
SDN-based L4S Congestion Control in Beyond 5G
Sofiane Messaoudi∗, Adlen Ksentini∗, Franck Messaoudi†, Christian Bonnet∗

∗Eurecom Institute, †OpenAirInterface Alliance
∗ †Sophia Antipolis, France

Email: ∗name.surname@eurecom.fr, †name.surname@openairinterface.org

Abstract—This paper describes the SDN-based L4S solution,
a congestion control algorithm designed to improve QoS in 5G
and Beyond networks. Inspired by the IETF specifications, our
framework tackles challenges prevalent in immersive applications
like video streaming and cloud gaming, such as ultra-low latency
and packet loss. The proposed solution seamlessly integrates
L4S techniques into SDN, thereby optimizing queue management
within the transport network. Additionally, it employs Explicit
Congestion Notification (ECN) to mark packets during congestion
scenarios. This synergistic approach facilitates dynamic adjust-
ments in transmission rates, enhancing the overall efficiency of
the transport network, particularly in accommodating various
classes of traffic. Evaluation results demonstrate that our solution
outperforms the benchmarks by a substantial margin in terms of
End-to-End latency, and packet loss.

I. INTRODUCTION

The emerging 5G and Beyond (5G&B) networks have
tailored the market with new services, including Virtual
Reality (VR), Augmented Reality (AR), and diverse forms
of video streaming (ranging from gaming to conferencing and
entertainment). These real-time applications necessitate hard
requirements for latency, packet loss, and throughput to ensure
seamless, high-volume data streaming for a fully immersive
user experience [1]. Transported over Transmission Control
Protocol (TCP), the protocol’s congestion control mechanism
dynamically adjusts the TCP window size to regulate data
transmission rates, impacting throughput. Indeed, upon detect-
ing network congestion, often signaled by packet loss, the TCP
congestion control algorithm iteratively reduces its window size
until congestion recovery. Besides, TCP employs the slow start
mechanism to gradually increase transmission rates, which may
take time to reach optimal throughput. TCP exhibits notable
limitations, including aggressive rate reduction leading to under-
utilization of bandwidth and sub-optimal throughput, delayed
congestion detection resulting in packet loss and increasing
End-To-End (E2E) latency, and resource allocation inequity
between different TCP streams [2].

To address these limitations, the Internet Engineering Task
Force (IETF) has introduced a new architecture, currently under
specification, known as Low-Latency, Low-Loss, Scalable
Throughput (L4S) [3]. This approach leverages the Explicit
Congestion Notification (ECN) to mark packets [4] and uses
a dual-queue framework within switches to distinguish and
prioritize L4S traffic. By using the ECN and dual-queue logic,
the L4S architecture reduces packet loss, increases throughput,
and decreases E2E latency. Indeed, for the packet loss problem,
the L4S architecture avoids packet dropping and re-transmission

by predicting and preventing congestion (i.e., packet marking).
For the high throughput, it adjusts the transmission rate at the
Sender derived from congestion probability estimates provided
by the Receiver. Besides that, the use of an additional queue
sorts the traffic within the two queues (regular and L4S), which
reduces the number of packets per queue and leads to reduced
queuing delay hence the E2E latency.

E2E latency in packet-switched networks is mostly the sum
of 4 delays known as processing (tpr oc), queuing (tqueue),
transmission (ttr ans), and propagation (tpr op) delays [2]. tpr oc

is the required time to parse packets, verify their checksum, and
direct them. tqueue is the time a packet spends in a queue before
being transmitted onto the link; it is impacted by the queue size
and the number of packets within the queue. ttr ans represents
the needed time to push all the packet’s bits into the link;
determined by packet size and transmission rate ratio. Finally,
tpr op is the time needed to cross a link between two nodes.
tpr op is obtained as a ratio of distance and link speed. While
tpr oc , ttr ans , and tpr op are relatively negligible (order of µs to
few ms) compared to tqueue , most of efforts to reduce the E2E
latency have focused on various solutions including, hardware
acceleration [5], parallel processing [6], and computation
offloading [7], for tpr oc . Solutions such as Gigabit Ethernet
cards (×10, ×100 Gbps), and (extended) Berkeley Packet
Filtering ((e)BPF) eXpress Data Path (XDP) [8] address ttr ans ,
whilst tpr op is reduced via optical fiber with repeaters and
amplifiers, Multi-Access Edge Computing (MEC) [9], Multi-
Path TCP (MP-TCP) [10], and path optimization algorithms.
Improvements to tqueue have been made through Quality of
Service (QoS), Queuing Discipline (qdisc), and Traffic Control
(tc) implementations [11], and ECN L4S application.

Several studies have explored the potential of L4S and
ECN in congestion control. In [12], the authors conducted a
comprehensive study on L4S, introducing a congestion control
scheduler aimed at enhancing latency and throughput without
impacting classical traffic. Despite its innovative features,
this solution has yet to be deployed in real-world scenarios.
N. Nguyen et al. [13] employed P4 and in-band network
telemetry to monitor L4S switch metrics. Their experimen-
tation yielded promising results, showing minimal processing
overhead and interesting results, albeit with limitations in
deployment flexibility due to reliance on P4 switches. In a
separate study, authors in [14] addressed challenges arising
from heavy traffic and impairments in data centers, such as
TCP-Incast, buffer overflow, and long queues, and proposed
an enhanced algorithm leveraging ECN. While effective within

data center environments, the applicability of this approach
to broader network contexts is limited. Furthermore, [15]
introduced a congestion control algorithm aligned with L4S
specification, implemented in Web Real-Time Communication
(WebRTC), which used ECN for adaptive sending rate ad-
justments. Comparative evaluations against Google Congestion
Control (GCC) baseline demonstrated improved responsiveness.
Nevertheless, its notable dependency on manual adjustments
and hardware/kernel modifications posed scalability challenges.

Despite the considerable efforts made in these studies, a
common limitation to our best knowledge appears to persist.
None of these works have fully considered a holistic perspective
of the network, which is crucial to accurately identifying
bottlenecks. Surprisingly, Software-Defined Networking (SDN)
paradigm was not applied through these works with regard to its
significance in orchestrating control across the entire network.
In this paper, we propose to integrate L4S techniques within
an ´sdnized’ network. We enhanced the efficiency of Queue
Management (QM) and ECN marking. This integration allows
the server to adjust the sending rate dynamically, guaranteeing
ultra-low latency and elevated QoS levels, especially for
time-sensitive applications. Overall, this paper makes two
contributions. Firstly, it presents a novel SDN-L4S framework,
embedding a new approach to low-latency networking that
capitalizes on the strengths of SDN, tailored specifically for
the demands of 5G&B in scenarios marked by high network
loads. Secondly, it uses an adaptive QM addressing the intricate
requirements of diverse delay-critical services; we introduce
a dynamic QM algorithm that enforces priority, safeguarding
the L4S traffic even with the presence of normal traffic.

The rest of the paper is organized as follows: Section II
introduces the background. Our solution is shown in Section III
and evaluated in Section IV. Section V concludes the paper.

II. BACKGROUND

In TCP/IP networks, congestion is signaled by packet
drops, an effective yet performance-degrading mechanism.
Thus, we need alternative methods to communicate congestion
information to endpoints. In this section, we introduce the
concepts of ECN and L4S, which form the core of our solution.

A. ECN

ECN serves as a mechanism to signal or anticipate network
congestion. It facilitates E2E congestion notification between
two endpoints (i.e., Sender and Receiver) within TCP/IP-based
networks. For optimal E2E congestion control, all the nodes
involved in the transmission path including the endpoints must
be ECN-enabled. The presence of any device along the path that
does not support ECN breaks down the E2E ECN functionality.

The ECN congestion notifications aim to reduce packet loss
and delay by prompting the Sender to reduce transmission
rates without dropping packets. The IETF has introduced the
document RFC 3168 [4], which describes how the ECN is
added to the Internet Protocol (IP) header. IETF has reserved
two bits in the IP header’s Type of Service (ToS) field or the
Differentiated Services Code Point (DSCP) field (see Figure

1) to signal congestion more explicitly and proactively. The
nodes within the network (routers, switches, access points, and
base stations) set the ECN field to 11 (that is, Congestion
Experienced (CE)) when detecting increased congestion, pro-
viding advanced notice to the Sender and fostering congestion
feedback with minimal packet loss. The Sender interprets the
bits of the ECN and adjusts its transmission rates or congestion
control algorithms accordingly.

Version
(4 bits)

Header Length
(4 bits)

Type of Service (ToS)
(8 bits)

Total Length
(16 bits)

Differentiated Services Code Points (DSCP)
(6 bits)

ECN
(2 bits)

01234567

(a) IPv4 Header, First 4 Bytes Focusing on ToS

Version
(4 bits)

DS Field
(6 bits)

ECN
(2 bits)

Flow Label
(20 bits)

(b) IPv6 Header, First 4 Bytes

Figure 1: ECN Bits in the IP Headers

B. L4S

L4S is an innovative technology intended to guarantee high
throughput while minimizing delay and packet loss in Internet
traffic. It is based on the idea of signaling early on congestion
(CE) when the number of queued packets in a network node
surpasses a predefined threshold. This approach ensures a
consistently low queue delay, reducing the E2E latency while
optimizing link utilization. This technology relies mainly on
two main mechanisms, namely congestion control and transport
feedback.

ECN is the central element in the congestion control
mechanism. Table I shows the possible values of ECN and
their meaning. A setting of 00 or 10 in the ECN field indicates
that one or more network nodes in the path do not support L4S
capability. On the contrary, the values 01 and 11 denote the
presence of L4S traffic, with all nodes of the network along
the path supporting L4S capability, at the difference that 11 is
used to express congestion on the path.

Table I: L4S Codepoints and Meaning

Binary Codepoint Codepoint Name Description
00 Not-ECT Not ECN-capable transport

01 ECT(1) L4S-capable transport

10 ECT(0) Not L4S-capable transport

11 CE Congestion Experienced

Transport feedback represents the transport protocols used
to alert the Sender accurately about congestion. Today’s most
transport protocols support the ECN feedback, we can cite
TCP [16], Stream Control Transmission Protocol (SCTP) [17],
Quick UDP Internet Connections (QUIC) [18], and Real-time
Transport Protocol (RTP) [19]. Unlike traditional ECN, L4S

promptly marks packets and smoothens congestion feedback
for each marked packet.

Figure 2 illustrates the key components of the L4S architec-
ture and their interactions. A server, embodying the L4S Sender,
responds to a client by generating streams with a dynamically
determined transmission rate λ(t) in each round trip. The client
serves as the L4S Receiver, consuming the Sender’s streams and
subsequently providing congestion feedback. Furthermore, the
illustration emphasizes the importance of having L4S-capable
transport nodes along the path between the L4S Sender and
Receiver.

In congestion signaling and rate adaptation, the process
unfolds as follows: The Sender signals L4S support using
ECN codepoint ECT(1). Network nodes then recognize the
packet as an L4S packet and, in case of congestion, alter the
ECN bits to indicate CE. Upon reaching the Receiver, if the
ECN bits indicate congestion along the transmission path, the
Receiver notifies the Sender. In response to the congestion
notification, the Sender reduces the transmission rate.

In protocols like TCP, transmission rate reduction occurs
through congestion control mechanisms, such as TCP Friendly
Rate Control (TFRC) [20], Additive Increase/Multiplicative
Decrease (AIMD) [21] scheme, along with other schemes
including slow start [22] and Congestion Window (CWND)
[23]. These algorithms adjust the Sender’s transmission rate
based on received ACKnowledgments (ACKs) and congestion
indicators, including ECN markings.

Server

L4S Sender

Queue

L4
SN

od
e

Client

L4S Receiver

Pa
cke

tC
on

ges
tio

nC
on

tro
lF

eed
ba

ck

Data Rate λ(t)

ECN = 01

Congestion
<–>

ECN mark
to CE

(ECN = 11)

Figure 2: L4S Mechanism

III. SDN-L4S SOLUTION

In this section, we provide an overview of our proposal,
detailing its design and workflow.

A. Solution Overview

The solution is designed within a distributed architecture
involving an L4S Sender, an L4S Receiver, and an SDN
controller. It comprises the components shown in Figure 3.
In the following we describe the components of interest. Note
that our solution is applied to 5G&B. For more details on the
SDN architecture and its applicability to 5G&B, we encourage
readers to refer to our previous work [24].

• Queue Manager: It configures an on-demand L4S and/or
classical queue with a queuei d based on traffic type.
L4S traffic is directed to L4S queue and regular traffic to
classical queue. Each switch port may have at most two
queues, with the L4S queue enjoying superior priority and
output rate.

• ECN Marker: It applies ECN markings to packets based
on congestion conditions.

• Flux Rules Manager & Path Selector: It manages and
processes fl ux rules, determining the optimal path and
queue for traffic based on predefined policies and network
conditions.

• Packet Interceptor: It intercepts incoming packets, allow-
ing for real-time analysis.

• Packet Parser: Manipulates packet headers and payload
contents, and read field of interest.

• Rate Calculator: It dynamically regulates the packet
transmission rate λ(t). This controls the data flow, prevent-
ing rapid bursts and contributing to smoother and more
efficient data transfer.

• Ingress/Egress Listener: Sends/receives L4S/regular pack-
ets and receives congestion feedback’s from the L4S
Receiver.

• Congestion Probability Calculator: Upon getting L4S
packets, the L4S Receiver calculates the probability of
congestion and notifies the Feedback Agent.

• Feedback Agent Sender/Receiver: It sends/receives feed-
back information to/from the L4S Sender/Receiver via
In-Band Channel by extending the TCP header and setting
the optional field to express the congestion probability.

B. Notation

In this section, we present a mathematical notation outlining
our solution. We define an OpenFlow rule, denoted as ξ (see
Equation 1), as a composite of essential components [25]:

(i) The Match set (µ) (see Equation 2), which characterizes
the packet’s ToS value. Used to classify flows into two
categories: L4S traffic, identified by µ= 185, and regular (Non-
L4S) traffic, where µ ̸= 185.

(ii) The Action set (α) (see Equation 3) specifies the action
to be executed for each flow packet. We identify three main
actions. The first action directs L4S traffic to the L4S queue,
while regular traffic goes throw the classical queue based
on the queuei d parameter. The second action is used in
the event of queue congestion detection (in L4S or classical
queue) to mark each packet with the ECN value equal to 11.
Congestion is determined when the queue load (γ) exceeds a
predefined threshold (q1) of the queue size (σ). The third action
differentiates between congestion and non-congestion events;
only regular traffic is subject to dropping in case of congestion;
elsewhere, the traffic, whether L4S or not, is accepted and
forwarded to the Receiver through a specified set of port
numbers.

(iii) Priority (δ) (Equation 4) that is used to order rules in
the forwarding switch.

C
o
n

tr
o
lP

la
n

e
D

a
ta

P
la

n
e

SDN Applications

App 2 ... App n

App 1: SDN-L4S

Packet Parser

ECN Marker

Queue Manager

Flux Rules Manager

Path Selector

Database

SBI

P
a

ck
et

In
te

rc
ep

to
r

SDN Controller

UPFGTP tunnel

gNB

Feedback
Agent Sender

Congestion
Probability
Calculator

Packet Parser

Ingress/Egress
Listener

ECN Marker

Client

L4S Receiver

Ingress/Egress
Listener

Rate Calculator

Feedback Agent
Receiver

Packet Parser

ECN Marker

Server

L4S Sender

5G Transport Network (Backhaul)

S
D

N
A

p
p

li
ca

ti
o
n

L
a
y
er

S
D

N
C

o
n

tr
o
l

L
a
y
er

S
D

N
In

fr
a
.

L
a
y
er

Legend:

SDN Control Traffic

User Traffic

SDN Controller NBI

PDU Session

Figure 3: SDN-L4S Solution applied to 5G&B

ξ= { [
µ
]

, [α] , δ
}

(1)
µ= {0, 1, 2, ...,224} (2)

α= {
setEC N (value), out put (por tn◦ , queuei d), dr op

}
(3)

δ= {0, 1, 2, ..., 65535} (4)

Equation 5 defines the new rate of packets departure λ

dynamically adjusted by the L4S Sender in response to
congestion. This new rate, measured in Mbps, is intricately
linked to the probability of congestion, denoted as p (see
Equation 6, in which n is the number of received packets in
congestion state (i.e., packets marked with ECN= 11) and N is
the total number of received L4S packets (i.e., L4S traffic with
µ= 185)). The probability p is computed on the L4S Receiver
side for each new packet arrival and used to guide the L4S
Sender’s rate adaptability using a predefined threshold (q2).
Indeed, in each system, the probability of system occupancy
p ≈ λa

λa+λd
, where λa is the arrival rate to the system and λd

is the departure rate [26]. This can be further simplified as
p ≈ 1

1+λd
, ultimately leading to the equation 5.

λ≈
{

λ0 if 0 É p < q2
1
p −1 if q2 É p < 1

(5)

p =
{

0 if N = 0
n
N if N ̸= 0

(6)

C. Workflow

The proposed SDN-L4S algorithm aims to prevent con-
gestion in an SDN-managed network by integrating adaptive
rate control, QM, and congestion feedback mechanisms. The
algorithm takes into account the following inputs: the network

topology information (encompassing paths {Paths}, hosts
{Hosts}, and link characteristics {Links}), the set of available
flux rules {ξ}, the real-time queue statistics {Stats}, the initial
transmission rate λ0 matching the speed of Network Interface
Controller (NIC), and the congestion-related counters (n, N ,
p) initialized to zero. Outputs from the algorithm include
updated flux rules, a probability of congestion (p), and a
revised transmission rate λ. The algorithm is partitioned into
the following sections.

L4S Sender: The logic behind this component is to
dynamically fine-tune responses to the Receiver according
to a designated rate λ. This rate undergoes near real-time
adjustments, where, with each newly received congestion
probability (p), the Sender recalibrates the transmission rate
(λ) by applying Equation 5 (see Algorithm 1).

Algorithm 1 SDN-L4S Sender Algorithm

1: Inputs: λ0, p0 = 0, p, q2

2: Outputs: λ
3: if (p Ê q2) then:
4: Calculate the new rate: λ= 1

p −1
5: else
6: Re-initialize the new rate: λ=λ0

7: Adjust transmission rate to λ

8: Send next packet

SDN Controller: Performs actions on traffic and manages
switch queues based on processed packet information (µ) re-
ceived from PACKET-IN messages. If no suitable path adhering
to the specified configuration ξ for the given µ, alternative
routes are explored. If no path is found, the destination is

labeled as unreachable. Subsequently, the controller manages
both L4S and regular traffic. For L4S traffic, it handles the
L4S queue, creating one if needed, and monitors its load. If
the load exceeds a predefined threshold (q1), the packet is
marked as congested (ECN= 11) and forwarded. Meanwhile,
the regular traffic is routed through the standard queue, with
packets marked as congested and dropped if the queue load
exceeds q1. A new configuration ξ is applied to the switches
(see Algorithm 2).

Algorithm 2 SDN-L4S Controller Algorithm

1: Inputs: {Paths}, {Hosts}, {Links}, {ξ}, {Stats}
2: Outputs: {ξ}
3: SDN CTRL receives PACKET-IN message with µ info
4: if (exists path with a ξ satisfying packet µ) then:
5: Apply ξ

6: else
7: Find all potential paths to the destination
8: if path list is empty then:
9: The destination is unreachable

10: else
11: if (µ= 185) then:
12: Create L4S queue if not exists
13: if (load (L4S queue) Ê q1) then:
14: Mark packet as congested: EC N = 11

15: else
16: Choose the path with a regular queue
17: if (load(regular queue) Ê q1) then:
18: Mark packet as congested: EC N = 11
19: Drop the packet
20: Install the ξ on switches

L4S Receiver: The main action of this component is to
prevent congestion and warn the L4S Sender to reduce its
transmission rate. A probability of congestion p for L4S traffic
is determined by the ratio of n, representing the received
packets flagged as congested (ECN= 11), to the total number
of L4S packets N or simply set to zero (using equation 6). The
counters N and n are then updated accordingly (see Algorithm
3).

Algorithm 3 SDN-L4S Receiver Algorithm

1: Inputs: n = 0, N = 0
2: Outputs: p
3: Handle received packet:
4: if (µ= 185) then:
5: N ++
6: if (EC N = 11) then:
7: n++
8: Calculate the congestion probability: p = n

N

9: Notify the L4S Sender of the updated value of p

IV. PERFORMANCE EVALUATION

A. Setup

Our framework has been tested within a linear topology
with 2 Open vSwitch (OVS) switches (v2.13.5). We have used
24 Linux nodes (Mininet v2.2.2) as traffic source generators,
where 12 represent L4S Senders and the other 12 for regular
Senders. Each Sender generates a TCP stream of size 65,507
Bytes. We have distinguished the entire traffic within 2 sets
according to ToS (µ) (12 flows with µ = 185 and 12 flows
with µ ̸= 185). We also used a Linux node as an L4S Receiver
that receives all the generated traffic in a competition mode.
As SDN controller, we used ONOS (v2.7.0) with OpenFlow
(v1.6). The tests have been repeated 100 times with a number
of packets generated of 24×104 packet for each iteration (104

packet for each of the 24 hosts). For the bandwidth of the
links, it was fixed to 10Gbps.

B. Results

Now, we present the results of the measurement campaign
regarding the E2E latency and Packet Loss Rate (PLR)
impacted by queue load, congestion probability, as well as
QM.

1) E2E Network Latency: In this section, we analyze the
causes that affect the latency.

Congestion Probability Threshold Impact: Figure 4 shows
the impact of congestion probability threshold q2 on the average
E2E latency (in ms) for both SDN-L4S and SDN-Traditional
Congestion Control (TCC), with the queue load threshold q1

held constant at 80%. We may notice that for all q2, SDN-L4S
latency is always shorter than SDN-TCC latency, attributed
to its adaptive transmission rate that reduces the queuing
delay. Furthermore, as q2 increases, the SDN-L4S latency
gradually rises, eventually approaching the SDN-TCC latency
as q2 approaches 100%. Conversely, SDN-TCC demonstrates
higher and relatively stable latency, attributed to its packet drop
mechanism when q1 is reached, regardless of the value of q2.

1 5 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Congestion Probability Threshold q2 (%)

A
ve

ra
ge

E
2E

L
at

en
cy

(m
s)

SDN-L4S

SDN-TCC

Figure 4: E2E Average Latency Versus q2 (q1 = 80%)

Queue Load Threshold Impact: Figure 5 shows the impact
of queue load threshold q1 on the average E2E latency (in
ms) for both SDN-L4S and SDN-TCC, with the congestion
probability threshold q2 fixed at 1%. We remark that SDN-L4S
latency is shorter than SDN-TCC once, and this is true for all
q1 values, thanks to the L4S mechanism. Besides that, SDN-
L4S latency is approximately ×1/2 that of SDN-TCC. Despite

the fact that q1 impacts both solutions, SDN-L4S responds
better to congestion because it is based on the early signaling
of congestion (q2).

1 10 20 30 40 50 60 70 80 90 100
0
1
2
3
4
5
6
7
8
9

10
11

Queue Load Threshold q1 (%)

A
ve

ra
ge

E
2E

L
at

en
cy

(m
s)

SDN-L4S

SDN-TCC

Figure 5: E2E Latency Versus q1 (q2 = 1%)

Queue Management Impact: Figure 6 highlights the
impact of Queue Management (QM) on the E2E latency. It
displays the min, max, and median values (in ms) obtained for
both SDN-L4S and SDN-TCC with/without QM (i.e., SDN-
L4SQM, SDN-TCCQM, ¬SDN-L4SQM, and ¬SDN-TCCQM,
respectively). We have fixed in this scenario the couple q1 and
q2 at 80% and 1%, respectively. Initially, latency values are
consistently lower across all scenarios during the early phase
of traffic transmission before queues become congested. It is
worth noting that when QM is employed, a dedicated queue is
created for L4S traffic with higher priority and transmission rate,
resulting in notably lower latency for SDN-L4SQM than other
scenarios. Conversely, ¬SDN-L4SQM presents better latency
then SDN-TCC, thanks to the ECN mechanism. Furthermore,
SDN-TCCQM demonstrates smaller values compared to ¬SDN-
TCCQM, as it avoids congestion caused by all traffic (i.e., L4S
and regular) competing for the same queue.

SDN-L4SQM SDN-TCCQM ¬SDN-L4SQM¬SDN-TCCQM
0

2

4

6

8

10

12

14

16

E
2E

L
at

en
cy

(m
s)

Figure 6: QM Impact on the E2E Latency (q1, q2 = 80%,1%)

2) Packet Loss Rate: Now, we focus on the causes of PLR
variability. Table II presents the PLR obtained for SDN-L4S
and SDN-TCC under different combinations of q1 and q2 (i.e.,
SDN-L4S(q1, q2), SDN-TCC(q1, q2)), while q1 ∈ {50%,80%} and
q2 ∈ {1%,10%}. Please notice that SDN-TCC is not impacted
by q2 according to Section IV-B1, so the PLR. The PLR
results demonstrate that SDN-L4S surpasses SDN-TCC and
this is true for all q1 and q2. When q1 if fixed, SDN-L4S(x, 1)
PLR is smaller than SDN-L4S(x, 10) as the congestion is
detected earlier when q2 = 1%, so the L4S Sender reduces the
transmission rate earlier. Whilst, by fixing q2, SDN-L4S(50, x)
PLR is smaller than SDN-L4S(80, x), this is obvious since the

congestion probability increases slower when q1 is high (please
refer to Algorithm 2 lines 13-14 and Algorithm 3 lines 6-8).
Lastly, SDN-TCC(50, x) PLR is higher than SDN-TCC(80, x)
due to drop mechanism that occurs frequently for q1 = 50%
(Algorithm 2 lines 17-19).

Table II: Packet Loss Rate (in %)

SDN −L4S(q1 ,q2) PLR(%) SDN −T CC(q1 ,q2) PLR(%)
SDN −L4S(50,1) 0.16

SDN −TCC(50,x) 24.2
SDN −L4S(50,10) 0.5
SDN −L4S(80,1) 2.66

SDN −TCC(80,x) 18.4
SDN −L4S(80,10) 3.7

V. CONCLUSION

In this paper, we have designed a congestion control solution
inspired by the IETF standards on the L4S, that we applied to
SDNized network tailored for video streaming applications
in Beyond 5G (B5G). We have demonstrated through the
measurement campaign that our solution outperform TCP
congestion control mechanisms in term of latency and packet
loss. As future work, we aim to explore how to integrate the
L4S mechanism within the Radio Access Network (RAN).
Besides that, we would like to investigate resource usage
and identify a trade-off between queue loads and congestion
probability.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon Europe Research and Innovation programme AC 3

project under grant agreement No 101093129.

REFERENCES

[1] F. Messaoudi, A. Ksentini, G. Simon, and P. Bertin, “Performance analysis
of game engines on mobile and fixed devices,” ACM Trans. Multim.
Comput. Commun. Appl., vol. 13, no. 4, pp. 57:1–57:28, 2017.

[2] J. F. Kurose and K. W. Ross, Computer networking - a top-down approach
featuring the internet. Addison-Wesley-Longman, 2001.

[3] M. Bagnulo and G. White, “Low latency, low loss, and scalable
throughput (l4s) internet service: Architecture,” 2023.

[4] S. Floyd, D. K. K. Ramakrishnan, and D. L. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” RFC 3168, Sep. 2001.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
programming protocol-independent packet processors,” Comput. Commun.
Rev., vol. 44, no. 3, pp. 87–95, 2014.

[6] P. A. Levis, “Tinyos: An open operating system for wireless sensor
networks (invited seminar),” in 7th International Conference on Mobile
Data Management (MDM 2006), Nara, Japan, May 9-13, 2006. IEEE
Computer Society, 2006, p. 63.

[7] F. Messaoudi, A. Ksentini, and P. Bertin, “Toward a mobile gaming
based-computation offloading,” in 2018 IEEE International Conference
on Communications, ICC 2018, Kansas City, MO, USA, May 20-24,
2018. IEEE, 2018, pp. 1–7.

[8] A. Deepak, R. Huang, and P. Mehra, “ebpf/xdp based firewall and packet
filtering,” in Proc. Linux Plumbers Conf., 2018, pp. 1–5.

[9] ETSI, “Mobile edge computing (mec); framework and reference archi-
tecture,” ETSI GS MEC, vol. 3, p. V1.1.1, March 2016.

[10] A. Abdelsalam, M. Luglio, C. Roseti, and F. Zampognaro, “Linux mp-
tcp performance evaluation in a combined terrestrial-satellite access,” in
2019 International Conference on Wireless Technologies, Embedded and
Intelligent Systems (WITS), 2019.

[11] R. Rosen, Linux kernel networking: Implementation and theory. Apress,
2014.

[12] K. De Schepper, M. Bagnulo, and G. White, “Rfc 9330: Low latency,
low loss, and scalable throughput (l4s) internet service: Architecture,”
2023.

[13] H. N. Nguyen, B. Mathieu, M. Letourneau, G. Doyen, S. Tuffin, and
E. M. d. Oca, “A comprehensive p4-based monitoring framework for l4s
leveraging in-band network telemetry,” in NOMS 2023-2023 IEEE/IFIP
Network Operations and Management Symposium, 2023, pp. 1–6.

[14] E. Gilliard, K. Sharif, A. Raza, and M. M. Karim, “Explicit congestion
notification-based congestion control algorithm for high-performing data
centers,” in 2023 IEEE AFRICON, 2023, pp. 1–6.

[15] J. Son, Y. Sanchez, C. Hampe, D. Schnieders, T. Schierl, and C. Hellge,
“L4s congestion control algorithm for interactive low latency applications
over 5g,” in 2023 IEEE International Conference on Multimedia and
Expo (ICME). IEEE, 2023, pp. 1002–1007.

[16] M. Kühlewind, R. Scheffenegger, and B. Briscoe, “Problem Statement and
Requirements for Increased Accuracy in Explicit Congestion Notification
(ECN) Feedback,” RFC 7560, Aug. 2015.

[17] R. R. Stewart, “Stream Control Transmission Protocol,” RFC 4960, Sep.
2007.

[18] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” RFC 9000, May 2021.

[19] “RTP Control Protocol (RTCP) Feedback for Congestion Control,” RFC
8888, Jan. 2021.

[20] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “Tcp friendly rate
control (tfrc): Protocol specification,” Tech. Rep., 2003.

[21] P. Hurley, J.-Y. Le Boudec, and P. Thiran, “A note on the fairness of
additive increase and multiplicative decrease,” Tech. Rep., 1998.

[22] H. Wang, H. Xin, D. S. Reeves, and K. G. Shin, “A simple refinement
of slow-start of tcp congestion control,” in Proceedings ISCC 2000. Fifth
IEEE Symposium on Computers and Communications. IEEE, 2000, pp.
98–105.

[23] H. Torkey, G. Attiya, and A. A. Nabi, “An efficient congestion
control protocol for wired/wireless networks,” International Journal
of Electronics Communication and Computer Engineering, vol. 5, no. 1,
p. 77, 2014.

[24] S. Messaoudi, A. Ksentini, F. Messaoudi, and C. Bonnet, “Gnn-based sdn
admission control in beyond 5g networks,” in GLOBECOM 2023-2023
IEEE Global Communications Conference. IEEE, 2023, pp. 6103–6108.

[25] S. MESSAOUDI, A. Ksentini, and C. BONNET, “Sdn framework for
qos provisioning and latency guarantee in 5g and beyond,” in 2023 IEEE
20th Consumer Communications & Networking Conference (CCNC).
IEEE, 2023, pp. 587–592.

[26] K. De Schepper and G. White, “Rfc 9332: Dual-queue coupled active
queue management (aqm) for low latency, low loss, and scalable
throughput (l4s),” 2023.

