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Abstract—Intent-Based Networking (IBN) management has
emerged as an alternative approach to simplify network con-
figuration and management by abstracting the complexities of
low-level configurations. Existing IBN solutions typically rely on
human-readable structures like JSON or YAML to define Intents,
which still require expertise in understanding these structures.
A natural evolution of IBN is to use natural language instead
of defined structures. However, this approach introduces com-
plexities related to natural language understanding. Fortunately,
Large Language Models (LLMs) offer a promising solution. In
this paper: (i) We propose a novel LLM-centric Intent Life-Cycle
(LC) management architecture designed to configure and manage
network services using natural language. The architecture spans
the complete Intent LC, encompassing decomposition, transla-
tion, negotiation, activation, and assurance; (ii) We identify key
open issues and challenges related to IBN within our proposed
architecture; (iii) We demonstrate the effectiveness of the archi-
tecture by developing a component within the EURECOM 5G
facility [1], leveraging LLMs to implement the essential Intent LC
procedures; (iv) We validate the proposed system through real-
world deployment, showcasing its capability to define, decompose,
translate, and activate Intents using natural language.

Index Terms—Intent-based networking, Intent life-cycle, nat-
ural language, large language models, human feedback.

I. INTRODUCTION

Intent-based networking (IBN) plays a crucial role in en-
abling autonomous networks by specifying goals and con-
straints at a higher level to the Network Management Sys-
tem (NMS) [2]. It introduces the notion of “Intent,” which
represents an abstract operational goal provided as input to
the NMS. Subsequently, the latter generates the necessary
low-level configurations to fulfill these Intents. Although IBN
is a relatively new term and technology, significant efforts
have been dedicated to defining and standardizing it, includ-
ing the 3rd Generation Partnership Project (3GPP) [3], the
European Telecommunications Standards Institute (ETSI) [4],
and the TM Forum [5]. In these standards, high-level Intents
are specified using human-readable structures like JSON or
YAML. For instance, ETSI standards [6] define it using the
Network Service Descriptor (NSD), a JSON structure designed
to configure network services.

However, the current model of expressing Intents still re-
quires significant effort in writing these structures, demanding
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a detailed comprehension of the model specified by the North-
Bound Interface (NBI). This process is not always straightfor-
ward, and adhering to the structure of these NBIs is time-
consuming. A natural evolution for IBN is to move beyond
the use of human-readable strucures and transition towards
natural language. An example of an Intent request using
natural language for deploying a Communication Service (CS)
for a 5G network serving eXtended Reality (XR) users is:
Example I.1
I need a network composed of three XR applications: an
augmented reality content server, a mixed reality collaboration
platform, and a virtual reality simulation engine. Each appli-
cation requires 4 vCPU and 2 Gigabytes (Gbytes) of memory.
All XR applications are connected using 5 Gbytes/sec links.
The clients are connected through a 5G network located in
the Nice area and tolerate a maximum latency of 5 ms.

In this example, the Intent comprises different sub-Intents
specific to the technological domain involved in supporting
this CS. Indeed, one part is dedicated to the needed com-
puting resources to run the mentioned applications on the
Cloud/Edge, another one for networking, and the last part to
the Radio Access Network (RAN). Once the Intent is specified,
there are many required steps to reach the deployment and
propagation of the Intent’s objective up to the different infras-
tructures composing the technological domains (Cloud/Edge,
networking, and RAN). These steps correspond to the Intent
Life-Cycle (LC) management procedures: (i) Intent decom-
position that extracts the information on each technological
domains that need to be involved in the deployment phase;
(ii) Intent translation that translates decomposed Intents to
Infrastructure-Level Intents (ILIs) specific to each domain.
Then, (iii) Intent negotiation, (iv) Intent activation, and (v)
Intent assurance are the steps that enforce the Intent on the
technological domain infrastructure.

Intents LC management based on natural language repre-
sents the simplest form of IBN-enabled system communication
with the network. Nevertheless, natural language’s unstruc-
tured and ambiguous nature poses challenges for IBN systems
in extracting essential information and producing precise low-
level configurations. Additionally, users from diverse regions
can add complexity, necessitating an approach capable of
interpreting Intents across multiple human languages, even
in the presence of grammatical errors. Fortunately, with the
rapid explosion in the Natural Language Processing (NLP)
area, Large Language Models (LLMs) become very powerful
in understanding human languages.



To address the gap in the literature regarding Intent LC man-
agement, this paper introduces a novel, LLM-centric high-level
architecture designed to manage Intents LC from an End-to-
End (E2E) perspective. This involves defining, handling, and
enforcing Intent objectives. Our architecture leverages cutting-
edge AI advancements, particularly LLMs, to tackle all previ-
ously mentioned E2E Intent LC procedures. We demonstrate
the efficiency of this architecture by upgrading the EURECOM
5G facility [1] with natural language Intent handling, i.e., de-
composing and translating Intents using LLMs. Subsequently,
Intent activation and assurance are managed using its existing
functionalities [1]. This upgrade relies on open-source, state-
of-the-art LLMs incorporating Human Feedback (HF) to learn
from previous experiences. The major contributions of this
paper are as follows:

• End-to-End IBN LC Management Architecture: We pro-
pose a comprehensive, LLM-centric architecture that
spans all stages of IBN from Intent definition, decompo-
sition, and translation to activation and assurance. This
architecture ensures seamless interaction with the NMS
for all users, including those with limited domain knowl-
edge who will use natural language instead of ILIs. It
leverages the latest AI advancements, particularly LLMs.

• Identification of Key Open Issues and Challenges: Within
our architecture, we identify and discuss the main open
issues related to IBN that need to be addressed. These
challenges are crucial for advancing beyond the current
state-of-the-art and providing a solid foundation for future
research and development in this area.

• LLM-Based Intent Decomposition and Translation Sys-
tem: To showcase the effectiveness of the proposed
architecture, we develop an innovative system within the
5G EURECOM facility [1] using LLMs for Intent de-
composition and translation. This system utilizes few-shot
learning and HF to transform natural language Intents into
ILIs.

• Real-World Deployment and Testing: Our proposed
framework is implemented and tested in real-world sce-
narios using a single NVIDIA A100 GPU with 40GB
of vRAM, leveraging the Code Llama LLM [7]. This
demonstrates the practical applicability of our architec-
ture on the 5G facility [1], enabling the configuration of
network services using natural language.

The remaining sections of this paper are structured as
follows: Section II describes related works on IBN. Section
III presents the high-level architecture to handle Intent’s LC,
open issues and challenges, and our Intent decomposition and
translation solution. Section IV provides an analysis of the
solution’s performance. Section V discusses limitations and
outlines future work. Finally, Section VI concludes the paper.

II. RELATED WORKS

IBN is a transformative approach to network management
that prioritizes user Intent and establishes a dynamic, adapt-
able network ecosystem [2]. Introduced relatively recently,
IBN is actively being standardized by organizations like
3GPP, ETSI, and TM Forum. Each of these organizations

has formed dedicated study groups to explore IBN. In 2018,
3GPP started standardization efforts, introducing the concept
of Intent-driven management and proposing an Intent-driven
management service for managing 5G networks and services
[3]. Concurrently, ETSI established the zero-touch network
and service management working group to delve into Intent-
based automation and Intent-based service orchestration [4].
Finally, the TM Forum, as part of its autonomous networks
framework, is standardizing IBN in [5]. However, all these
standards groups focus on what and why Intents are needed,
while how an Intent objective is written using natural language,
translated, and enforced on the infrastructure is still missing.

Various research efforts have addressed numerous chal-
lenges in the various components of IBN. For instance, the
authors of [8] tackled the Intent translation process by devel-
oping a chatbot that elicits context-specific information from
users of packet-optical networks. To address Intent activation,
researchers in [9] proposed an Intent negotiation framework
to resolve conflicts arising from limited resource availability
in IBN. Additionally, Zheng et al. [10] proposed an Intent
assurance solution for data center IBN systems, utilizing
specific data preparation procedures and Machine Learning
(ML) models for time series forecasting. Furthermore, several
research works have proposed E2E IBN architectures. For ex-
ample, Velasco et al. [11] presented a scalable 5G architecture
by integrating secure ML-powered IBN, fostering application-
level resilience and intelligence. Concurrently, with the explo-
sion of LLMs in the NLP domain, the research community is
shifting towards utilizing and standardizing them in the context
of networking and telecommunications.

A few studies have employed LLMs in IBN [12, 13].
Researchers in [12] aimed to generate Python code from
natural language Intent with LLMs, enabling infrastructure
management. However, they relied on a customized Python
library to execute the generated program, limiting its applica-
bility to other infrastructure management systems. Our system
generates standardized ILIs, such as NSD and RAN Descriptor
(RAND), aimed at universal acceptance across public and
private 6G infrastructures adhering to these standards. This
is achieved through a two-stage process: decomposing the
Intent into different domains and generating standardized ILI
for each domain. This approach ensures compliance with var-
ious standards across multiple domains using a single Intent.
Authors of [13] utilize LLMs, along with other AI techniques,
to achieve autonomous fault localization, strategy generation,
and strategy verification. However, establishing an E2E Intent
LC management for CS deployment in 6G systems (combining
Intent decomposition, negotiation, translation, activation, and
assurance) remains an open challenge. To address this gap,
our work aims to leverage the latest advancements in LLMs
to support E2E Intent LC management. We demonstrate the
effectiveness of the proposed architecture by implementing the
decomposition and translation steps in E2E Intent LC manage-
ment using LLMs and rely on the existing functionalities of
the EURECOM 5G facility [1] for activation and assurance.
Furthermore, both [12, 13] rely on OpenAI’s closed-source
ChatGPT LLM, which lacks full control compared to open-
source LLMs utilized in our approach.
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Fig. 1: High-level architecture design to handle natural language-based Intents LC.

III. IBN LC MANAGEMENT SYSTEM DESIGN

In this section, we begin by introducing our high-level
architecture that aims to handle the LC of Intents from their
definition up to their admission and deployment over the
infrastructure, considering the context of multi-domain CS
deployment in 5G and beyond. Then, we expose the different
open challenges related to the realization of the architecture’s
objectives and discuss some research directions. Finally, we
introduce novel solutions that address two critical challenges
related to natural language-based decomposition and transla-
tion employing an LLM-centric approach. We demonstrate the
application of the proposed solutions using the 5G facility [1]
as an example to deploy a CS spanning over two technological
domains: Cloud/Edge and RAN.

A. Proposed Architecture

To effectively address Intent LC, we propose a high-level
architecture for natural language-based Intents, as depicted in
Fig. 1. In this system, the manager or user interacts with the
Multi-Domain Intent Handler (MDIH) component to deploy a
CS across various infrastructure domains. The MDIH assists
the manager or user in correcting, updating, or negotiating
the Intent to ensure that the latter can be deployed. This
interaction is envisioned to be similar to using a chatbot. Each
infrastructure domain is managed by a Local Management
System (LMS) that utilizes ILI to deploy the corresponding
CS components on the infrastructure. An example of ILI is
the NSD defined by the ETSI NFV group [6] for deploying
services on virtualized platforms, or the helm chart model
used by Kubernetes1 for deploying cloud-native services. Our
proposed system is designed to be infrastructure and network
architecture agnostic, offering native support for all technolog-
ical domains comprising 6G, i.e., cloud, edge, transport, and
RAN. The Intent-based architecture illustrated in Fig. 1 aims to
abstract the underlying infrastructure as much as possible. The

1https://kubernetes.io

only infrastructure-specific aspect lies in the translation step
(at the DIH), which is essential for generating ILI per domain.
In many cases, ILI also abstracts the complexities of the
underlying layers. For example, the ETSI NSD uses blueprints
to abstract various computing information (see Fig. 2 for an
NSD example).

In the proposed solution, the CS is defined using natu-
ral language. No restriction on the formulation model (or
grammar) is imposed; the user is free to define the Intent
by using natural language. The Intent is then handled by a
MDIH, which belongs to the CS provider and is integrated
into the OSS/BSS as a component. The internal structure of
MDIH includes an Intent decomposition module, tasked with
decomposing the Intent into sub-parts corresponding to each
domain. The Intent decomposition module should understand
the semantic (i.e., the meaning) of the Intent to decompose
it; in Fig. 1, we assume three domains, e.g., Cloud/Edge
Intent, networking Intent, and RAN Intent. While considering
three domains in this example, the proposed approach can be
generalized to a higher number of domains. To decompose
the Intent, we rely on LLMs, known for their ability to
understand natural language and extract semantic information.
After decomposition, each subpart is sent to the structure
validator module, which validates the Intent’s structure for
each technological domain. The validation process checks that
all required parameters and associated values to deploy a CS
on a domain, are included in the Intent. For instance, an Intent
to deploy a CS on Cloud/Edge should indicate the software
image location and resources needed for deployment. If a
parameter or value is missing, the structure validator request
the user to correct the Intent. The process ends when the
Intent structure is valid. As stated earlier, a chatbot-like system
interacts with the user, providing proposals to correct the
Intent formulation until final validation. The chatbot approach
corrects the Intent’s structure, avoids intra-Intent conflicts,
and ensures the Intent’s feasibility on the infrastructures. The
objective is to prevent any structural error before forwarding



the request to the Domain Intent Handler (DIH).
Subsequently, each domain-specific Intent is handled sep-

arately by a DIH, which has the role of doing the semantic
validation of the Intent and the translation to ILI specific to an
LMS handling a domain-specific infrastructure. The different
actions the DIH has to execute are in the following order:

1) Check if there are intra-Intent conflicts between the
objectives. For instance, if the Intent requests radio
throughput higher than a value (V1) and interference
lower than a value (V2), then a conflict exists as
increasing the radio throughput will also increase the
interference due to the usage of a higher data rate
modulation scheme. In this case, a correction of the
Intent through the chatbot is proposed to the end user
to avoid conflicts. When the Intent is conflict-free, the
following action is triggered; otherwise, an update is
requested from the Intent owner through the chatbot.

2) Check if the Intent can be satisfied, which involves
the feasibility check process. Indeed, the latter aims to
check if the Intent objectives can be fulfilled on the
domain-specific infrastructure considering the available
resources. This step is essential as it is equivalent to
an admission control process, avoiding that the Intent
is deployed while its objectives cannot be sustained.
This requires that the DIH uses a prediction of the
resource evolution of an infrastructure aiming to decide
if the Intent can be accepted. In this context, an external
module to the DIH will run AI/ML prediction models
that consume monitoring information collected from the
LMS. The predicted model is built per LMS.

3) Translate the Intent to ILI and activate the Intent by
sending it to the LMS. The translation process will be
done using an LLM-based module that translates natural
language to ILI as expected by LMS. The LMS will
validate the ILI; if any error is detected, a request to
correct the ILI is sent to the DIH. This closed control
loop between the DIH and LMS allows the improvement
of the LLM KB to enhance future translation accuracy.

4) Request the collection of Intent’s Key Performance
Indicators (KPIs) to start the Intent assurance step, which
consists of validating the Intent performance and achiev-
ing the requested service level agreement. Besides, the
assurance step consists of deriving LC management
decisions using reinforcement learning or policy-based
approaches to correct the performance if a degradation
is detected or correct inter-Intent conflicts.

B. Challenges and Open Issues

Although the proposed architecture offers a promising E2E
framework for Intent LC management, its realization faces sev-
eral challenges. These challenges encompass various aspects
of Intent processing procedures, including Intent decomposi-
tion and structure validation, Intent semantic validation and
intra-Intent conflict resolution, as well as Intent translation.

1) Intent decomposition and structure validation: Intent
task decomposition poses a significant challenge in IBN,
prompting researchers to explore novel AI-based methods.

However, the complexity and ambiguity of natural language
make decomposing tasks particularly challenging. On the other
hand, validating the Intent structure involves ensuring the
presence of required parameters in the user’s Intent. This
presents multiple challenges: How do we extract the corre-
sponding Intent for each domain? How do we validate the
Intent structure? How do we interact with the user? LLMs are
actively being developed to support various NLP tasks. Owing
to their context detection and human language comprehension
abilities, they can be utilized for intent decomposition to
understand which Intent concerns which domain. This fea-
ture is beneficial in 6G, as the latter involves heterogeneous
technological domains. Subsequently, structure validation can
be achieved through conventional rule-based methods, such
as human intervention (via HF), or by employing context-
aware techniques to extract essential parameters from user
inputs. For instance, named entity recognition is beneficial for
detecting specific required parameters. Nonetheless, incorpo-
rating HF can introduce security vulnerabilities when dealing
with erroneous or manipulated input. To address these risks,
a recommended approach is to establish robust HF validation
mechanisms. For instance, one effective strategy is to engage
experts to validate feedback before it is used by the system.

2) Intent semantic validation and intra-Intent conflict reso-
lution: On the one hand, semantic validation involves ver-
ifying that the user’s Intent aligns with the capabilities of
the underlying system. Researchers have employed NLP tech-
niques, such as LLMs, and Knowledge Graphs (KGs), to
identify key concepts and relationships in a given text [14].
They then utilize AI/ML approaches, such as deep learning, to
predict and verify conformity with the underlying system for
feasibility checks. Notably, LLMs can be used synergistically
with AI/ML to perform semantic validation and feasibility
checks, respectively. On the other hand, conflicts may arise
between users and service providers due to a misalignment
between service requirements and the capabilities of under-
lying resources. To address these conflicts, Intent negotiation
modules have been developed to initiate negotiation processes
[9]. These modules generate alternative Intents based on
resource availability, allowing users to accept or reject them.
Challenges include resolving conflicting objectives within In-
tents and assessing the feasibility of infrastructure. Despite
proposed frameworks, standardization in Intent negotiation
is still being developed. In this context, LLMs represent a
promising option due to their advanced reasoning capabilities.
However, LLMs require substantial knowledge before making
decisions, necessitating further training. Consequently, one
approach is to emphasize creating training and evaluation
telecommunications datasets. Subsequently, training LLMs on
these datasets, such as [15], could create expert LLMs in this
domain capable of efficiently making informed decisions to
resolve conflicts within Intents.

3) Intent translation: IBN systems are a significant area
of research interest, with researchers proposing new AI-based
methods to translate users’ Intents into network configura-
tions, operations, and maintenance strategies. Tools such as
chatbots [8] have emerged to simplify the Intent translation
process. Additionally, reasoning approaches have been used
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Fig. 2: Natural language-based Intent LC management in the EURECOM 5G facility [1].

in conjunction with NLP to improve translation performance.
On the other hand, LLMs also offer promising reasoning
abilities for translation tasks. However, in the context of IBN, a
few challenges remain: How do we translate natural language
Intents into ILIs? How do we validate the correctness of the
generated ILIs? First, LLMs can be adapted to this task using
fine-tuning or few-shot learning. However, this requires having
a high-quality KB that contains Intents and ILIs couples,
which is scarce. Second, rule-based methods such as HF or
advanced NLP based on deep learning approaches can be used
to validate the results of the LLMs.

C. Our Intent Decomposition and Translation framework

Fig. 2 depicts an instantiation of the architecture outlined in
Fig. 1, focusing on deploying natural language Intents using
the EURECOM 5G facility [1]. Two technological domains
are considered: Cloud/Edge and RAN. Initially, a natural
language Intent is processed by the MDIH, using an LLM to
decompose it into Cloud/Edge Intent and RAN Intent. These
are then forwarded to respective DIHs, also employing an
LLM to translate domain-specific Intents into ILIs. In the
Cloud/Edge domain, the ILI is represented by an NSD; in the
RAN domain, it is a RAND. Although only the NSD JSON
structure is illustrated in Fig. 2, the RAND is also implemented
using JSON and configures RAN parameters such as slicing,
throughput, maximum latency, bandwidth parts, etc. These
configurations described by the RAN Intent pertain to non-
real-time configuration, equivalent to the O1 configuration
of Open-RAN (O-RAN)2. Subsequently, the NSD is sent to
the Network Function Virtualization Orchestrator (NFVO),
responsible for deploying network services within the 5G
infrastructure. Simultaneously, the RAND is delivered to the
RAN Orchestrator (RANO), which operates similarly to the
Service Management Orchestration (SMO) of O-RAN, man-
aging RAN service deployment within the 5G infrastructure.
In this latter, the RAND configuration is enforced through

2https://www.o-ran.org

the SMO/RAN Intelligent Controller (RIC) using rApps and
xApps. To illustrate, Example I.1 will be decomposed into two
Intents: First, the Cloud/Edge Intent would be: “I want three
applications: an augmented reality content server, a mixed
reality collaboration platform, and a virtual reality simulation
engine. Each application requires 4 vCPU and 2 Gbytes of
memory.” Second, the RAN Intent would be: “The clients
are connected through a 5G network located in the Nice area
and tolerate a maximum latency of 5ms.”. Then, the system
will create: (i) an NSD containing three applications with the
requirement in CPU and RAM for each one; and (ii) a RAND
containing one xApp. This xApp will be deployed on top of
the RIC by the RANO and will manage the radio resource
allocation to ensure satisfying a 5ms latency for all users.

Fig. 3 illustrates the detailed LLM-based decomposition and
translation framework. Both the MDIH and DIHs utilize the
same LLM-based system design. This shared design employs a
three-stage process to establish an efficient Intent-to-2-domain-
Intents pipeline (for MDIH) and Intent-to-ILI pipeline (for
DIHs). In Stage 1, historical examples are retrieved from
the central decomposition KB: KBd (for MDIH), or domain
KBs: Cloud/Edge KBc; and RAN KBr (for DIHs). In Stage
2, these examples are utilized to decompose the Intent (for
MDIH) or generate the ILI (for DIHs). Here, an LLM is
employed through in-context learning. Finally, in Stage 3,
users provide HF regarding the quality of the decomposition
(for MDIH) or the generated ILI (for DIHs). This feedback
is incorporated into the corresponding KB if validated by an
administrator. Below, we discuss each stage in more detail. We
will use the index j ∈ {d, c, r} to represent the three systems.

1) Few-shot examples extraction: In this stage, the input,
denoted as Quj , is processed by a sentence transformer
model. The model’s objective is to retrieve relevant
examples from the corresponding KBj where each entry
is organized in a tuple structure as (Qij , Aij). Here,
Qij represents the queries corresponding to historical
inputs, and Aij comprises LLM responses, which have
been validated either through manual insertion or HF.
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The retrieval of examples involves measuring the cosine
similarity between the new input query Quj and each
query Qij within KBj . The cosine similarity score
indicates the degree of similarity between the vectors
representing the queries. It is calculated as:

S(Quj , Qij) =
Quj ·Qij

∥Quj∥∥Qij∥
(1)

where · represents the dot product of the query vec-
tors, and ∥ · ∥ denotes the vector’s Euclidean norm.
Subsequently, the AI model extracts a set of n tuples,
denoted as Topn, representing the most similar historical
examples. These tuples, in the form (Qij , Aij), are then
forwarded to the next stage for further processing.

2) Intent decomposition or Intent translation: The previ-
ously generated few-shot examples are assembled into
a prompt, which serves as an input for the LLM. This
prompt provides explicit instructions to guide the LLM
in its task, with a clear directive stating either “Your
job is to decompose Intent” or “Your job is to generate
the ILI.” Alongside this instruction, the prompt includes
additional rules defined by the administrator, the few-
shot examples (Qij , Aij), and the new input Quj . Sub-
sequently, the LLM will generate the decomposition or
the ILI. However, it is essential to note that effective
performance requires the LLM to have a substantial
context window, particularly when dealing with a large
number of examples (n is significant). Besides, the LLM
should be pre-trained on code-related data, given its
mission to translate Intent into JSON structures. In this
context, we have selected the CodeLlama model [7].
A single ILI can comprise more than 2k tokens, and
providing numerous few-shot examples necessitates a
substantial LLM context window. CodeLlama models
offer a maximum context window of 100k tokens, mak-
ing them well suited for our use case.

3) Intent translation validation: In Intent translation, the
validation agent ensures the LLM’s output aligns with

the ILI’s structure through three steps: syntax validation
for ILI JSON conformity, semantic validation using
regular expressions to check parameter types and values,
and correlation validation for parameter relationship
consistency. It also confirms ILIs compatibility with
EURECOM’s NFVO/RANO APIs. Validated ILIs are
forwarded to users via the GUI for HF; otherwise, the
LLM receives a prompt to correct the NSD with specific
instructions on detected errors.

4) Human feedback: Indirect Reinforcement Learning from
HF (IRLHF) is a crucial component of our system. When
a user is satisfied with either the Intent decomposition
or the generated ILI, they can provide HF to the admin-
istrator for inclusion in the KBj . Otherwise, the user
can correct the LLM response and include the corrected
version. This feedback, which consists of the query and
the correct response (Quj , Auj), is used to generate
more accurate and complete Intent decompositions or
ILIs in the future.

IV. PERFORMANCE EVALUATION

The section is structured into two subsections: Experi-
mentation setup, which details the experimental setup, and
Experimentation results, which presents and analyzes the
performance of our framework.

A. Experimentation Setup

Our experimental setup consists of two machines, each
equipped with 36 Intel(R) Xeon(R) Gold 6240R CPUs run-
ning at 2.40GHz. The second machine also has an Nvidia
A100 GPU with 40GB of vRAM. The first machine runs
the Kubernetes-based test cluster and the EURECOM 5G
facility components, whereas the second machine hosts the
LLM-based system. The same LLM is used for both In-
tent decomposition and translation. We use the LangChain3

3https://www.langchain.com



framework for handling LLMs and ChromaDB4 to store KB
embeddings. We gathered our foundational KBs data from a
variety of sources, including EURECOM’s past and ongoing
research projects. We compared several other popular open-
source LLMs, including Mistral 7B and Llama 13B, and found
that the CodeLlama model with 34B parameters5 produced
the best results in both decomposition and translation tasks.
We used the MPNet v2 sentence transformer model6. We set
the maximum number of tokens to 3k, as the longest ILI in
our initial KBs is 2k tokens long. We set n to 10 for the
decomposition task and 4 for the translation task, as it is
the maximum number of few shot examples that fit on the
GPU. Additionally, we set the LLM temperature to 0.1. It is
important to note that these parameters are flexible and can be
adjusted to meet future requirements.

B. Experimentation Results

This subsection evaluates the system’s performance in the
context of Intent decomposition and translation. The evaluation
focuses on decomposing natural language Intents into the two
technological domains (Cloud/Edge, RAN) and subsequently
translating Cloud/Edge Intents into NSDs. The evaluation of
RAN Intent translation is omitted due to space constraints.
However, since both the Cloud/Edge and RAN domains rely
on NF-based components, the evaluation results from the
Cloud/Edge domain can be generalized to the RAN domain. In
order to gather performance data, feedback was solicited from
10 volunteering users within EURECOM. Each volunteer as-
sessed our platform by creating 10 CSs and providing feedback
on Intent decomposition and Cloud/Edge Intent translation.

1) Intent decomposition and translation feedback: To en-
able IBN, our system must understand users’ Intents. We
validated this understanding with a rating approach. After
each experiment, volunteers evaluated both the Intent decom-
position and translation steps using a scale of 0 to 5, with
5 being the highest score. Fig. 4 shows the average user
rating from 10 CS creations. Using averages helps mitigate
individual biases among users. If one or two users provide
biased ratings, these are balanced out in the mean calculation.
Our approach demonstrated significant efficiency in Intent
decomposition, reflected by an initial rating score of about
4.5. However, users initially expressed dissatisfaction with the
Intent translation component, requiring modifications before
submitting NSDs to the NFVO. Despite this, the average
rating consistently exceeded 3.5, indicating that only minor
adjustments were necessary, primarily related to configuring
unfamiliar parameters. Over time, the system learned from
feedbacks and past examples, generating NSDs identical to
those desired by users.

2) Intent decomposition and translation latency: Fig. 5
illustrates the relationship between the number of requested
Cloud/Edge applications and the time required to decompose
Intents and generate a valid and correct NSD using the LLM-
based system. From this figure, we can observe that the

4https://www.trychroma.com/
5https://huggingface.co/TheBloke/CodeLlama-34B-Instruct-GPTQ
6https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Fig. 4: Mean rating score throughout time.

Intent decomposition process adds only a few seconds to the
overall E2E time (yellow surface). This is because the process
involves breaking down the Intent into smaller parts, resulting
in generating almost the same number of tokens in every
decomposition task. However, as the number of requested
applications increases, the translation time also increases (blue
surface). As illustrated in Fig. 5, the E2E time exceeds 2
minutes when translating requests containing more than 3
Cloud/Edge applications. This is because the system generates
more tokens for each Cloud/Edge application in the NSD,
resulting in increased Intent translation time.
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Fig. 5: Impact of the number of applications on decomposition
and translation time.

3) Validation agent iterations: Throughout all NSD gen-
erations, the validation agent was executed only once for
each generation. This demonstrates that the output of the
CodeLlama LLM consistently adheres to the NSD structure
from the first iteration, showcasing CodeLlama’s effective
learning of the format only from few-shot examples. This
proficiency highlights its ability to generate correct JSON
structures due to its training on code-related data.

V. LIMITATIONS AND FUTURE WORK

Our work has successfully demonstrated the feasibility of
automatic Intent decomposition and translation by combining
few-shot learning using an open-source state-of-the-art LLM
with HF. However, to achieve a robust E2E Intent LC man-
agement system, several areas of future development remain:

• Intent activation and conflict resolution: The LLM-
generated ILIs may not align with available infrastructure
resources. To address this, an ML-based feasibility check
will be integrated into the DIHs, and an Intent negotiation
mechanism will be developed to collaborate with users.

• Trust activation: Users should have the option to activate
trust at a later stage, allowing them to submit requests



without viewing intermediate steps. This feature will
be integrated into the system to enable fully automated
Intent decomposition and translation, directly deploying
applications from natural language-based Intents.

• Structure validation enhancement: HF is currently used
to validate LLM outputs, which can be time-consuming.
Therefore, advanced ML-based techniques, such as NER,
will be explored to perform comprehensive structural and
semantic validation of LLM outputs for decomposition
and translation actions.

• LLM improvements: The current execution time is accept-
able, but processing dense Intent requests can lead to pro-
longed processing and timeouts. Techniques to accelerate
the inference process will be investigated. Additionally, in
advanced development phases, a single small LLM will
be trained to master Intent translation using the resulting
KBs. This will enable the direct generation of ILIs from
initial user Intent.

VI. CONCLUSION

This paper presented an innovative Intent LC management
architecture that revolutionizes network configuration and
management by enabling natural language interaction with
networks. By leveraging cutting-edge advancements in AI,
particularly LLMs, the proposed architecture automates the
entire Intent LC, from Intent decomposition and translation
to Intent negotiation, activation, and assurance. This approach
significantly simplifies network management, eliminating the
need for expertise in low-level configurations and enabling
network administrators to focus on high-level network objec-
tives. To validate the proposed solution’s effectiveness, we
presented an initial implementation and evaluated it in real-
world deployments. The results demonstrate the architecture’s
capability to translate natural language Intents into actionable
network configurations.
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