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Abstract—In this paper, we prove the convergence of the
simplified information geometry approach (SIGA), which was
proposed for massive MIMO-OFDM channel estimation. For
a general Bayesian inference problem, we first show that the
iteration of the common second-order natural parameter (SONP)
is separated from that of the common first-order natural param-
eter (FONP). Hence, the convergence of the common SONP can
be checked independently. We show that with the initialization
satisfying a specific but large range, the common SONP is
convergent regardless of the value of the damping factor. For
the common FONP, we establish a sufficient condition of its
convergence and prove that the convergence of the common
FONP relies on the spectral radius of a particular matrix related
to the damping factor. We give the range of the damping factor
that guarantees the convergence in the worst case. Further, we
determine the range of the damping factor for massive MIMO-
OFDM channel estimation by using the specific properties of
the measurement matrices. Simulation results are provided to
confirm the theoretical results.

Index Terms—Convergence, Bayesian inference, information
geometry, damping factor.

I. INTRODUCTION

Numerous problems in signal processing eventually come to
the issue of computing marginal probability density functions
(PDF) from a high dimensional joint PDF. In general, the
computation of direct marginalization could be unaffordable
since complicated integration calculations are involved. In the
past decades, many works have been devoted to providing an
efficient way to compute the (approximate) marginal PDFs
under various cases. [1] proposes the Gaussian belief propa-
gation (BP) and shows that Gaussian BP is able to compute
true marginal mean. In [2], the powerful approximate message
passing (AMP) algorithm is proposed. It has been shown that
AMP with Bayes-optimal denoiser can be treated as an exact
approximation of loopy BP in the large system limit. When the

This work was supported by the National Key R&D Program of China
under Grant 2018YFB1801103, the Jiangsu Province Basic Research Project
under Grant BK20192002, the Fundamental Research Funds for the Central
Universities under Grant 2242022k60007, the Key R&D Plan of Jiangsu
Province under Grant BE2022067, and the Huawei Cooperation Project.

underlying factor graph is a tree, the expectation propagation
(EP) in [3] is convergent and can exactly achieve the Bayes-
optimal performance.

Recently, we have introduced the information geometry
approach (IGA) to the massive multiple-input multiple-output
(MIMO) channel estimation [4]. We also improve the stability
of IGA by introducing the damping factor and show that IGA
can obtain accurate a posteriori mean at its fixed point. On
the basis of IGA, two new results of IGA are revealed when
the constant magnitude pilots are adopted. Based on these
new results, we propose a simplified IGA (SIGA) in [5], [6].
Although proposed for the massive MIMO-OFDM channel
estimation, SIGA itself could serve as a generic Bayesian
inference method which is suitable for Gaussian priors and
constant magnitude measurement matrix. It has been shown
that at the fixed point, the a posteriori mean obtained by
SIGA is asymptotically optimal. Furthermore, SIGA can be
implemented efficiently when the measurement matrix has
special structure. For example, in massive MIMO channel
estimation, the measurement matrix can be constructed by
partial DFT matrices, SIGA can be then implemented by
fast Fourier transform (FFT), which significantly reduces its
computational complexity.

On the other hand, one standard limitation of Bayesian
inference approaches is that they work well only when the
iteration converges. However, for a variety of problems, a
unified way of proving the convergence of Bayesian inference
approaches has not yet been found. Thus, the convergence
needs to be proved for individual approaches as well as
individual problems. So far, there are only a few methods
whose convergence has been relatively well revealed. One
sufficient convergence condition named the walk-summability
is proposed in [1] for Gaussian BP. Then, several extended
conditions are proposed by the authors in [7], [8]. In [9], the
convergence of orthogonal/vector AMP is proved based on the
idea of "convergence in principle". In [10], the convergence of
generalized AMP is proved in the special case with Gaussian
priors. Similar to most other Bayesian inference approaches,



SIGA suffers from divergence. However, by adding damping
factor, its convergence can be significantly improved. This is
an interesting observation, since in many iterative Bayesian
inference approaches, such as, e.g., AMP, damped updating
likewise plays an important role in convergence.

In this paper, we give a theoretical analysis of the con-
vergence of SIGA. The role of the damping factor in the
iteration will also be clarified. We first prove the convergence
of the common second-order natural parameter (SONP) in
SIGA for a general Bayesian inference problem with the
measurement matrix of constant magnitude property. It is then
proved that given the initialization satisfying a specific and
large range, the common SONP is guaranteed to converge
regardless of the value of damping factor. Then, we show that
the iteration of the common SONP is separated from that of the
common first-order natural parameter (FONP) and establish
a sufficient condition of the convergence of the common
FONP in SIGA where it depends on the spectral radius of the
iterating system matrix. On this basis, we give the range of the
damping factor that guarantees the convergence of the common
FONP in the worst case. We then apply the above general
convergence results to the case of massive MIMO-OFDM
channel estimation and determine a range of the damping
factor that guarantees the convergence of the common FONP
in SIGA from the properties of the measurement matrices.

II. CONVERGENCE OF SIGA
In this section, we first introduce SIGA proposed in [5],

more details can be found therein. Then, through re-expressing
its iterations, we prove its convergence.

A. Review of SIGA

Considering the following Bayesian inference problem:

y = Ah + z, (1)

where y ∈ CN is the observed vector, A ∈ CN×M is a deter-
ministic measurement matrix, and entries of A have constant
magnitude, h ∼ CN (0,D) is the M -dimensional complex
Gaussian random vector to be estimated, its covariance matrix
D is deterministic, known, positive definite and diagonal,
z ∼ CN

(
0, σ2

zI
)

is the N -dimensional noise vector where
σ2
z is known, and h and z are independent with each other.

Without loss of generality, assuming that the components of
A have unit magnitude. From (1), the posteriori PDF p (h|y)
is Gaussian with a given y and thus its a posteriori mean µ̃
and covariance matrix Σ̃ are given by [11]

µ̃ = D
(
AHAD + σ2

zI
)−1

AHy, (2a)

Σ̃ =

(
D−1 +

1

σ2
z

AHA

)−1
. (2b)

where the computational complexity of (2) is
O
(
M3 +M2N

)
and it is unaffordable when M and

N are large.
The aim of SIGA is calculating the approximations of the

marginals of the a posteriori distribution, i.e., the approxi-
mations of pi (hi|y) , i ∈ Z+

M , with a lower computational

complexity than (2). Then, the a posteriori mean and variance
can be obtained. We begin with some essential definitions
in SIGA. Given a,b ∈ CM , define a vector function as
f (a,b) ,

[
aT ,bT

]T ∈ C2M , the operator ◦ as a ◦ b ,
1
2

(
bHa + aHb

)
and a < b means that each component in

vector a is smaller than the component in the corresponding
position in vector b. Let d = f

(
0,diag

{
−D−1

})
∈ C2M

and t = f (h,h� h∗) ∈ C2M where diag
{
−D−1

}
denotes

a vector consisting of the diagonal elements of −D−1. Then,
p (h|y) can be expressed as [4], [5]

p (h|y) = exp

{
d ◦ t +

N∑
n=1

cn (h)− ψq

}
, (3a)

cn (h)=
1

σ2
z

(
−hHγnγ

H
n h + ynhHγn + y∗nγ

H
n h
)
, (3b)

where γn is the n-th column of AH , yn is the n-th element of
y, and ψq is the normalization factor. In (3a), t only contains
the statistics of single random variables, i.e., hi and |hi|2 , i ∈
Z+
M , and all the interactions (cross terms), hih∗j , i 6= j, are

contained in cn (h) , n ∈ Z+
N . SIGA is to approximate each

cn (h) as ξn ◦ t in an iterative manner, where ξn ∈ CM is
referred as to the approximation item. In this way, we have

p (h|y) ≈ p0 (h;ϑ0) = exp {(d + ϑ0) ◦ t− ψ0} , (4)

where ϑ0 =
∑N
n=1 ξn ∈ C2M and ψ0 is the normalization

factor. The marginals of p0 (h;ϑ0) can be calculated directly
since it contains no cross terms between random variables. To
obtain ξn, n ∈ Z+

N , and ϑ0, SIGA constructs the following
two types of manifolds: the objective manifold (OBM) and the
auxiliary manifold (AM). The OBM containing any potential
p0 (h;ϑ0) is defined as

M0 = {p0 (h;ϑ0) = exp {(d + ϑ0) ◦ t− ψ0 (ϑ0)}} , (5)

where ϑ0 = f (θ0,ν0), θ0 ∈ CM and ν0 ∈ RM are referred to
the first-order natural parameter (FONP) and the second-order
natural parameter (SONP) of p0, respectively, and ψ0 (ϑ0) is
the normalization factor. To obtain all approximation items
ξn ∈ C2M , N auxiliary manifolds (AMs) are defined, where
the n-th AM is given by

Mn = {pn (h;ϑ)} , n ∈ Z+
N , (6a)

pn (h;ϑ)=exp {(d + ϑ) ◦ t + cn (h)− ψn (ϑ)} , (6b)

where ϑ = f (θ,ν), θ ∈ CM and ν ∈ RM are referred to the
common FONP and the common SONP of pn, respectively,
and ψn (ϑ) is the normalization factor.

We now introduce the iteration of the SIGA. Mathemati-
cally, the iteration of SIGA can be summarized as the iterative
calculation of ϑ until convergence. When ϑ is converged, we
calculate ϑ0 as ϑ0 = N

N−1ϑ. Then, p0 (h;ϑ0) in (5) is referred
as to the approximation of the product of the marginals of
the a posreriori distributions, i.e.,

∏M
i=1 pi (hi|y). And the a

posteriori mean and variance are given by µ0 (ϑ0) and the
diagonal of Σ0 (ϑ0), respectively, where

µ0 (ϑ0) =
1

2
Σ0 (ϑ0)θ0, (7a)



Σ0 (ϑ0) =
(
D−1 −Diag {ν0}

)−1
, (7b)

where Diag{ν0} denotes the diagonal matrix with ν0 along
its main diagonal. Specifically, given ϑ (t) = f (θ (t) ,ν (t)) at
the t-th iteration, ϑ (t+ 1) = f (θ (t+ 1) ,ν (t+ 1)) is then
calculated as (9) [5], where 0 < d ≤ 1 is the damping factor,
and Λ (ν (t)) and β (ν (t)) are given by

Λ (ν (t)) =
(
D−1 −Diag {ν (t)}

)−1
, (8a)

β (ν (t)) = σ2
z + tr {Λ (ν (t))} . (8b)

Briefly, ϑ (t+ 1) is obtained by the m-projections of
pn (h;ϑ (t)) , n ∈ Z+

N , onto the OBM. The detailed calcu-
lation can be found in the Sec. IV of [5]. We summarize the
process of SIGA in Algorithm 1.

Algorithm 1: SIGA
Input: The covariance D of the a priori distribution

p (h), the received signal y, the noise power
σ2
z and the maximal iteration number tmax.

Initialization: set t = 0, set damping d, where
0 < d ≤ 1, initialize the common NP as
ϑ (0) = f (θ (0) ,ν (0)) and ensure g̃min ≤ ν (0) ≤ 0;

repeat
1. Update ϑ = f (θ,ν) as (9), where Λ (ν (t)) and
β (ν (t)) are given by (8a) and (8b);

2. t = t+ 1;
until Convergence or t > tmax;
Output: Calculate the NP of p0 (h;ϑ0) as

ϑ0 = N
N−1ϑ (t).The mean and variance of

the approximate marginal, pi (hi|y), i ∈ Z+
M ,

are given by the i-th component of µ0 and
diag {Σ0}, respectively, where µ0 and Σ0

are calculated by (7).

B. Convergence

From (9), we can see that ν (t+ 1) only depends on ν (t)
and does not depend on θ (t), while θ (t+ 1) depends on both
θ (t) and ν (t). This shows that the iterating system of ν is
separated from that of θ, and hence, the convergence of ν (t)
can be checked individually. Thus, (9b) can be rewritten as

ν (t+ 1) = g̃ (ν (t)) , dg (ν (t)) + (1− d)ν (t) , (10a)

g (ν (t)) = − (N − 1) diag
{

(β (ν (t)) I−Λ (ν (t)))
−1
}
,

(10b)
where g̃,g : RM → RM are vector functions about ν (t).
Then, we first present the following lemma about g̃.

Lemma 1. Given ν ≤ 0, g̃ (ν) satisfies the following two
properties.
1. Monotonicity: If ν < ν′ ≤ 0, then g̃ (ν) < g̃ (ν′) ≤ 0.
2. Scalability: Given a positive constant 0 < α < 1, we have
g̃(αν) < αg̃(ν).
Moreover, if g̃min ≤ ν ≤ 0 with g̃min , −N−1σ2

z
1 ∈ RM , we

have g̃min < g̃ (ν) < 0.

The detailed proofs of all the results in this paper are
referred to [12]. Based on Lemma 1, the convergence of SONP
ν (t) can be proved in following theorem.

Theorem 1. Given initialization ν (0) with g̃min ≤ ν (0) ≤ 0,
the sequence ν (t+ 1) = g̃ (ν (t)) converges to a finite fixed
point ν?, where g̃min < ν

? < 0.

From Theorem 1, we can find that ν (t) converges to a
finite fixed point as long as the initialization satisfies g̃min ≤
ν (0) ≤ 0, and this range can be quite large. Furthermore, the
convergence of ν (t) is not related to the choice of damping
factor. Since the iteration of ν (t) is separated from θ (t),
we can analyze the convergence of θ (t) assuming that the
iteration of ν (t) converges to the fixed point ν?. Then, the
intermideate variable in (8) can be redefined as

Λ? =
(
D−1 −Diag {ν?}

)−1
, (11a)

β? = σ2
z + tr {Λ?} . (11b)

The above diagonal matrix Λ? is positive definite and β? is
positive from Theorem 1. Given θ (t) at the t-th iteration, then
θ (t+ 1) in (9a) can be rewritten as

θ (t+ 1) = B̃ (ν (t))θ (t) + b (ν (t)) , (12a)

B̃ (ν (t)) , dB (ν (t)) + (1− d) I, (12b)

B (ν (t)) =
N − 1

β (ν (t))

(
I− 1

β (ν (t))
Λ (ν (t))

)−1
×
(

I− 1

N
AHA

)
Λ (ν (t)) ,

(12c)

b (ν (t)) =
2d (N − 1)

Nβ (ν (t))

(
I− Λ (ν (t))

β (ν (t))

)−1
AHy, (12d)

where B̃ and B are two matrix functions with ν (t) being the
only variable, i.e., B̃,B : RM → CM×M , and b is a vector
function with ν (t) being the only variable, i.e., b : RM →
CM , and g̃,g : RM → RM . Let t→∞ and define

B̃? = B̃ (ν?) = dB? + (1− d) I, (13)

where B? = B (ν?) and b? = b (ν?). From the definition, B̃?

is determined by the fixed point of the common SONP ν? and
matrix A, which does not vary with iterations. To avoid any
ambiguity, the iterating system matrix refers to B̃? in the rest
of the paper, since the convergence condition for the iterating
system of θ (t) depends only on the spectral radius of B̃?.

Lemma 2. Given a finite initialization θ (0) ∈ CM×1
and ν (0) with g̃min ≤ ν (0) ≤ 0. Then, θ (t) in
(12) converges to its fixed point if the spectral radius of
B̃? is less than 1, i.e., ρ

(
B̃?
)

< 1, with ρ
(
B̃?
)

=

max
{
|λ| : λ is an eigenvalue of B̃?

}
.

Next, we investigate the convergence of θ by analyzing the
eigenvalues of B̃?. At the fixed point where ν? = ν (t+ 1) =
ν (t) in (9b), we can reformulate B? as

B? =

(
I− 1

N
D−1Λ?

)(
NI−AHA

)( 1

β?
Λ?

)
. (14)



θ (t+ 1) =
d (N − 1)

N

(
I− 1

β (ν (t))
Λ (ν (t))

)−1 [
1

β (ν (t))
AH (2y −AΛ (ν (t))θ (t)) +Nθ (t)

]
+(1− dN)θ (t) , (9a)

ν (t+ 1) = d (N − 1)diag

{
D−1 −

(
Λ (ν (t))− 1

β (ν (t))
Λ2 (ν (t))

)−1}
+ (1− dN)ν (t) . (9b)

where B? is the product of three Hermitian matrices. By [13,
Exercise below Theorem 5.6.9], we have

ρ (B?) ≤ ρ
(

I− D−1Λ?

N

)
ρ
(
NI−AHA

)
ρ

(
Λ?

β?

)
. (15)

Then, we first present some properties about the matrices
inside the right hand side term of (15).

Lemma 3. The matrices inside the term of the right hand side
of (15) satisfy following properties:
1. The spectral radius of I− 1

ND−1Λ? is less than 1.
2. The spectral radius of Λ∗ satisfies ρ (Λ?) < β?

N .
3. The spectral radius of NI−AHA satisfies

ρ
(
NI−AHA

)
≤ NM −N. (16)

Based on Lemma 3, we have the following Lemma about
the eigenvalues of B?.

Lemma 4. Denote the eigenvalues of B? as λB,i, i ∈ Z+
M .

Then, {λB,i}Mi=1 are all real and −ρ(NI−AHA)
N < λB,i < 1.

Denote the eigenvalues of B̃? as λ̃i, i ∈ Z+
M and we have

λ̃i = dλB,i+1−d, i ∈ Z+
M from (12b). Then, the eigenvalues

of B̃? are all real and satisfy

1− d

(
1 +

ρ
(
NI−AHA

)
N

)
< λ̃i < 1. (17)

Combining Lemma 2 and (17), we have the following Theo-
rem

Theorem 2. Given a finite initialization θ (0) ∈ CM×1 and
ν (0) with g̃min ≤ ν (0) ≤ 0. Then, θ (t) in (12) converges to
its fixed point if the damping factor satisfies

d <
2

1 + ρ(NI−AHA)
N

. (18)

Combining (16) and (18), it can be shown that in the worst
case where rank (A) = 1 and ρ

(
NI−AHA

)
= NM −N.,

d < 2
M can ensure the convergence of θ (t).

From Theorem 2, we can find that SIGA will always
converge with a sufficiently small damping factor and the
range of d is mainly determined by ρ

(
NI−AHA

)
. The

spectral radius ρ
(
NI−AHA

)
depends on the measurement

matrix A and even in the worst case where rank (A) = 1,
SIGA converges if d < 2

M . The range of ρ
(
NI−AHA

)
and the corresponding range of damping factor in massive
MIMO-OFDM channel estimation will be discussed in the
next section.

III. APPLICATION TO MASSIVE MIMO-OFDM CHANNEL
ESTIMATION

In this section, we will discuss the range of ρ
(
NI−AHA

)
in massive MIMO-OFDM channel estimation, where the range
of damping factor d can be expanded. Consider the following
uplink massive MIMO-OFDM channel estimation problem: A
base station equipped with Nr = Nrv × Nrh uniform planar
array (UPA) serves K single antenna users, where Nrv and
Nrh are the numbers of the antennas at each vertical column
and horizontal row, respectively. The number of subcarriers,
efficient subcarriers and cyclic prefix (CP) length of OFDM
modulation are Nc ,Np and Ng , respectively. Let Y ∈
CNr×Np and Z ∈ CNr×Np be the space-frequency domain
received signal and noise, respectively, then the received signal
model is given by [5]

Y =

K∑
k=1

GkXk + Z =

K∑
k=1

VHkF
TXk + Z, (19)

where Gk ∈ CNr×Np is the space-frequency domain channel
matrix of user k, the diagonal matrix Xk is the training signal
of user k satisfying XH

k Xk = I and Z is the noise matrix
whose components are independent and identically distributed
(i.i.d.) complex Gaussian random variables with zero mean
and variance σ2

z . Define Fv , Fh and Fτ as fine (oversampling)
factors, ĨN×FN as a matrix composed of the first N rows
of the FN dimensional identity matrix and parameter Nf ,
dNpNg/Nce. Then, Vv , Vh and F are partial discrete Fourier
transformation (DFT) matrices given by

Vv =ĨNrv×FvNrvṼv, Vh = ĨNrh×FhNrhṼh,

F = ĨNp×FτNpF̃ĨTFτNf×FτNp
(20)

where Ṽv , Ṽh and F̃ are FvNr,v , FhNr,h and FτNp dimen-
sional DFT matrices, respectively, V ∈ CNr×FvFhNr is the
Kronecker product of Vv and Vh and Hk ∈ CFvFhNr×FτNf
is the beam domain channel matrix of user k whose compo-
nents follow the independent complex Gaussian distributions
with zero mean. Then, (19) can be rewritten as

Y = VHM + Z, (21)

where H = [H1,H2, · · · ,HK ] ∈ CFvFhNr×KFτNf and M=
[X1F,X2F, · · · ,XKF]

T∈CKFτNf×Np . After vectorization,
we have

y = Ãh̃ + z, (22)

where y, z ∈ CN×1 and h̃ ∈ CM̃×1 are the vectorizations
of Y, Z and H, respectively, Ã ∈ CN×M̃ is the Kronecker



product of MT and V, N = NrNp, M̃ = KFaFτNrNf ,
and Fa = FvFh. Since most components in h̃ are zeros, we
can reduce the dimension of variables by extracting non-zero
components. Then, (22) can be reformulated as

y = Ah + z, (23)

where h ∈ CM×1 is extracted from h̃ when there are M <<
M̃ nono-zeros elements and A ∈ CN×M is extracted from Ã
by column. Thus, h ∼ CN (0,D) with diagonal and positive
definite D and z ∼ CN

(
0, σ2

zI
)
. Combining Lemma 3 and

Theorem 2, we have

ρ
(
NI−AHA

)
≤ (KFvFhFτ − 1)N. (24)

and then the damping factor needs to satisfy

d <
2

KFvFhFτ
(25)

to ensure the convergence of SIGA with initialization g̃min ≤
ν (0) ≤ 0. For the case with K = 48, M = 29277, and
(Fv, Fh, Fτ ) = (2, 2, 2), when general pilot sequences with
constant magnitude property are adopted, d < 0.0052 is
sufficient to ensure the convergence of SIGA. Note that this
range is much larger than the worst case d < 2

M = 6.8×10−5.
We finally consider the special case, where the adjustable
phase shift pilots (APSPs) [14], are used. In this case, A is
extraced from Ap where Ãp = Fd ⊗ V ∈ CN×FvFhFτN .
Combining Lemma 3 and Theorem 2, we have

ρ
(
NI−AHA

)
≤ (FvFhFτ − 1)N, (26)

and then the damping factor needs to satisfy

d <
2

FvFhFτ
, (27)

to ensure the convergence of SIGA with initialization g̃min ≤
ν (0) ≤ 0. For the case with Fv = Fh = Fτ = 2, d < 0.25 is
sufficient for SIGA to converge.

IV. SIMULATION RESULTS

In this section, we present numerical simulations to illustrate
the theoretical results in this paper. For the massive MIMO-
OFDM channel estimation, two types of pilots are used in
simulation: one is the general constant magnitude pilot and
the other is the APSPs. In the simulation, we focus on the
convergence of parameters ν and θ in massive MIMO channel
estimation. The widely used QuaDRiGa channel model is
adopted and the main parameters for the simulations are
summarized in Table I.

In the case of general constant magnitude pilot, the pilots of
different users in (19) are generated as Xk = diag {xk} , k ∈
Z+
K , where the components of xk are drawn from i.i.d.
CN (0, 1) and then normalized to the unit magnitude. Thus, A
can be calculated from (21) to (23), and A ∈ CN×M where
N = 46080 and M = 29277 under the system parameters in
Table I. The variance of the noise z is chosen to σ2

z = 0.01,
and this value could achieve an signal to noise ratio (SNR)
of 20 dB, where the SNR is defined as SNR , 1

σ2
z

in

TABLE I
SYSTEM PARAMETER

Parameter Value
Number of BS antenna Nr,v ×Nr,h 8× 16

UT number K 48
Center frequency fc 4.8GHz

Number of training subcarriers Np 360
Subcarrier spacing ∆f 15kHz

Number of subcarriers Nc 2048
CP length Ng 144

Fine Factors Fv , Fh, Fτ 2, 2, 2
Mobile velocity of users 3− 10kmph

this experiment [5]. The convergence performance of ν is
presented in Fig. 1. To verify Theorem 1, the initialization
of ν is set to be ν (0) = 0, ν (0) = g̃min = −N−1σ2

z
1, and

ν (0) = −1, repectively. The damping factor is the same
as the previous experiment. From Fig. 1, it can be found
that ‖ν‖2 converges to the same fixed point in all settings,
where the fixed point satisfies 0 < ‖ν?‖2 < ‖g̃min‖2. And
the fixed point ν? is not related to the choice of damping
factor. This observation is in exact agreement with Theorem
1. Under the condition that initialization of ν is set to be

5 10 15 20 25 30 35 40 45 50
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10
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10
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6
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8

Fig. 1. Convergence of ‖ν (t)‖ for different initializations and
damping factors for general constant magnitude pilot.
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Fig. 2. Convergence and divergence of ‖θ (t)‖ for different initial-
izations and damping factors for general constant magnitude pilot.

ν (0) = 0, the initialization of θ is set to be θ (0) = 0 and
θ (0) = −100× 1, respectively and the damping factor is set
to be d = 0.5 and d = 0.005. From Fig. 2, it can be found
that ‖θ‖2 diverges when d = 0.5 and converges to the same
fixed point in case of d = 0.05 regardless of the initialization



of θ. From Theorem 2, the worst case is that damping factor
has to less than 2

M = 6.8 × 10−5 but d = 0.05 is enough to
ensure the convergence of θ. This is consistent with (25).
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Fig. 3. Convergence of ‖ν (t)‖ for different initializations and
damping factors for APSPs.
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Fig. 4. Convergence and divergence of ‖θ (t)‖ for different initial-
izations and damping factors for APSPs.

When the APSPs are used, the pilot of the user k is set to
be Xk = Diag {r (nk)}P, where

r (nk)

=

[
exp

{
−̄2π nkN1

FτNp

}
, · · · , exp

{
−̄2π nkN2

FτNp

}]T
∈ CNp ,

nk ∈ {0, 1, · · · , FτNp − 1} is the phase shift scheduled for
the user k, and P = Diag {p} is the basic pilot satisfying
PPH = I. We can use [14, Algorithm 1] to determine the
value of nk and thus Xk, k ∈ Z+

K . In this experiment, the
dimension of A ∈ CN×M is also N = 46080 and M =
29277. The noise variance σ2

z is set to the same value in the
previous one. The convergence performance of ν is plotted
in Fig. 3 and similar conclusions can be drawn, where the
initialization of ν and the damping factor are the same as in
the previous experiment. The convergence performance of θ
is plotted in Fig. 4, where the damping factor is set to be
d = 0.5 and d = 0.24, and the initialization of ν and θ is
set the same as in the previous experiment. From Fig. 4, ‖θ‖2
diverges when d = 0.5 and converges to the same fixed point
in case of d = 0.24, which is consistent with (27).

V. CONCLUSION

In this paper, we investigated the convergence of SIGA
for massive MIMO-OFDM channel estimation. We analyzed
the convergence of SIGA for a general Bayesian inference
problem with the measurement matrix of constant magnitude
property. We then applied the general theories to the case of
massive MIMO-OFDM channel estimation. Through revisiting
its iteration, we found that the iterating system of the common
SONP is independent of that of the common FONP. Hence, we
can check the convergence of the common SONP separately.
It was then proved that given the initialization satisfying a
particular and large range, the common SONP is convergent no
matter the size of the damping factor is. For the convergence
of the common FONP, we established a sufficient condition.
More specifically, we found that the convergence of the
common FONP depends on the spectral radius of the iterating
system matrix B̃?. On this basis, we obtained a condition for
the damping factor that guarantees the convergence of θ (t)
in the worst case. Further, we determined the range of the
damping factor for massive MIMO-OFDM channel estimation
by using the specific properties of the measurement matrices.
Simulation results confirmed the theoretical results.
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