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Abstract

In the field of action recognition, event cameras have
marked a breakthrough by capturing motion dynamics be-
yond the capability of traditional cameras, thanks to their
high temporal sensitivity. However, the asynchronous and
sparse nature of event data challenges their use with tradi-
tional convolutional neural networks (CNNs). The E2VID
model offers a solution by transforming event data into con-
tinuous video frames, enabling the use of standard CNNs for
event-based data analysis. However, it struggles with accu-
rately capturing motion speed variations and pauses, limit-
ing its effectiveness in scenarios where temporal dynamics
are crucial. In response, we introduce TIME-E2V, which
integrates spatial embeddings from E2VID with LSTM-
derived temporal embeddings from frame timestamps. This
combination is processed by a modified 3D convolutional
network (C3D), leveraging its inherent strengths in video
analysis. Our proposed approach not only overcomes
E2VID’s challenges but also delivers competitive perfor-
mance across a wide range of dynamic scenes with the lead-
ing action recognition networks for event cameras, includ-
ing those based on Spiking Neural Networks.

1. Introduction

A new era in action recognition was brought about by the
emergence of event cameras, which provided unmatched
temporal resolution and spatial dynamics. Unlike tradi-
tional cameras, these neuromorphic sensors excel in cap-
turing movement dynamics due to their high temporal and
spatial dimensions, making them particularly suited for ap-
plications requiring detailed motion analysis and low la-
tency. Their event-based data representation, triggered by
changes in pixel brightness, not only ensures efficient data
processing but also a heightened level of security, a criti-
cal advantage for battery-powered devices or high security
applications.

In the past, researchers have focused on developing neu-

ral network architectures that are suitable for the sparse and
asynchronous nature of event camera data. Early endeav-
ours favoured Graph CNNs [16], due to their proficiency
in maintaining the spatiotemporal integrity of such data.
However, they faced challenges in scalability and compu-
tational efficiency when processing the high-dimensional
event stream. This motivated researchers to investigate al-
ternative techniques including 2D frame reconstructions, to
bridge the gap and allow the integration of event data with
conventional computer vision algorithms. Despite various
attempts at these reconstructions—ranging from histograms
to time surfaces— they often result in a loss of spatial or
temporal resolution and their deviation from conventional
image representations complicates their adoption in pre-
existing computer vision frameworks, which are predomi-
nantly designed for conventional video or image data. The
search for a more direct and efficient processing method led
to the exploration of Spiking Neural Networks (SNNs) [13]
which mimic the operational principle of the human brain,
processing data in a discrete manner through spikes, which
aligns perfectly with the nature of the event-based data gen-
erated by neuromorphic cameras and allows their direct pro-
cessing as spike tensors. A recent breakthrough came with
the proposal of a transformer-based architecture for action
recognition [3], setting new benchmarks in accuracy within
this domain. However, it has a significant trade-off between
model performance and complexity.

A particularly noteworthy advancement is the develop-
ment of the E2VID model [12]. It aims to bridge the gap
in event-based research by converting the event stream into
grayscale video sequences with high temporal resolution.
This approach facilitates the application of state-of-the-art
video processing algorithms, such as the 3D convolutional
(C3D) architecture, to event data, thus leveraging the ad-
vanced capabilities of these models for action recognition
tasks. The E2VID ability to generate high-quality, tempo-
rally consistent video frames from event data while preserv-
ing the intrinsic advantages of event cameras has not only
positioned it as a superior alternative to SNNs, but also en-
abled it to achieve competitive performance. However, the
model’s limitations in accurately representing action speeds



and capturing pauses in motion point to the need for further
innovation.

In this paper, we primarily aim to highlight the impact of
the E2VID model in overcoming the limited research done
in the event domain by finding a representation that allows
us to leverage the traditional video-based convolutional net-
works for action recognition. What we do differently from
the original paper is that we also venture into an unexplored
downstream of E2VID in action recognition. In that con-
text, we aim to call attention to a major limitation in the
model —its compromised ability to depict action speed—
and propose a novel dual-channel architecture designed to
overcome this issue. In summary, our work offers these key
contributions:

• We verify the efficiency of the E2VID model, but also
identify its inherent limitations, particularly its fail-
ure to accurately capture action speeds within recon-
structed videos.

• We introduce an innovative architecture that integrates
the C3D action recognition model with an additional
branch for temporal embeddings, demonstrably sur-
passing the performance of SNNs dedicated to event
data processing.

• Through comprehensive experimentation, we define
the optimal event sampling parameters and ensure our
model’s robustness against the grayscale nature of the
reconstructed frames, thereby paving the way for more
accurate and versatile action recognition applications.

2. Related Works
The emergence of event cameras—which stand out

for their great spatiotemporal resolution and energy effi-
ciency—has set off a paradigm shift in the analysis of mo-
tion dynamics. Their behaviour is said to be motion-centric
as they only capture the dynamics in a scene thus remov-
ing background redundancy, saving energy, and economis-
ing on the data size as pixels are triggered only when there
is change in brightness level. When compared to standard
imaging devices, these neuromorphic sensors [9] offer a
greater dynamic range and responsiveness. However, the
distinctive nature of their data they produce poses compati-
bility challenges with traditional networks designed for the
visible domain and thus necessitates novel processing ap-
proaches to fully realise its potential.

Early attempts to convert event data into a format com-
patible with standard video processing techniques primarily
employed one of these two representations: Time surfaces
[8] which suffered from temporal aliasing as the sampling
rate is too low to capture the rapid changes in motion and
histogram of events image [6] which was limited by the in-
ability to convey the exact temporal order of events. More

recent approaches like the one demonstrated by Zhu et al.
[17], proceeds to aggregate events in a three-dimensional
space-time volume for unsupervised learning of optical flow
from event data. Despite preserving some temporal in-
formation, they often fail to reflect the continuous flow of
events due to their fixed bin sizes.

A more promising path toward enhanced event data pro-
cessing was to design a network that is compatible with the
asynchronous nature of event data rather than trying to in-
tegrate event data with traditional architectures. In light of
that, Tavanaei et al. [13] proposed the Spiking Neural Net-
works built upon the Integrate and Fire neuron which allows
them by nature to process information as temporal spikes
instead of numeric values. This spike-based computational
model not only has the potential to process spatiotempo-
ral data but also allows us to feed the event data directly
into the network as Spike Tensors without pre-processing.
While promising for object detection [2] and facial expres-
sion recognition [1] tasks, their application to action recog-
nition, which involves complex temporal patterns, remains
challenging. These tasks require advanced temporal encod-
ing and decoding mechanisms—areas where SNN research
is still developing.

Acknowledging the limitations of SNNs, Rebecq et al.
[12] revisit the event-to-image reconstruction approach and
try to bridge the gap between event data and traditional
CNNs as efficiently as possible. They proposed a transfor-
mative solution to event-based video reconstruction, utiliz-
ing a neural network to reconstruct video frames from event
data. This model successfully preserved the spatial and
temporal integrity of the scenes, setting a new benchmark
for the field. However, it faces challenges with processing
rapid motion and motion pauses. One effective solution for
preserving temporal embeddings in traditional CNN models
was the one adopted by Wang et al. [15], which is the intro-
duction of Recurrent Neural Networks (RNN), particularly
the Long short-term memory (LSTM) network, as a tempo-
ral feature extractor after the C3D network. This approach
is what inspired our model architecture, however, we mod-
ify the placement of the LSTM in our model according to
our goal. Our TIME-E2V model is developed in response to
these findings, aiming to overcome the specific limitations
identified in methods like E2VID. To our knowledge, this is
the first demonstration of downstream applications focused
on temporal analysis for action recognition using event data.

3. Limitations of the E2VID model
Even though the E2VID model represents a significant

step forward in event-to-video reconstruction and demon-
strates the feasibility of preserving temporal and spatial de-
tails within reconstructed videos, a thorough evaluation of
its performance points to a significant drawback in its abil-
ity to preserve time, which manifests in two notable cases.



Figure 1. Illustration of the proposed model.

First, it is unable to accurately represent the speed of ac-
tions, which is crucial for distinguishing between similar
activities, such as running versus walking. Second, this lim-
itation is further highlighted by the model’s struggle to cap-
ture pauses in motion when employing a fixed event sam-
pling rate for frame generation, as a pause can be consid-
ered an extremely slow action that the model fails to record
accurately.

In order to provide a clearer understanding of the E2VID
model’s capabilities, we explore the two fundamental ap-
proaches it uses for frame reconstruction: Fixed Time Du-
ration and Fixed Number of Events. The latter results in an
asynchronous frame sequence, producing a higher number
of frames during periods of intense motion and fewer when
there is little movement. On the other hand, the Fixed Time
Duration method produces frames within set time windows,
regardless of whether or not there is action in the frames.
Accordingly, a thorough comparative study was performed
to determine which method most effectively captures the
temporal nuances essential for accurate action recognition.
This study will be detailed in the subsequent ’Experimental
Results’ section, following an introduction to the datasets
used for benchmarking our model. Notably, we have veri-
fied that the most optimal approach for our application is the
Fixed Number of Event approach with a sampling rate of
0.25 events per pixel per event window.Therefore, we have
deliberately chosen this sampling technique for all subse-
quent analysis and methodology in the paper.

Consequently, after obtaining the reconstructed video
frames using the Fixed Number of Events sampling ap-
proach, we generate a video at a rate of 30 frames per sec-
ond1. Upon comparison with its visible counterpart, we
realise that the reconstructed video from event frames ap-

1Visual materials related to this paper will be made available upon ac-
ceptance.

pears to be in slow motion where an action of 7 seconds in
the visible domain is represented as 17 seconds in the re-
constructed domain. This proves that the E2VID does not
conserve speed. However, on the bright side, this sampling
approach generates a higher number of event frames than
that with fixed time duration which means it preserves more
details about the pattern of the motion.

In another experiment, we recorded a video of a person
walking, stopping for a few seconds, then proceeding to
walk again. Using the temporal approach, the stop in mo-
tion is translated into consecutive frames where the person
stays in the same position indicating that he stopped. How-
ever, for the second approach, the frames show a continu-
ous motion as the stop did not generate enough events for
the model to accumulate in the event window for frame gen-
eration. Consequently, our analysis proves that the E2VID
model has a significant shortcoming: it struggles with tem-
poral representation, which affects its ability to correctly
capture motion pauses and effectively represent real-time
speed in reconstructed movies. These efforts underscore the
ongoing need for models that can accurately represent the
speed and subtlety of movements, a critical aspect for ap-
plications in action recognition. And, this is the challenge
we aimed to overcome with our proposed model.

4. Methodology

4.1. Model Architecture

To address the challenge of the reconstructed event
frames in accurately capturing temporal dynamics, we pro-
pose the TIME-E2V, an integrated model that combines
spatial and temporal information to enhance action recog-
nition accuracy. Figure 1 presents a schematic overview of
our framework. At the base of our approach is the E2VID
model, which takes as input the non-uniform event data



stream and generates their corresponding grayscale video
frames. These sequences are then sampled at a granular-
ity of 30 frames per second, and passed through a fea-
ture extraction network, which consists of several layers
of 3D convolutions and pooling layers, producing spatial
embeddings that capture the scene’s visual details. Si-
multaneously, we extract temporal embeddings by record-
ing the start and end timestamp and calculating the dura-
tion between successive frames and saving them as tuples.
This temporal data is processed through an LSTM network,
which is a type of RNN, specifically designed to handle se-
quential data and can effectively capture long-term depen-
dencies, making it ideal for modeling the temporal patterns
inherent in the event data captured over time.

The resulting spatial and temporal embeddings are then
concatenated along the feature dimension to form a unified
spatiotemporal representation. This comprehensive embed-
ding feeds into our action recognition model, which serves
as the backbone of our method and is based on the C3D
model introduced by Tran et al. [14] for video action recog-
nition , which has been adapted to incorporate temporal
data alongside the conventional frame input directly from
raw video frames without requiring pre-segmented or hand-
crafted features. By integrating these temporal cues with
spatial features, the model gains an enhanced ability to dis-
tinguish between actions, especially those that are closely
related or that unfold over varying timescales.

This process not only preserves the spatial precision of
the scenes captured by event cameras but also ensures com-
patibility with conventional video analysis techniques. By
combining the strengths of E2VID with LSTM and a mod-
ified C3D model, our system sets a new standard for accu-
racy and efficiency in interpreting event camera data, mark-
ing a pivotal step forward in the domain of neuromorphic
computing in the domain of motion dynamics.

4.2. Datasets

In order to verify the results of our model we rely
on some benchmark datasets for action recognition, re-
visiting them with a novel perspective aligned with our
current objectives. These include the Gait3 Dataset [4],
adapted specifically for this study, alongside the TUM
Action Recognition [11] and the DailyAction-DVS [10]
datasets, each chosen for their relevance and contribution
to the domain of action recognition.

Gait3 dataset: This dataset was originally recorded for
the purpose of gait recognition and was modified for eval-
uating the model’s performance on speed-characterized ac-
tions. Initially containing 3 classes : walking, running, and
walking with backpack, we split this dataset into two parts:
Gait3 Speed dataset with the classes walking and running to
assess the model’s ability to differentiate between the same
action done in two speeds. And Gait3 Backpack, which

aims at evaluating the details of the action (whether or not
the person has a backpack while walking). Both datasets
have 18 minutes of data across 69 people in both visible
and event domain pairs.

Despite the dataset’s scope being limited to just two
classes per dataset, it is highly relevant for this specific ap-
plication. With data pairs in both the visible and event do-
mains, it serves as an ideal testbed to specifically highlight
the E2VID model’s challenges in discerning motion speed
and showcase how our model overcomes these limitations.

DailyAction-DVS: This dataset consists of a diverse
range of 12 types of motions, from everyday tasks like walk-
ing to challenging moves like lifting and bending, captured
under various circumstances and across 15 people. The
footage, which has an average duration of 12 minutes per
action, provides a strong basis for evaluating the effective-
ness of our methodology in everyday scenarios.

ActionTUM: This dataset consists of 291 recordings of
ten distinct activities performed by 15 persons, captured us-
ing a DAVIS camera from 3 different viewpoints. For every
activity, there are about 2.5 minutes of footage. The TUM
dataset, despite its smaller size, is essential for assessing
the model’s performance in a scenario with a constrained
dataset since it provides information about the model’s flex-
ibility and generalization abilities.

4.3. Training Implementation

For the E2VID model, we use the original codebase 2

and generate frames with a fixed number of 0.25 events per
pixel per event window. The total number of events per
frame can then be calculated as the product of the height,
width, and the number of events per pixel. The LSTM com-
ponent of our network architecture is made up of 2 layers
with 256 hidden layers each and configured with a bidi-
rectional structure. To prevent overfitting, we also apply
a dropout of 0.4 between the 2 LSTM layers.The result-
ing spatial embeddings (4096 dimensions) are concatenated
with the temporal embeddings (256 dimensions) from the
LSTM network to form a spatiotemporal embedding of size
4352 dimensions.

For the C3D model adaptation, which integrates tempo-
ral with spatial data, we initialize with pre-trained weights
from Sports-1M dataset [7] and train for 100 epochs start-
ing at a learning rate of 0.01 that reduces by a factor of 0.1
every 20 epochs. The C3D model is composed of 8 convo-
lutional layers, 5 max-pooling layers, and 2 fully connected
layers, followed by a softmax output layer. We also use
the SGD optimizer that employs a dual learning rate strat-
egy: base learning rate for most parameters and a tenfold
increase for LSTM and the final layer parameters. Addition-
ally, for comparative analysis, we train a Spiking-Element-

2https://github.com/uzh-rpg/rpg e2vid



Wise ResNet model (SEW-ResNet) following the exact ar-
chitecture proposed in [5] and implemented with Spiking-
Jelly to enhance deep learning in SNNs by using residual
connections.

5. Experimental results
5.1. Comparison of E2VID Sampling Methods

Building on the previously described frame reconstruc-
tion techniques of the E2VID model, we conducted a com-
prehensive series of tests to determine the optimal sampling
technique for enhancing action recognition accuracy. Ac-
cordingly, we explored various sampling rates, including
different fixed time intervals (15, 30, 60 fps) and fixed num-
bers of events per pixel (0.15, 0.25, 0.35). After generating
the video frames from the event stream under these condi-
tions, we assessed the model’s accuracy on the two subdivi-
sions of the Gait3 dataset thereby ensuring a thorough eval-
uation by encompassing a wide spectrum of spatiotemporal
dynamics.

Sampling Rate Gait3 Speed Gait3 Backpack
15 fps 82.14% 92.85%
30 fps 77.14% 88.57%
60 fps 51.78% 76.78%

Table 1. Comparison of Model Accuracy Across Different Frame
Rates.

Sampling Rate Gait3 Speed Gait3 Backpack
n = 0.15 85.71% 91.07%
n = 0.25 91.07% 98.21%
n = 0.35 96.42% 100%

Table 2. Comparison of Model Accuracy Across Different
Number of Events per pixel.

As demonstrated in Table 1, for fixed time intervals, a
lower frame rate yielded higher accuracy, as each frame
covers a longer duration, capturing more events. In contrast,
Table 2’s outcomes reveal a complex correlation between
sampling rate and model accuracy when considering fixed
numbers of events per pixel. Event though a sample rate
of 0.35 yields the best accuracy, 100% for Gait3 Backpack
in particular, it also represents an extreme, at which any in-
creases may result in declining gains. Although slightly less
accurate, a rate of 0.25 could in fact provide a more bal-
anced approach especially if we view this situation as set-
ting a threshold rather than direct correlation. It maintains
a good trade-off between detail and frame volume by main-
taining a high level of detail without going over the point
where there are too few frames.

In Table 3, we selected the best-performing sampling
rate for each technique, as determined from Tables 1 and

Sampling Method Gait3 Speed Gait3 Backpack
Fixed Time duration 82.14% 92.85%
Fixed Number of Events 91.07% 98.21%

Table 3. Comparison of Model Accuracy Across Sampling
Methods.

2, and compared their performance. The Fixed Number of
Events method notably outperformed Fixed Time Duration,
yielding an accuracy of 91.07% for the Gait3 Speed cate-
gory and a 98.21% for the Gait3 Backpack category. This
suggests that the dynamic approach of sampling frames
based on event density provides a more accurate represen-
tation of the actions and effectively captures both rapid and
detailed movements. Accordingly, we will proceed with the
Fixed Number of Events method for our model evaluation
to best demonstrate its performance.

5.2. Results on DailyAction and ActionTUM

For evaluation, we train our proposed TIME-E2V on two
benchmark datasets: DailyactionDVS and ActionTUM, to
verify its performance and how it would generalize across
a diverse range of actions. Additionally, for comparative
analysis, we train the SEW-ResNet model and a variant of
our model without the temporal component, referred to as
E2V, to verify the impact of incorporating temporal infor-
mation on recognition performance.

As shown in Table 4, our model exhibits a pronounced
enhancement in performance against SEW-ResNet, with
an impressive gain of nearly 6% in accuracy on the Ac-
tionTUM dataset, achieving 97.26%. Moreover, the E2V
model trained on reconstructed frames, noted a still supe-
rior accuracy over SNNs—95.85% on Daily Action and
93.15% on ActionTUM, reinforcing the point that lever-
aging the strength of traditional C3D models outperforms
SNNs trained with event data for action recognition. Fur-
themore, upon comparison of the two variants of our model,
we deduce that integration of temporal embeddings en-
hances our own model’s accuracy by 0.69% for Daily Ac-
tion and a more significantly 4.11% for ActionTUM.

Model DailyAction-DVS ActionTUM
SEW-ResNet 94.69% 89.69%
E2V 95.85% 93.15%
TIME-E2V 96.54% 97.26%

Table 4. Performance comparison of different models on action
recognition tasks.

Based on this significant discrepancy in improvement,
we notice that the ActionTUM dataset, despite its lower
baseline accuracy, may have benefit more from the tempo-
ral resolution that our embeddings provided. This could be
due to the fact that it includes actions like kicking, throw-



ing, and turning around that are more dependent on speed
and precise timing for accurate recognition. This signifi-
cant gain highlights the impact of our temporal embeddings
in enhancing the model’s ability to recognize the speed and
dynamic of actions and achieve cutting-edge results, mak-
ing it superior to both SNNs and its own version in the ab-
sence of these embeddings.

5.3. Results on Gait3 Dataset

For the Gait3 Dataset, we employed a different strat-
egy to directly address and highlight the E2VID model’s
difficulty in accurately capturing motion speed. We con-
ducted our tests across the two distinct Gait3 Speed and
Gait3 Backpack datasets. By comparing our model’s perfor-
mance on these tasks with that of traditional RGB frames,
we aim to demonstrate the unique advantages that recon-
structed event frames provide in action recognition scenar-
ios, effectively showcasing our TIME-E2V model’s ability
to tackle the E2VID model’s challenges.

Model Modality Gait3 Speed Gait3 Backpack

C3D [14] RGB 95.83% 98.07%
E2V Event 91.07% 98.21%
TIME-E2V Event 94.64% 98.21%

Table 5. Action recognition analysis for Gait3 datasets.

For the ’Walking versus Running’ task, Table 5 shows
that the introduction of time embeddings to event frames
significantly increased the model’s accuracy by 3.57%,
from 91.07% to 94.64%, almost matching the 95.83% accu-
racy achieved with the original RGB videos. This demon-
strates that our model has effectively learned to differentiate
speed variations in motion. However, for Gait3 Backpack,
the accuracy remained consistent at 98.21% with the inclu-
sion of time embeddings, matching the accuracy of the RGB
model. The absence of change indicates that time embed-
dings have a negligible impact on actions that are not speed-
dependent but rely on recognizing spatial details, such as
the presence of a backpack.

In both cases, the accuracy of event frames with time
embeddings meets or exceeds the performance of the visi-
ble domain model. This integration enables the system to
capture the subtle variations of motion speed with a level of
precision that was previously unattainable with event data
alone, underscoring the efficacy of our approach in over-
coming the limitations of the E2VID model and highlight-
ing the potential of event-based data in action recognition
tasks.

6. Ablations
6.1. Effect of Grayscale on the model performance

A critical consideration for our study is the impact of
color on model accuracy, given that the E2VID model

exclusively produces grayscale images. This raises an
important question about the potential advantage color
information may offer in visible spectrum data, potentially
skewing accuracy comparisons favorably towards it over
event-based data. To address this, we convert the Gait3
dataset to grayscale, enabling a more equitable comparison
of model performance across both domains. For our anal-
ysis, the dataset is partitioned into training, validation, and
testing segments with a distribution of 60%, 20%, and 20%,
respectively, facilitating a thorough evaluation of this effect.

Dataset RGB Videos Grayscale Videos
Gait3 Backpack 98.07% 98.07%
Gait3 Speed 93.75% 93.75%

Table 6. Action recognition accuracies for C3D on Gait3 dataset.

The experimental results in Table 6 reveal that the accu-
racy remains consistent between the original visible spec-
trum data and its grayscale-converted counterpart. This
consistency underscores that the absence of color informa-
tion does not disadvantage the grayscale event frames pro-
duced by the E2VID model. Consequently, we can con-
fidently assert that our comparison between visible and
grayscale event data is fair, ensuring that any observed dif-
ferences in model performance are attributable to factors
other than color information.

7. Conclusions

In this work, we introduced TIME-E2V, a novel frame-
work designed to enhance action recognition capabilities by
integrating temporal embeddings with event data, thereby
overcoming the limitations of the E2VID model. We used
state-of-the-art SNNs and the E2V model as baselines for
comparison. As a future perspective, we plan to inte-
grate the recent advancements in video transformers into
our baseline, as impressive results have been reported on
the DVS Gesture dataset. When evaluated on benchmark
datasets, our TIME-E2V model significantly outperformed
its variant, achieving nearly a 4.11% increase on the Action-
TUM dataset. This approach not only addresses the E2VID
model’s limitations but also demonstrates how event-based
vision systems can be made more adaptable and efficient,
expanding their applicability in dynamic and complex vi-
sual applications.
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