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Abstract—Training without sharing data is one of the drivers
that makes Federated Learning (FL) more attractive, compared
to centralized approaches. However, requiring each learner to
train the full model may not be efficient, particularly for
devices with restricted resources, such as those available in
Unmanned Aerial Vehicles (UAVs). To address this issue, a
variation of FL technique, specifically Split Federated Learning
(SFL), has recently been proposed. Unlike FL, the key concept
of SFL is to divide the layers of the neural network among
the involved learners. Therefore, each individual client will train
only a segment of the model (submodel) rather than the entire
model. Clearly, this technique, besides data privacy, optimizes
the utilization of computational resources, reduces client-side
training time, and enhances model privacy. However, there are
questions that require answers: How should we split the model?
Shall we systematically divide it in half, or is there a more
optimal approach? In this line of thought, this paper provides
a detailed analysis of possible splitting schemes of a power
consumption prediction model for UAVs. First, the SFL-enabled
model is presented. Second, an experimental analysis is conducted
in which different splitting alternatives are made and numerically
analyzed to examine the influence of network layering on split
federated learning performance.

Index Terms—Low-Resource Devices, Unmanned Aerial Vehi-
cle (UAV), Split Federated Learning (SFL), Splitting Strategy.

I. INTRODUCTION

Distributed Learning (DL) in general and Federated Learn-

ing (FL) in particular have garnered remarkable interest in

the research community in recent years. Many state-of-the-

art papers have suggested robust FL-based solutions in many

applications, such as healthcare, smart grid, industrial engi-

neering, and the Internet of Things (IoT) [1]. Notwithstanding

the importance of federated learning in model training when

data sharing is not possible, it is worth noting that the appli-

cation of FL may not always be the best-performing policy.

FL demands substantial computational capabilities, especially

for large-scale models, which can pose challenges for less

powerful or limited resource devices to effectively train the

entire model. In real-world scenarios, numerous clients, such

as UAVs, face limitations in computational power, memory,

and energy compared to a server [2]. Therefore, training the

full FL model on UAVs devices can deplete their resources,

resulting in premature stoppage of the training process. Fur-

thermore, in FL, both the server and clients have the ability

to access the complete local and global models, making the

system vulnerable to potential model attacks. To overcome

these issues, SL [3] and SFL [4] are two recent algorithms that

consist of splitting a complex neural network into smaller parts

(subsections), each subsection is trained at a separate location

(client or server-side). The participant learners handle the data

up to an intermediate layer, referred to as the cut layer, while

the remaining layers are maintained on the server side. It is

apparent that both algorithms reduce the computation burden

on the clients side since they train only a few layers instead

of the entire model. In addition, SL and SFL ensure model

privacy achieved through the architectural division of the

model between clients and the server, as the client-side cannot

access to the server-side model and vice versa [5]. However,

the major inconvenience of SL lies in its training nature. In

SL, each client i must wait for the previous client i − 1 to

finish before starting the training. This has a negative impact

on the model’s efficiency, particularly in terms of training time.

Split Federated Learning (or SFL) is an enhanced distributed

learning algorithm in which clients conduct their local training

concurrently (in parallel), effectively overcoming the limita-

tions of SL. Therefore, our focus in this study will be on SFL,

which avoids the disadvantages associated with both FL and

SL approaches by providing less computational complexity

than FL and less temporal complexity than SL [6]. As will

be seen in the upcoming sections, diverse set of SFL split

scenarios are applicable, selecting the best strategy involves

taking into account a range of criteria. The objective of this

work is to investigate the impact of neural network depth on

SFL performance in resource-constrained environments.

This will help to select the best configuration that strikes

a good balance between model performance and resource

efficiency. To this end, we design an SFL-based model for

UAVs power consumption forecasting and investigate every

possible splitting strategy between the clients and the main

server. The remainder of the paper is organized as follows.



In Section II, a succinct review of the existing literature

is presented. Afterward, our methodology and the designed

approach are introduced in Section III. We comprehensively

detail the experimental design and discuss the results obtained

in Section IV. Finally, we conclude the paper in Section V.

II. LITERATURE REVIEW

Uploading UAV data to a central node for training can

reveal scalability and privacy concerns. With the increasing

prominence of federated learning as a distributed and privacy-

preserving solution, numerous FL-supported methods have

been proposed to tackle multiple problems in wireless UAV

networks. For example, UAV path control [7], air quality sens-

ing [8] and security issues [9]. Nevertheless, the applicability

of FL in UAV networks remains a matter of contention due

to the constrained resources of UAV devices, especially for

complex models with a high number of trainable parameters.

Training large models requires substantial computational re-

sources and a long-lasting battery, which are not typically

inherent in UAV devices. To further improve the federated

training process in UAV-assisted networks, other initiatives

focus on optimization. The study [10] introduces a deep

reinforcement learning (DRL)-based algorithm for improving

long-term FL performance. It employs Lyapunov optimization

to simplify energy constraints, transforms the problem into a

Markov decision process (MDP), and uses DRL to optimize

UAV placement and resource allocation, promoting sustainable

UAV-assisted networks and energy conservation. Similarly,

the authors in the paper [11] investigate the optimization of

federated edge learning in the context of UAV-enabled IoT for

B5G/6G networks. They propose a framework that enables

devices to adapt their CPU-frequency settings to extend the

battery life of UAVs and prevent premature dropout from

the training process, particularly in dynamic environments. To

address this optimization challenge, the authors employ the

deep-deterministic policy gradient strategy (DDPG) as their

approach. In a parallel way, authors in [12], developed a

joint training and resource allocation method to minimize the

energy consumption for the multi-UAV-assisted FL scheme.

The proposed solution uses an optimization algorithm that

addresses the minimization of overall training energy con-

sumption of UAV swarms as well as the minimization of

maximum energy consumption of UAV swarms. In a recent

publication by [13], authors outlines a hybrid methodology.

This approach combines FL for a portion of clients (with high

resources) and SL for collaborative training in conjunction

with a central base station.

III. METHODOLOGY AND STUDY DESIGN

A. Overview

In the context of an SFL model M of ℓ hidden layers,

it is pertinent to note that the total number of potential

splitting possibilities is then (ℓ− 1). For each possibility Pi,

i ∈ {1, . . . (ℓ− 1)}, the client and server sides would have

i+1 and (ℓ− i+1) layers, respectively. The aim of this work

is to examine the influence of the splitting strategy on both

the performance of SFL model and the utilization of devices’

resources. For that, we investigate each probability and analyze

its impact on the entities (the clients and the server) involved

in the neural network framework for the given application.

The objective is to determine the best decomposition scheme

that yields good performance on low-resource devices. In this

vein, we opt for a UAV battery power consumption application.

First, we define a centralized model using Long Short-Term

Memory (LSTM) [14] to forecast the instantaneous power

consumption of UAVs using their sensed data. After selecting

the optimal network hyperparameters, the training of the SFL

model is carried out using the same hyperparameter settings.

B. LSTM Model Architecture

LSTM plays a crucial role in capturing sequential infor-

mation and dependencies within time series data, making

them suitable for tasks involving sequences, such as energy

forecasting. In our study, we employed a supervised regression

model comprising eight LSTM layers. The model takes a set

of numerical features as input, the core of the model consists

of six LSTM layers stacked on top of each other. The final

LSTM layer’s output is passed through an output layer (energy

prediction). The first two hidden layers consist of 128 neurons,

whereas the third hidden layer contains 64 neurons. The fourth

and fifth hidden layers each of which consists of 32 neurons,

while the final hidden layer contains 64 neurons. Except for

the last layer of the model that uses a linear activation function,

the other layers are followed by the Tanh function. The Huber

loss function is used with δ = 1. The model is optimized by

Adam optimizer with a learning rate of 0.001.

C. LSTM Model Splitting

As stated earlier, SFL adopts the same principle of SL by

dividing the neural network into two parts (see Fig. 1). The

first part (client side) is trained by the participating nodes

(UAVs), while the second part (server side) is trained by the

main server.

• LSTM Client: On this side, each UAV retrieves the initial

weights from the fed server (Step 1 in Fig. 1). Then, it

performs the forward propagation using the input data

and transmits the interim results (smashed data) along

with target values to the main server. When the server

ends its associated tasks (see the LSTM server), the

client obtains the gradients from the server, conducts the

backpropagation process, and adjusts its weights. After

some rounds, all participating UAVs forward their local

updates to the fed server for aggregation (step 4 in

Fig. 1).

• LSTM Server: Upon obtaining the output data from

a client (Step 2 in Fig. 1), the server resumes the

feedforward pass. Subsequently, the loss value, denoted

as L, is computed using formula 1. Then, the gradients

for both the server and client are computed. Lastly, the

gradients are sent back to the the client’s cut layer (the

layer at which the neural network is split) (step 3 in

Fig. 1) and the precision of the prediction is measured.
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Fig. 1: Split federated learning framework architecture for UAV-enabled IoT networks

TABLE I: LSTM Model parameters.

Parameters Values

Window Step 10

Loss Function Huber (delta = 1)

Activation Function
Tanh (Input and Hidder Layers)
Linear (Dense Layer)

Optimizer Adam

Learning Rate 0.001

Batch Size 64

Normalization Alg MinMax Scalar

Number of Rounds 200

TABLE II: Possible Split Variants.

Model M1 M2 M3 M4 M5

(client,server) (2,6) (3,5) (4,4) (5,3) (6,2)

IV. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION

A. Dataset

We chose a recent dataset collected with a hexacopter

drone [15] that has six 18-inch propellers, weighs 6 kg, and

a Maximum Takeoff Mass (MTOM) of 13 kg. The goal is

to empirically measure the power consumption of electric

UAVs. The experimenters collect data during automatic and

manual missions executed by UAV, both without any payload

weight and with additional payload weights of 2 kg, 4 kg, and

6 kg. Measurements were collected for the hourglass shape

trajectory with a velocity equal to 4m/s. The dataset contains

27 variables (altitude (m), linear drone’s velocities (m/s),

angular drone’s velocities (rad/s), orientation of the drone, total

drone mass (kg), etc.). To carry out our experimental study,

we selected the most relevant features.

B. Parameter Settings

The proposed model operates with 5 clients over 200

rounds. 20% of the dataset is separated as the testing data

for all the clients while the rest 80% of the dataset is divided

equitably among the five clients. The algorithm is implemented

in Python 3.10.12 with TensorFlow 2.12.0. The experiments

were conducted within the Google Colab environment. Table I

outlines the parametric settings used in the evaluation.

C. Performance Metrics

In this subsection, we present the metrics that we considered

to validate our study in terms of computing and learning

performance.

1) Computing Performance:

• Model’s footprint: It denotes the client’s necessary mem-

ory to store its related segment for each model. To carry

this out, we calculate the product of the total number of

parameters within the client’s sub-model and the size of

each parameter.

• Memory usage (during training): Here, we monitor the

used memory during training. To accomplish this, we use

the python module memory-profiler.

• Communication overhead: It represents the data size sent

between the participating entities, namely: client and

server (weights, activation, gradients, etc.).

• Training Complexity: In this context, we calculate the

duration taken by the clients and the server to complete

the forward and backward pass phases during one round

of the process. Consequently, we will have two temporal

parameters, namely:

– Forwarding Pass Time (FPT): It represents the amount

of time taken by the clients/server to execute the



feedforward phase. In our figures, we represent this

as CFPT for clients and SFPT for servers.

– Backward Pass Time (BPT): This signifies the required

time for the clients/server to perform the Back prop-

agation phase. We designate this as CBPT for clients

and SBPT for servers.

2) Learning Performance:

• Loss: It is a well-known learning metric that quantifies

the error between the predicted outputs of the model and

the actual ground truth values in the training data. In our

case, we selected the Huber as a loss function that can

be derived using equation 1.

L(y, ŷ) =

{

1

2
(y − ŷ)2 if |y − ŷ| ≤ δ

δ(|y − ŷ| − 1

2
δ) otherwise

(1)

• Mean Absolute Error (MAE): is the average of the

absolute differences between the predicted and actual

values. It is determined using the formula below:

MAE =
1

n

n
∑

i=1

|yi − ŷi| (2)

Where:

- ŷ is the predicted value

- y is the actual value

- n is the number of data points

- δ is a tuning parameter

D. Numerical Results and Discussion

To comprehensively explore all possible split scenarios, we

vary the depth of LSTM on both the client and server sides. As

mentioned in section III, with a model of six hidden layers, we

will have five schemes from M1 to M5. Table II summarizes

the different partitions. Each partition is represented by a pair

denoted as (i, j), where i indicates the layers assigned to the

client (including the input layer) and j represents the server

layers (including the output layer).

Before delving further, it is worth noting that the client must

have at least one hidden layer; otherwise, the configuration is

unreliable from a learning perspective. Basically, it might be

perceived as a centralized learning approach, where the clients

pass their input data to the server hosting the ensemble of

hidden layers, without performing any further transformation.

The adoption of such a configuration would raise security and

privacy concerns, which runs counter to the core objectives of

split federated learning. Similarly, the server should include

a minimum of one hidden layer, since hosting all the layers

on the clients while providing only the output layer to the

server (which is expected to have greater computational power

than the clients) does not align with the requirements of poor-

constrained devices.

Table III compares the five potential methods to split

the proposed model in terms of various computing metrics,

namely: total parameters, model footprint (kB), training mem-

ory (MB) and communication overhead (MB). We initially

explore the correlation between the depth of the model in

terms layers and its dimension in terms of parameters. From

empirical results, it is obvious that when the number of

layers increases on the client side, the overall number of

parameters also increases. For instance, in model M1, which

consists of only two client-hosted layers, the total number of

parameters is 71168, roughly constituting 24% of the entire

model, and equating to a storage size of 278 kB. However,

with three layers (model M2), the total number of parameters

increased to 202752, representing 68% of the whole model

and corresponding to 792 kB of size. This immense gap in

terms of model size and parameter count between M1 and

M2 is due to the increase in the number of computational

units within M2’s architecture, where we introduced a hidden

layer with 128 neurons on the client side. Nevertheless, from

M3 to M5, we behold a consistent increase in the number

of trainable parameters and model storage volume due to the

shallow depth of newly introduced layers (64, 32, and 32).

On the server side, on the contrary, we note a gradual decrease

in the model’s complexity because of the reduction in the

number of layers and their depth in each setup. Consequently,

this will necessitate less memory space to store the model.

Regarding memory utilization during training, as well seen

from the table, adding more layers in each configuration

creates a deeper neural network that actually captures complex

relationships in data, but increases the number of neurons

leading to an increase in the trainable parameters and there-

fore a rise in the memory requirements to manipulate these

parameters. Optimal memory usage values are achieved with

model M1 for the client, featuring a memory consumption

of 7.4MB, and model M5 for the server, with a memory

consumption of 4.5MB. Similarly, the server and the client

experience the highest memory demand with M1 and M5
model architectures, respectively. It is worth mentioning here

that the symmetry in the number of layers between clients

and the server (case of model M3) does not inherently imply

uniformity in terms of computing performance.

For communication overhead, the table shows that, on

the client side, M1 performs equally to M2. As well, M4
performs as equally as M5. This is due to the fact that

during the forwarding phase, the data transmitted from the

client to the server consists of the activation (smashed data),

originating from the last layer of the client side section. Since

both pairs of configurations share identical numbers of neurons

in the cut layer, 128 for (M1,M2) and 32 for (M4,M5),
the communication overhead exhibits similarity. At the same

time, we see that the transmission overhead (gradients) on the

server side gradually increases from M1 to M5, reaching its

maximum value with M5. This occurs because the client-side

model becomes more complex from M1 to M5, therefore, the

magnitude of the gradients becomes more larger, resulting in

more significant overhead over the network.

Complexity time is a crucial factor to consider when dealing

with resource-constrained UAV devices. It is well known that



TABLE III: Computing Performance

Computing Performance

Metrics
Model Total

Param
Model Footprint

(KB)
Training Memory

(MB)
Comm Overhead

(MB)

Client Server Client Server Client Server Client Server

M1 71168 226625 278 885.25 7.4 18.5 13.95 12.15

M2 202752 95041 792 371.25 11.7 10.8 13.95 34.65

M3 252160 45633 985 178.25 14.1 6.3 7.2 43.2

M4 264576 33217 1010 129.75 14.3 5.8 3.6 45.45

M5 272896 24897 1040 97.25 21.8 4.5 3.6 46.8

a prolonged training time demands more computational power

and energy consumption, leading to depleted UAV batteries.

Fig. 2 illustrates the forward and backward phase times for

the client and server sides, respectively, across the five models.

From Fig. 2(a), one can observe that clients spend more time

in forward propagation compared to backward propagation.

This is due to the fact that the SFL clients do not need

to compute the model gradients (they are calculated by the

server); therefore, the weights update process on the client

side is relatively straightforward and computationally less

intensive compared to the forward pass that involves matrix

multiplications and activation function evaluations. However,

the inverse scenario is depicted in Fig. 2(b). The server

expends less time on forward propagation and more time on

the backward step. The reason is that the server assumes the

responsibility for computing the gradients with respect to the

neural network parameters. This process is computationally

intensive, especially for large networks and datasets, and it

typically dominates the overall training time. Among the five

models considered, M1 demonstrates the lowest forward and

backward complexity times on the client side.

Fig. 3 compares the forwarding computation time between

the client and the server across the five models. CFPT shows

an upward trend attributed to the increase in the number of

layers and neurons in each division strategy. Conversely, the

server’s forwarding processing time (SFPT) demonstrates a

downward trend owing to the reduction in the number of

layers and learnable parameters that need to be trained from

one model to another. From Fig. 4, it is evident that the

global training time overlaps across all five models. This

observation highlights that splitting the SFL model enhances

the training time of resource-constrained clients without im-

pacting the overall training duration. Figures 5 and 6 present

the mean and variance values of learning performance (loss

and MAE) for the five models over 200 rounds. Fig. 5(a)

plots the range of mean loss values across models M1 to

M5. The length of the box, representing the interquartile

range, varies from 0.0046 for M1 to 0.0048 for M5. The

median, positioned at 0.0046, indicates the central tendency

of the loss. In particular, there are no extreme values present

in the results obtained. Furthermore, Fig. 5(b) represents the

distribution of loss variance across the different settings. The

length of the box varies from approximately 2.67× 10−5 for

M1 to 2, 8 × 10−5 for M3. The median value of the loss

variance is positioned at approximately 2.66× 10−5, which is

very low, suggesting that the variance of the loss across all

settings is quite minimal. These results indicate that the five

trained models are relatively close to each other and exhibit

similar stability in terms of loss. Similarly, from Fig. 6, the

median values for the mean and variance MAE are 0, 0629
and 1, 26 × 10−3, respectively, indicating consistent MAE

performance across different settings.
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V. CONCLUSION

This study examines the impact of neural network depth

on the performance of split federated learning systems and

resource utilization in low-capacity devices. The experimental

results reveal that split federated learning enhances the com-

puting performance of resource-constrained devices, such as

client memory capacity and computation time, while main-

taining the overall training duration and learning performance.

Through our investigation, we derive the following key obser-

vations. First, splitting the model in half does not consistently

provide the best solution (case of M3). Moreover, random

partitioning of the model is not considered a best practice,

because in some cases, the server, as a powerful computational

resource, ends up handling relatively simpler computations

compared to clients, which are relatively resource-constrained

(case of M5). This situation could potentially deplete the

client’s resources and lead to a premature termination of the

training process. Therefore, splitting a model should be done

with careful consideration and a clear understanding of the

trade-offs at play such as the hardware specifications of the

learners involved in the training, along with the available

bandwidth, as split federated learning entails significant com-

munication overhead between clients and the server. Another

crucial point to consider is that while M1 effectively adapts

to UAV requirements in this study, the first split (with the

minimum number of layers on the client side) may not always

be the optimal choice as it is greatly influenced by the

architecture of the neural network.

As a future direction of research, one could extend the

current work by investigating the impact of network depth on

SFL systems when dealing with heterogeneous devices with

varying computational capabilities. In addition, the dynamic

adjustment of the depth of the neural network during the

training process based on the availability of resources can be

analyzed to have a deeper view of the splitting strategies.
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