading mechanism that determines which samples to send to
the cloud can outperform existing methods, getting closer to the
theoretically optimal performance of an oracle. In the future,
we plan to investigate hierarchical DDNN architectures with
distributed multiple local components/exits that are responsible
only for subsets of the decisions, while the cloud layers now
also aggregate information from various local components.
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