
On Understanding
and Forecasting Fuzzers Performance with Static Analysis

Dongjia Zhang
EURECOM

Biot, France, zhangdo@eurecom.fr

Andrea Fioraldi
EURECOM

Biot, France, fioraldi@eurecom.fr

Davide Balzarotti
EURECOM

Biot, France, balzarot@eurecom.fr

Abstract

Fuzz testing, a technique for detecting critical software vulnerabil-
ities, combines various methodologies from previous research to
improve its effectiveness. For fuzzing practitioners, it is imperative
to comprehend the effects of distinct techniques and select the ideal
configuration customized to the program they need to test.

However, evaluating the individual contributions of these tech-
niques is often very difficult. Prior research compared assembled
fuzzers and studied their affinity with different programs. Nev-
ertheless, assembled fuzzers cannot be easily broken down into
independent components, and therefore, the evaluation does not
clarify which technique explains the performance of the fuzzer.
Without understanding the potential impact of integrating different
fuzzing techniques, it becomes even more challenging to adjust the
fuzzer configuration for different programs under test.

Our research tackles this challenge by introducing a novel ap-
proach that correlates static analysis features extracted at compile
time with the performance results of various fuzzing techniques.
Our method uses diverse metrics to uncover the relationship be-
tween the static attributes of a program and the dynamic runtime
performance of fuzzers. The correlation analysis performed on 23
target applications reveals interesting relationships, such as power
schedulers performing better with larger programs and context-
sensitive feedback struggling with a large number of inputs.

This approach not only enhances our analytical understand-
ing of fuzzing techniques, but also enables predictive capabilities.
We show how a simple machine learning model can propose a
fuzzer configuration customized for a particular program using
information collected through static analysis. In 11 of our bench-
mark programs, fuzzers using the suggested configuration achieved
the best improvement over the baseline compared to AFLplusplus,
LibFuzzer and Honggfuzz.
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1 Introduction

Modern fuzzers are a testament to the evolution of software testing,
embodying a myriad of complex techniques [21] combined to form
sophisticated tools for vulnerability detection.

However, their current complexity and very rapid evolution pose
problems to the users. Researchers routinely propose dozens of new
techniques every year, often claiming that their solutions perform
better than previous approaches in the majority of the targets they
tested. In such an intricate landscape, evaluating individual contri-
butions is becoming more and more difficult, and choosing the best
fuzzer configuration for a given target is a formidable challenge.

Prior work [15, 22, 23, 35] performed end-to-end comparisons
among existing tools to help with the selection of the optimal fuzzer
for a user’s specific needs. However, we claim that a deeper analyt-
ical understanding of each individual fuzzing technique can yield
a more tailored, effective solution.

The challenge. Feedback-driven mutational fuzzers have be-
come the golden standard for fuzz testing. AFL++, LibFuzzer, and
HonggFuzz are three such fuzzers adopted by ossfuzz[40], the
largest fuzzing platform operated by Google, which to date has
identified over 10𝐾 vulnerabilities and 36𝐾 bugs in open source
projects. The modern advancement of feedback-driven mutational
fuzzing techniques [32] and algorithms include the Scheduler, the
module to choose next testcase to fuzz, the Feedback, the module
in charge of driving the fuzzer towards inputs that explore new
program space, and the Mutator, the module that defines how the
fuzzer modifies the input.

Modern fuzzers benefit from (a combination of) these techniques
but it is challenging to break down a fuzzer performance into the
individual contribution of the different parts, and to conclude, for
instance, that “Fuzzer A is better than Fuzzer B on a given target
because of component X”.

LibAFL, recently presented by Fioraldi et al. [20], is offering
the possibility of building fuzzers by combining and composing
a number of orthogonal components. This framework offers the
opportunity to perform more in-depth studies in which individual
scheduler, feedback and mutator techniques can be compared on a
common baseline.

Our Approach. In this paper, we propose a novel approach to
correlate static analysis features extracted at compile time with
the performance outcomes of diverse fuzzing techniques compared
against the same baseline fuzzer. This approach stems from the idea
that a better understanding of static attributes can shed light on
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the dynamics of fuzzer performance and can help security analysts
to make an informed decision on which fuzzer to pick.

Our methodology is based on a collection of 59 static features.
By collecting characteristics such as data flow graph [3] and con-
trol flow graph [7] patterns, instruction types from LLVM IR [5],
and the initial corpus metrics, we create a diverse set of features
that reflect the program behavior. With this methodology, we can
explore the intricate connection between static program attributes
and the dynamic performance of fuzzers during runtime.

Our analysis is divided into two parts. In the first part, we selected
13 generic techniques from the three fuzzing techniques categories
and implemented single-technique fuzzers that adopted each of
the techniques. We then studied the correlations between the per-
formance of these fuzzers and the program features. Our results
show that most of the techniques we tested had a non-negligible
correlation on several static features. Specifically, properties such as
corpus features, initial coverage, API types used in the program, and
the shape of the control flow graph affected fuzzer performances
in different ways.

By leveraging these correlations, we move to the second part
of our analysis, in which we try to solve the challenge of optimal
fuzzer component selection. For this purpose, we trained a ML
model to predict which fuzzing techniques will exhibit the most
promising performance for a given target program. We then auto-
matically assembled a fuzzer that uses such techniques and tested it
on a new set of target programs, different from the ones we used for
training. Our experiments show that our prediction fuzzer had the
best improvement over the baseline among other fuzzers, including
when compared with popular off-the-shelf fuzzer like AFL++, Hong-
gFuzz, and LibFuzzer. In conclusion, the predictive capabilities of
our model make it far easier for practitioners to select the fuzzer
configuration that is more likely to succeed based on the static
analysis of the target.

For the reproduction of our work, we published source code of
our framework, and the experiment results at https://github.com/
fuzzing-static-analysis/fuzzing-static-analysis.

2 Background

In this section, we briefly introduce how statistical analysis is
employed in benchmarking fuzzers’ performance and the use of
LibAFL to build a common baseline for our experiments.

2.1 Statistical Analysis & Fuzzing

Several studies have employed statistical tests to advance our un-
derstanding of which factors influence the performance of a fuzzer
and which methodology to use for their assessment. The semi-
nal study on fuzzing evaluation conducted by Klees et al. [27] in
2018 highlighted a number of critical issues in the experimental
evaluations of fuzzing techniques, strategies, and algorithms. The
authors scrutinized 32 papers and identified problems in every ex-
perimental evaluation they considered. They then emphasized the
necessity of a statistically robust experimental setup, advocating
for a performance metric that considers the inherent randomness
of fuzzing. The paper provided guidelines to enhance the reliability
of experimental evaluations and called for the use of statistical tests
to ensure that observed improvements in fuzzer performance are

not merely due to chance. This work served as a clarion call for
more scientifically rigorous evaluations in fuzz testing research.

In 2022, Böhme et al. [14] scrutinized the reliability of code cov-
erage as a stand-in for fuzzer effectiveness by utilizing statistical
tools to explore the relationship between coverage and bug-finding
capabilities. The authors employed Spearman’s rank correlation
to assess the strength and direction of the relationship between
these two variables, opting for this non-parametric measure due
to the non-linear relationship they observed. Furthermore, they
introduced the concept of inter-rater agreement using Cohen’s
𝜅 [26] to evaluate the consistency between coverage-based and
bug-finding-based measures of fuzzer performance. Their analysis,
which demonstrated only moderate agreement, provides critical
insights into the limitations of using coverage as the sole metric
for fuzzer effectiveness, thereby informing future evaluations with
a more accurate statistical foundation.

In the same year, Wolff et al. [47] pioneered non-parametric
regression analysis to disentangle the effects of benchmark charac-
teristics from the intrinsic performance of fuzzers. This approach,
known as “explainable fuzzer evaluation” quantifies the degree to
which a fuzzer’s ranking is a product of the fuzzer’s capabilities ver-
sus the properties of the benchmark used. Their statistical analysis
revealed some dependencies, such as AFL’s improved performance
with benchmarks containing larger programs and LibFuzzer’s de-
creased performance under similar conditions. This methodological
framework also includedMLR (multiple linear regression) to ex-
amine the combined influence of benchmark properties and fuzzer
choice on the outcomes, providing a more nuanced view of fuzzer
performance across different scenarios.

Our work continues along this line by addressing two main limi-
tations of Wolff’s approach. One results from the use of Spearman’s
rank correlation, which we show to provide unstable results. The
other comes from the set of fuzzers used by Wolff et al.; the use
of pre-assembled fuzzers, such as AFL++ and LibFuzzer, made it
impossible to tell which part of the fuzzer contributed to the result.
Our research tackles both issues and presents a more precise and
comprehensive analysis of fuzzer correlations.

2.2 The LibAFL Framework

Wolff’s research modeled how one fuzzer performed compared to
another fuzzer within a given set. Our aim, instead, is to break down
fuzzing into its individual components and investigate which part
impacts its performance and correlates to some of the character-
istics of the target application. Thus, we developed all our fuzzers
from scratch by using LibAFL [20], which provides amodular frame-
work and a set of customizable building blocks to create a custom
fuzzer. The use of LibAFL facilitates finer comparisons between
different fuzzers, as we can build a common baseline fuzzer and
then swap out individual components, implementing alternative
algorithms to produce a slightly modified fuzzer. When comparing
the resulting fuzzers, the variation in performance can be attributed
to the modified element, allowing for measurable differences in the
performance of the specific component or algorithm. Essentially,
our work breaks down fuzzers into smaller, modular components,
evaluates them in relation to many different features of the target,
and provides a solution for the limitation of Wolff’s work.

https://github.com/fuzzing-static-analysis/fuzzing-static-analysis
https://github.com/fuzzing-static-analysis/fuzzing-static-analysis
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Figure 1: The workflow of our correlation analysis

Static analysis
data

Static analysis
data after

outliers removal

Removing unrelevant functions

Compile-time
analysis

Fuzzer binary

Compile the fuzzers

Branch
coverage data

after 
outliers removal

C
or

re
al

tio
n 

an
al

ys
is

Removing
Outliers

LTO compiler

Program
source code

LTO-compiled binary

Extracted function
signatures

Func A

Func B

Func C

3 Methodology

This section outlines the approach we follow to establish a corre-
lation between fuzzer performance and program features.

We begin by introducing the two key components of our study:
the fuzzers and the program features. We first introduce the various
types of fuzzers employed in our comparison and detail the the pro-
gram features and its extraction process. We subsequently present
the method for quantifying the difference in fuzzer performance
derived from our experiments and explain the methodology em-
ployed in computing correlations. Figure 1 illustrates the workflow
for our analysis.

3.1 Fuzzers Selection

Our objective is to determine how the characteristics of the target
program affect the performance of fuzzing techniques. To this end,
we studied various fuzzing techniques proposed in past fuzzing
research. Based on that, we implemented a naive fuzzer to use as a
baseline, and 12 other fuzzers adding different techniques on top of
the naive fuzzer. These techniques affect three main components
of the fuzzer:

Scheduler. The scheduler is in charge of two tasks. The first is
called “power schedule” [12] which assigns power to the testcases
in the corpus. Testcases that are given more power will undergo
more trials when they are picked from the corpus. In this regard,
we implemented the fast and the explore scheduling policies from
AFLFast [13], and the cov-accounting technique proposed by Tor-
toiseFuzz [46]. The second task of the scheduler is to select the next
corpus to mutate. For this, we implemented the weighted scheduler
from AFL++ [19], and the rand-scheduler (which randomly picks
from the corpus for scheduling).

Feedback. The feedback is an essential component of the fuzzer
that defines how and under what circumstances the fuzzer should
save the mutated testcase back into the corpus. We implemented
fuzzers with the ngram feedbacks for ngram8 and ngram4, and
with context-sensitive coverage feedbacks (naive-ctx fuzzer) from
afl-sensitive[45]. We also included a fuzzer that implements the
value-profile technique proposed by LibFuzzer [29]. This technique
rewards the fuzzer whenever a comparison instruction has some
novelties in its operands.

Mutator. Mutators define how the fuzzer mutates the inputs. For
mutators, we implemented mopt from MOpt [31], CmpLog from
AFL++ and RedQueen [9, 19], and the grimoire mutator from Gri-
moire fuzzer [11].

We opted not to adopt techniques proposed by nautilus [8] and
gramatron [42] as these fuzzers are specialized for structured in-
puts, but not all our benchmark programs are designed to accept
such inputs. Additionally, it would be impractical to prepare the
grammar files required to start fuzzing for each of our benchmarks.

The naive fuzzer employs a basic scheduler, feedback, and a mu-
tator inspired byAFL. The naive scheduler is designed to prioritize a
policy to prefer quick and small testcases, while the naive feedback
utilizes the standard branch coverage feedback with hitcounts [48].
Finally, the naive mutator uses a mutation called havoc mutation
from AFL [48], which stacks different types of mutations, includ-
ing bitflip, byteflip, arithmetic operations, token replacement, and
others, to modify the input.

The greatest advantage of our approach is that by comparing
these 12 fuzzers to the baseline naive fuzzer, we are able to pre-
cisely evaluate the effectiveness of each technique independently
– while keeping the rest of the fuzzer constant.

Finally, in addition to these 13 custom fuzzers, we also added
three of the most commonly used fuzzers, including AFL++ [19],
LibFuzzer [30], and HonggFuzz [44].

3.2 Program Features Extraction

A critical phase of our approach is computing a number of pro-
gram characteristics that may impact the fuzzers’ performance. This
feature extraction phase is carried out by conducting a static anal-
ysis that extracts features during compile time, primarily through
information extracted from the LLVM IR.

First, we included a set of generic features, such as the program
binary size, and features based on the type of instructions and their
arguments. We then included new features that we expect to have
correlations with the techniques we implemented. For example,
CmpLog is equipped with the capabilities to break through the
comparisons in the code, and value-profile tracks the novelties in
comparisons. Therefore, we expect this fuzzer to correlate positively
with the number of comparisons.

Last, we included features that were shown to have correlations
by Wolff’s work [47], such as seed size, initial coverage, and pro-
gram size. We further expanded this set to better represent the
program under test. For example, only the initial coverage was
studied in the previous study; however, in our work, we dissected
this feature into four types: the initial branch, line, function, and
region coverage. These detailed features enable us to characterize
the program in a more refined way.

All features are extracted for each individual function and are
grouped into the following categories:

• Generic features, such as the program binary size, the num-
ber of the basic blocks, and the average nested level of the
source code.

• Instruction type. As we extracted features from LLVM IR,
we counted the frequency of each type of LLVM instruc-
tion, including alloca, binary-operator, branch, call,
cmp, load, and store instructions.
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• Types of the instruction operand. For all the LLVM in-
structions we analyzed, we count the occurrence of the types
used in the operands of the instructions.

• CFG and DDG. We construct the CFG(Control flow graph)
and DDG(data dependence graph) [3] of every function.
From the CFG, we then extract features such as the exis-
tence of cycles (loop-back edges), the length of the shortest
path, and the average length of the shortest paths in the CFG.
Conversely, for DDG, we count the number of edges and
nodes. We expect fuzzers with more fine-grained feedback,
such as ngram fuzzer, to have correlations with these features
as they will be rewarded for traversing different paths.

• APIsWe extract two features for the APIs used in the pro-
gram. The API calls related to memory allocation functions
(such as malloc/free) and the calls to security-sensitive func-
tions (such as memcpy and strcmp). These features are likely
to be correlated with the cov-accounting fuzzer as it is de-
signed to put more priority on functions with these API calls.

• ComparisonsWe grouped the comparison instructions in
LLVM IR by the type of arguments, such as the compari-
son of integer, float, vector, and counted their frequency per
function. In this way, we could conduct a detailed analysis
of which type of comparison is involved in fuzzers’ perfor-
mance. These are essential features since the comparisons
often block the fuzzer from progressing. We expect cmplog
and value-profile to correlate with these features.

• initial set of seedsWe also included the features represent-
ing the initial set of seeds. Although these characteristics are
independent of the target program itself, they significantly
influence the fuzzer’s performance [25]. Therefore, we addi-
tionally calculate attributes linked to the initial seeds, such
as the region, line, function, and branch coverage acquired
through running these initial inputs.

After all features are extracted from each function, we prune
out unnecessary analysis results from unreachable functions. This
step is required as each fuzzing campaign is limited to explore only
a part of the entire program. Fuzzers utilize a driver code, named
harness, tailored for each fuzzer target to enter the program code
through a specific API function and further explore other program
parts. This fact means that functions not reachable from the harness
code do not influence the fuzzing performance.

We compiled the programs using LLVM’s LTO [1], or Link Time
Optimization, compiler to achieve this goal. This optimization
makes it possible to remove the unreachable code when the com-
piler links the object files into the final program binary. Additionally,
we made sure that the compiler did not inline the functions in the
code through optimization because we do not want to lose function
signatures by inlining optimization. We then compared the func-
tion signatures in the binary compiled by the LTO compiler with
those obtained by static analysis. If the function signature obtained
from the static analysis does not exist in the LTO-compiled binary,
we remove that function from the analysis result. This way, we
ignore the functions that do not affect the fuzzing and remove their
influence on the analysis.

3.3 Quantifying Differences among Fuzzer

We evaluated all fuzzers described above by measuring the branch
coverage achieved after running several trials on different bench-
marks. However, we need a way to quantify the difference between
our fuzzers based on the results of the branch coverage results. The
key point to consider is that we must compare the performance of
fuzzers across different programs. Therefore, we cannot utilize the
average of raw branch coverage values as a way to compare them.
For instance, for large programs, there might be a significant differ-
ence in fuzzer performance, and therefore the variance of the fuzzer
branch coverage outcome will be large. On the contrary, a small
program may result in just slight differences in branch coverage
between the fuzzer results.

To support the need for normalization, we will use a simple ex-
ample, whose hypothetical results are presented in Table 1. In our
example, we compare two fuzzers A and B on two target programs,
a small program X and a larger program Y. We also suppose that
our static analysis phase computed a certain feature F, which is
lower for program X and higher for program Y.

If one would simply look at the average coverage, he could er-
roneously conclude that there is a positive correlation between the
performance of fuzzer B and feature F. In fact, since program X
is small, it is unlikely that there is a significant difference in the
coverage of different fuzzers.

Table 1: Example on why normalization is needed

Fuzzer A Fuzzer B Feature F

Program X 500 501 low
Program Y 2000 2500 high

To mitigate this problem we compute the effect size [43], which
is a metric that measures the difference of values between two
groups in results. Cohen’s d [16] is a metric to measure the effect
size, defined as:

𝑑 =
𝜇1−𝜇2
𝑠𝑝

where 𝜇1 is the mean of the first group, 𝜇2 is the mean of the
second group, and 𝑠𝑝 is the pooled standard deviation [6] of the
two groups.

Intuitively, the value of Cohen’s d indicates the degree of differ-
ence between the two groups. A difference of one in this value can
be interpreted as a difference of 𝑠𝑝 in their average between the two
groups. By dividing the difference in means by the pooled standard
deviation, we normalize the variance of each test program.

We can use this value to quantify the difference between the
fuzzer that implements each fuzzing technique and the baseline
naive fuzzer. The effect size helps us answer the question, “How
much difference did this technique bring compared to the naive
fuzzer?” by evaluating the effect size.

We will repeat this for each individual technique and finally con-
sider alsoAFL++, LibFuzzer, andHonggFuzz as example of complex
pre-packaged solutions built by composing different techniques.

3.4 Correlation Analysis

To capture the correlations between performance and program fea-
turesWolff. et al. [47] computed the Spearman’s correlations [24]
between the features and the ranking of the coverage values rather
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than the raw values themselves. It is essential to note that this
approach based on rank’s correlation can only provide the rela-
tive performance of one fuzzer over another (and thus, the results
depend on which other fuzzers are used in the experiments) but
cannot be used to assess the absolute performance of a particular
fuzzer on a program with given characteristics.

Moreover, the information provided by the ranking can be de-
ceiving. For instance, performing third out of 10 fuzzers could be an
excellent result when the difference between first and third place is
only a single edge, a case we observed in several of our experiments.
In this scenario, the top three fuzzers should be considered roughly
equivalent, as picking one over the others would not provide a clear
advantage for a testing campaign. However, if between the second
and third place, there was a large gap in coverage, choosing the
third fuzzer would be clearly a poor choice.

Small differences in the coverage can also make the ranking
unstable as the impact of randomness can make a fuzzer fluctuate
between ranking positions.

So, while we computed the Spearman correlation with the fuzzer
ranking to compare our findings with Böhme’s results, we also
compute the more robust pearson’s correlations [24] between
the different program features and the effect size. This mitigates
the aforementioned problems and provides a better understand-
ing of which techniques are more suitable to test a given program.
However, since Pearson’s correlation is susceptible to outliers, we
computed the interquartile range for each of the program features
and branch coverage results and removed the data points that lie
outside the interquartile range. Since our methodology requires cal-
culating the effect size compared to the baseline, we do not evaluate
Pearson’s correlation for comparing AFL++, LibFuzzer, and Hong-
gFuzz. These fuzzers are not incremental additions to our baseline
fuzzer, and therefore, measuring the effect of added techniques on
top of the baseline through Cohen’s effect size is invalid.

Finally, in addition to Spearman’s rank correlation, we computed
another rank correlation called Kendall’s 𝜏 [39] for a more diver-
sified evaluation of the correlation using three metrics.

4 Prediction

While correlation can provide useful insights, our final goal is to in-
vestigate the ability to automatically configure a fuzzer by choosing
all its main components from a set of available approaches based
on the characteristics of the target application. This task requires to
predict the optimal configuration that would best fit the target pro-
gram and is more likely to provide better results during a fuzzing
campaign. The overview of our prediction workflow is illustrated
in Figure 2.

4.1 Fuzzer Component Prediction

As we discussed in 3.1, we separated the fuzzing techniques into
three categories, respectively dedicated to the scheduler, the feed-
back, and themutator. Since the techniques in these three cate-
gories are orthogonal, we can combine them to build an optimal
fuzzer configuration. However, the combination of different fea-
tures makes the task more complex. For example, a target program
may have numerous token comparisons, which can be effectively

addressed using the cmplog algorithm. Similarly, it could begin with
a large initial corpus where the fast scheduler is more dominant.

Therefore, we decided to use a random forest ML classifier to
predict which combination would provide better results. In particu-
lar, we built a random forest classifier for each technique and trained
them by providing the program features and the performance of
the corresponding fuzzer as input. We did not use MLR (multiple

linear regression) models because they are easily affected by out-
liers. Since we collected a diverse set of benchmarks, we prefer to
avoid prediction models that are susceptible to extreme values in
the data points. Whereas, one of the great advantages that random
forest classifier offers is its robustness against these outliers [17].
We discuss the design choice of the prediction model further in
section 8.2. The model estimates Cohen’s effect size as the output
using the input data. For the technique selection, we chose the one
with the highest positive effect size in each technique category. To
reduce the number of parameters, given the fact that the training
data is limited, we pre-filtered the list of features we used to train
the model based on the result from the correlation analysis, namely,
only features correlated with at least one of the techniques in the
same group were used as the training data for that group.

Based on this method, we built and trained the model with the
programs in the same benchmark sets we used for correlation anal-
ysis. We discuss alternative design choice of the prediction models
we considered in section 8.2, and possible limitation of our approach
in Section 8.4.

4.2 Fuzzer Composition

Our prediction models output the best-performing component of
the fuzzer for different programs. Next, we validated our approach’s
effectiveness by experimenting with an additional set of bench-
marks. For this, we built a fuzzer based on the result of the ML
prediction, i.e., by including the scheduler, feedback, and mutator
selected by the classifier. We then ran our prediction-best fuzzer
in conjunction with all the 12 single-technique fuzzers that only
implement one technique at a time. We cannot evaluate every com-
bination of the fuzzers because conducting experiments for all 120
(= 6×5×4) combinations for each program is not feasible due to
resource limitations. By running the 12 single-techniques fuzzer, we
can experimentally determine which technique actually works best
for the program under test. Therefore, we can assess the accuracy
of our predictions by comparing the real best technique.

To gauge the performance of our prediction approach, we then
evaluate our prediction fuzzer against the baseline fuzzer, along
with AFL++, LibFuzzer, HonggFuzz.

5 Implementation

This section introduces the implementation we used for our ap-
proach. Our analysis framework comprises three parts: the data
extraction pipeline, the comparison fuzzers, and the data analysis
module.

Data Extraction. To extract data from the target programs, we com-
piled them while using a custom LLVM analysis pass. The pass
dumped program features in JSON format for each function in
the source code. To gather data dependency information from the
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Figure 2: The workflow of our fuzzer component prediction
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source code, we utilized the LLVMpass fromDDFuzz [33]. Addition-
ally, we also compiled the programs by using link time optimization,
and then we extracted the function signatures from the resulting
LTO binary with Angr [41]. All function signatures are then de-
mangled with binutils’s c++filt [2] and processed by a Python script
designed to remove functions that were considered irrelevant.

For the features related to the initial set of seeds, we ran fuzzer
with the initial seeds, and later, we collected the coverage with
llvm-cov[4]. The data extraction pipeline is written in 2.2𝐾 lines
of C++ and 1.3𝐾 lines of python3 code.

Fuzzers. We built our fuzzers by using LibAFL [20], a framework
for building fuzzers written in Rust. The modular design of LibAFL
allowed us to implement the baseline fuzzer, the 12 variations that
adopt various fuzzing techniques, and the composition fuzzers sug-
gested by our prediction algorithm. In total, our LibAFL fuzzers
required 6.7𝐾 lines of Rust code.

Correlation Analysis and Prediction Model. We scripted 1.1𝐾 lines
of Python code to perform the correlation analysis and build the
prediction model. For the correlation analysis, we used the stats
module from scipy, while the ML component was implemented by
using the RandomForestClassfier [10] model from scikit-learn [36].

6 Evaluation

Our experiments are divided into two parts, the first dedicated to
the correlation analysis and the second to the prediction. This sec-
tion starts with the details of the experiment setup, followed by the
presentation of the results and their interpretation.

6.1 Experimental Setup

We selected 23 benchmarks from fuzzbench [34] to conduct our
correlation analysis. As explained in Section 3, we tested a total
of 16 fuzzers: one baseline, 12 fuzzers implementing independent
fuzzing techniques, and three popular off-the-shelf fuzzers. Each
fuzzer was run on the 23 benchmarks for 23 hours each and a total
of 20 trials with the initial seed setup the same as fuzzbench [34].

Since the 368 experiments (23×16) required 169,280 CPU hours,
it was impossible for us to conduct a local experiment. Therefore,
we asked Google’s fuzzbench team to run the experiment on Google
Cloud’s Compute Engine. Nine experiments could not be completed,
three due to failures of HonggFuzz, and six due to the error in
the AFL++ LLVM pass instrumentation we used in the ngram and

naive-ctx fuzzers.1. Therefore, we ignored these failing cases for
the correlation analysis stage and performed our analysis based on
the results of the remaining 359 experiments.

The same dataset was also used to train our classifier, which
was then tested on 11 additional targets selected from the SBFT’23
competition benchmarks [28]. Also, in this case, each fuzzer was
executed for 23 hours and 20 trials.

We further evaluated the overhead for the feature extraction
phase compared to the normal build. The first stage of extracting
the feature using LLVM Pass has 26% overhead compared to the
normal build, and the second stage of building the LTO binary has
16% more overhead. In total, it took us 242% more time to compile.
The overhead of our analysis instrumentation is not high; however,
because we have to build the target program twice, the resulting
build time is about 2.4 times the normal build.

6.2 Correlation Analysis: Effect size

We started by computing Pearson’s correlation by using the 23 raw
data points (one per target program) for every feature, and the Co-
hen’s d value compared to the naive baseline fuzzer. It is important
to note that while we had 20 different trials for each target when we
calculate Cohen’s d , all 20 trials are reduced to a single value. There-
fore, we have 23 data points for each feature-to-fuzzer correlation.

As explained in 3.4, we then removed the outliers from these
datapoints. This is an important pre-processing step before con-
ducting the pearson’s analysis. We removed 1.42 data points out
of 23 on average across all the 59 features.

We selected the results that meet two conditions. First, the cor-
relation coefficient R-value must be higher than 0.40 or lower than
-0.40. Correlation coefficients larger than this threshold are consid-
ered to be at least moderately strong [38]. Second, we only retained
results with p-values lower than 0.05.

Out of the 59 features we extracted from the target programs, 30
of them, listed in Table 2, satisfied the aforementioned criteria and
were, therefore, at least moderately correlated to at least one of the
12 techniques we tested in our study. We listed the interpretation of
all the extracted features in Appendix A. Out of these 30, three were
related to the program CFG, one to the DDG, two to the invoked
APIs, four to the comparison types, five to the operands, seven to
the instructions, six to the initial seeds, and two to general features
of the program (number of basic blocks and program size).

To answer the question of what correlations exist for different
fuzzers and programs, we present the individual results grouped
by category, and summarize the key takeaway at the end. Some of
the graphs illustrating the correlation result are shown in Figure 3.

Along with Pearson’s R, we also present Spearman’s R and
Kendall’s 𝜏 [39] for a multifaceted unbiased evaluation. These are
the alternative metrics to evaluate the rank correlations, and if
the correlation result from all these metrics agrees, then the cor-
relation is solid. All these correlation values range from -1 to 1; a
negative number means negative and a positive number means pos-
itive correlations. The interpretation of the correlation is slightly
different between Pearson’s R to Spearman’R and Kendall’s 𝜏 . We
detailed how we compute the Spearman’s rank correlation later in

1The bugs have been reported and acknowledged by the developers
https://github.com/AFLplusplus/AFLplusplus/issues/1855

https://github.com/AFLplusplus/AFLplusplus/issues/1855
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Figure 3: From the left, Correlation

between bbs and fast, between i64_cmps and value-profile, between rg_cov and cmplog, and between m_ap and cov-accounting
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Table 2: Correlated Features

Feature Group Correlated Features

Generic bbs, size

Initial Seeds corpus, corpus_sz, br_cov, ln_cov, fn_cov,
rg_cov

Instruction Type branches, cmps, loads, binaryops
Operands array_al, array_vector_al, struct_al,

i8_arg, i16_arg, i64_arg, pointer_arg,
pointer_st

Comparison Type floats_cmps, pointer_cmps, i64_cmps,
str_mem_cmps

APIs m_ap, h_ap
CFG min_path, avg_min_path, cycle
DDG edge_ddgs

Section 6.3, and Kendall’s 𝜏 is computed similarly. For now, we will
emphasize one important key difference between these correlation
numbers. It is important to note that Spearman’s R and Kendall’s
𝜏 are relative, whereas Pearson’s R is not. The Pearson’s R that we
compute here is the correlation of the Cohen’s d to the baseline
naive fuzzer, so this number involves only two fuzzers; the single
fuzzer we are examining and the naive fuzzer. On the other hand,
for the two rank correlations of Spearman’s R and Kendall’s 𝜏 , these
two are the correlation of the ranks, and therefore, this number is
relative to all the other fuzzers.

6.2.1 Schedulers. Table 3 summarizes the features correlated with
the five different scheduler techniques we implemented. At first
glance, we can see that the performance of all techniques, except for
the random scheduler, is affected by several features of the target
program. The highest Pearson’s correlation, with the lower p-value,
is with the average size of the initial seeds. This correlation is posi-
tive (always above 0.7) for the explore, fast, and weighted schedulers.

Similarly, the results also show that the AFLfast schedulers (ex-
plore and fast) provide better results on large programs (correlation
with bbs above 0.5) while they might be negatively affected by the
presence of many arrays (the conditional is due to p-values close
to the 0.05 threshold). Weighted are also positively correlated with
br_cov, fn_cov, ln_cov, rg_cov. These features are higher if the
program already covers large program space even with the initial
seeds. The results indicate that these schedulers work effectively
if the fuzzer has lots of corpus entries to pick, and larger program
space to explore. If we analyze the rank correlation for i8_arg and
i16_arg, the values are not high. Therefore correlation of fast and
explore to these features is not likely to be well-founded.

Table 3: Correlation of scheduler fuzzers

Feature Pearson’s R P-value Spearman’s R Kendall’s 𝜏

explore

array_al −0.440 0.046 −0.325 −0.215
bbs 0.567 0.006 0.319 0.219
corpus_sz 0.724 0.000 0.268 0.192
floats_cmps 0.499 0.030 0.228 0.170
i16_arg 0.448 0.047 0.119 0.0859
i8_arg 0.466 0.038 0.0877 0.0533
ln_cov 0.517 0.016 0.114 0.0741

fast

array_al −0.492 0.024 −0.368 −0.245
array_vector_al −0.482 0.027 −0.363 −0.241
bbs 0.594 0.004 0.342 0.233
corpus_sz 0.725 0.000 0.224 0.154
floats_cmps 0.501 0.029 0.281 0.205
i8_arg 0.488 0.029 0.118 0.074
ln_cov 0.522 0.015 0.061 0.046

rand-scheduler

m_ap 0.514 0.014 0.289 0.192
cov-accounting

array_al 0.560 0.008 0.149 0.112
array_vector_al 0.560 0.008 0.150 0.112
corpus_sz -0.692 0.001 −0.335 −0.224
m_ap 0.558 0.007 0.407 0.276

weighted

br_cov 0.496 0.026 0.301 0.193
corpus_sz 0.707 0.000 0.371 0.259
corpus 0.515 0.029 0.388 0.277
floats_cmps 0.576 0.010 0.223 0.159
fn_cov 0.449 0.036 0.263 0.179
ln_cov 0.583 0.006 0.270 0.180
rg_cov 0.504 0.024 0.310 0.205
h_ap −0.559 0.007 −0.211 −0.165

For the cov-accounting, we can observe a positive correlationwith
m_ap, which is a feature for the security-sensitive APIs. This associ-
ation is logical since cov-accounting is specifically designed to give
more importance to the code containing security-sensitive API calls.

Schedulers such as explore, fast, weighted work well with
larger programs, larger input, and higher initial coverage,
and therefore, an increased number of testcases to sched-
ule. The performance of these schedulers is influenced by
how many corpus entries the scheduler has to schedule.
The cov-accounting correlates positively with the security-
sensitive API usage, which is expected from its design.
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Table 4: Correlation of feedback fuzzers

Feature Pearson’s R P-value Spearman’s R Kendall’s 𝜏

ngram4

avg_min_path 0.501 0.029 0.447 0.308
bbs −0.575 0.006 −0.409 −0.300
corpus_sz -0.724 0.000 −0.030 −0.029
min_path 0.522 0.022 0.456 0.308

ngram8

bbs −0.466 0.044 −0.533 −0.376
corpus_sz −0.580 0.012 0.035 0.006
pointer_st −0.484 0.036 −0.212 −0.114
str_mem_cmps −0.537 0.018 −0.285 −0.157

value_profile

branches 0.441 0.035 0.284 0.190
cycle −0.464 0.026 −0.412 −0.288
edge_ddgs 0.488 0.025 0.343 0.250
i64_arg 0.434 0.043 0.270 0.190
i64_cmps 0.426 0.048 0.340 0.219
loads 0.579 0.006 0.316 0.223
pointer_arg −0.465 0.025 −0.182 −0.124

naive-ctx

corpus_sz −0.649 0.004 0.017 0.0012
corpus −0.526 0.030 −0.206 −0.143
floats_cmps −0.507 0.038 −0.160 −0.121
pointer_cmps −0.617 0.005 −0.443 −0.320
str_mem_cmps -0.733 0.000 −0.392 −0.278

6.2.2 Feedbacks. Table 4 summarizes the relationship between
feedback fuzzers and program features. The first observation we
can draw from these results is that the performance of fuzzer built
with the ngram4, ngram8, and naive-ctx feedbacks is negatively
correlated with features that indicate more seed corpus entries and
larger program size. As in ngram4 and ngram8 negatively correlate
with bbs and naive-ctx negatively correlates with corpus.

These three strategies reward the fuzzer with more complex cov-
erage than mere edge coverage. For instance, the ngram fuzzers are
better at exploring path coverage, and the naive-ctx fuzzer is for dis-
tinguishing different caller stacks. However, our result shows that
as the number of corpus increases, the effectiveness of these tech-
niques declines. This result is aligned with the conclusion from the
previous research [45], which explains that more sensitive feedback
could overwhelm the fuzzer corpus and degrade the fuzzer perfor-
mance as it will be hard for the scheduler to schedule the testcases.

While corpus has a solid negative correlation with naive-ctx,
the similar correlation of corpus_sz seems negatively strong, but
the rank correlation suggests a much weaker correlation. In fact,
the former correlation makes sense, but the latter correlation does
not since the file size of the seed corpus entry does not suggest the
increased number of testcases during fuzzing runs.

In contrast, avg_min_path and min_path are correlated with
ngram4. These two features represent how many basic blocks the
program path traverses in each function. As these numbers increase,
the control flow gets more complex, and more paths exist to explore
within each function. This result seems to support the fact that
ngram4-based fuzzers successfully identifymore paths, compared to
the branch and edge coverage feedback, as they are designed to do.

The value-profile fuzzer seems to be best suited for fuzzing pro-
grams with more branches and i64_cmps since they relate to the

Table 5: Correlation of mutator fuzzers

Feature Pearson’s R P-value Spearman’s R Kendall’s 𝜏

mopt

binaryops −0.425 0.049 −0.031 −0.020
cmplog

br_cov −0.468 0.037 −0.343 −0.237
rg_cov −0.504 0.024 −0.306 −0.211

grimoire

corpus_sz −0.622 0.003 −0.555 −0.397
ln_cov −0.461 0.036 −0.367 −0.268
struct_al -0.687 0.001 0.040 0.033
str_mem_cmps 0.428 0.047 0.298 0.206

frequencies of comparisons. The i64_arg feature correlates indi-
rectly by positively correlating with i64_cmps. The mechanism
of value-profile provides an explanation also for the positive cor-
relation with edge_ddgs and loads, as a greater range of values
flowing into the cmp instructions will be rewarded with unseen
comparison arguments for the value profile.

Finally, we observe strong negative correlations between naive-
ctx fuzzers and comparison-related features. While naive-ctx is not
equipped with any technique to specifically overcome complex
comparisons, the negative correlations are unexpectedly strong.

However, this can be interpreted by the inter-correlation be-
tween features. In fact, these comparison features that correlate to
naive-ctx are somewhat positively inter-correlated to bbs, which,
in turn, means that the fuzzer tends to have much more corpus test-
cases later on as the program space to explore grows. (For example,
the correlation between bbs and floats_cmps is 0.27.) As a result,
this trend leads to worsened performance. The critical observation
is that there is only correlation, not causation between these two.
In other words, here, the frequency of string and memory compar-
ison did not cause the worse performance of naive-ctx. Instead,
str_mem_cmps indirectly correlated negatively to naive-ctx by bbs,
namely, the number of basic blocks.

Complex feedback such as ngram4, ngram8, and naive-ctx
will perform worse as the program and the input number
increases. In contrast, some ngram fuzzers correlate pos-
itively with path complexity, and value-profile correlates
positively with some comparison features.

6.2.3 Mutators. The last correlation group is from mutator fuzzers
shown in Table 5. The first surprising result is that, although cmplog
fuzzer implements a mutator that replaces the input with the ob-
served value in the cmp instructions operand, we could not find any
correlation with comparison-related features, such as the frequency
of comparisons. Conversely, cmplog fuzzer correlates negatively
with br_cov and rg_cov, suggesting that it is most effective when
it starts with lower initial coverage values, requiring the fuzzer to
explore larger code regions.

Another fuzzer, grimoire, is specialized in fuzzing programs that
receive structured inputs. Correlations can be observed between
features related to comparison, such as str_mem_cmps. These cor-
relations are logical. Furthermore, we have noted a negative corre-
lation between grimoire and the values of corpus_sz and ln_cov.
This correlation can be explained using the same logic as used for
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cmplog fuzzer. The more fuzzer-blockers the fuzzer has to break
through in the initial state, the more influential the cmplog tech-
nique is. It is to our surprise that cmplog and grimoire did not show
a strong positive correlation with the comparison related features
and instead correlates (negatively) with the initial coverage.

Our hypothesis on this result is that this mutation technique can
solve the comparisons in the program. However, we assume that
compared to the number of all the comparisons in the program, the
number of the comparisons that can be both 1. solved by these muta-
tion techniques, and 2. cannot be solved by naive mutations is rela-
tively small. This implies that the amount of comparisons alone can-
not be a good indicator of the performance of cmplog and grimoire.

Meanwhile, the initial coverage has a strong inter-correlation
with the corpus’s testcase size. For example, LN_COV has a correla-
tion value of 0.62 and 0.22 with corpus_sz and corpus respectively,
meaning that higher initial coverage usually means the enriched
corpus. In this case, the fuzzer already has a hint in the corpus on
how to solve the comparisons and magic bytes, making the two
fuzzing technique cmplog and grimoire less effective.

However, the correlation observed for struct_al is counter-
intuitive, and furthermore, the rank correlation result does not
agree. We suspect this strange correlation might be due to the
influence of outliers, and we will discuss this issue in 8.5.

Surprisingly, cmplog and grimoire do not correlate strongly
with comparison-related features. Instead, they correlate
with the initial state of fuzzing. The higher the initial
coverage is, the more likely that their performance cannot
show its edges.

6.3 Correlation Analysis: Rank

The correlation results presented so far were computed separately
for each fuzzer and allowed us to understand how the effectiveness
of each technique is affected by the different program features. We
now repeat the analysis by using Spearman’s correlation this time
in order to study the relative performance of each fuzzer when
compared with the others. This time, the correlation is computed
on 460(=23×20) data points, each of them representing one trial
of the fuzzer.

Each data point representing a trial is characterized by two val-
ues: the rank of the program’s feature and the rank of the fuzzer’s
performance. For instance, if the first rank value is the 100th and
the second rank value is the 200th, this means that this benchmark
program used in this program has the 100th feature value among
other benchmarks, and the fuzzer used in this trial has the 200th
fuzzer performance among other fuzzers. Therefore, we find the
correlation between these two rank values for the 460 data points.
We first examine the ranking of the 13 fuzzers we developed (the
baseline plus the 12 individual techniques) and then repeat the
experiment with the three off-the-shelf fuzzers: AFL++, LibFuzzer,
and HonggFuzz. This allows us to directly compare our results
with the ones reported in [47].

Again, for the sake of clarity, we only report results where Spear-
man’s R is greater than or equal to 0.40, or less than or equal to
-0.40, and similarly, we also present the Kendall’s 𝜏 for reference.

Table 6: Spearman correlation of feedback fuzzers.

The P-value is near 0 for all the variants and thus omitted.

Feature Spearman’s R Kendall’s 𝜏

ngram4

avg_min_path 0.447 0.308
bbs −0.404 −0.265
i16_arg −0.409 −0.300
min_path 0.456 0.308

ngram8

bbs −0.533 −0.376
size −0.479 −0.336

naive-ctx

bbs −0.415 −0.297
pointer_cmps −0.443 −0.320

grimoire

corpus_sz −0.555 −0.397
value-profile

cycle −0.412 −0.288
ln_cov −0.431 −0.298
rg_cov −0.417 −0.296
m_ap 0.407 0.276

6.3.1 Rank Correlations of LibAFL Fuzzers. Table 6 shows the Spear-
man’s correlation for the 13 LibAFL fuzzers. For this case, only 6
of the 12 techniques we analyzed show a moderate correlation wrt
program features. In all the results, p-values are close to zero; this
is because we used many more data points (460) than Pearson’s
correlation. With a larger number of data, the correlation becomes
more statistically significant. In general, the result of Spearman’s R
is quite similar to Kendall’s 𝜏 . The findings are fewer but in line with
those we discovered by using Cohen’s d. For instance, Spearman cor-
relation confirms that all ngram-based solutions and the naive_ctx
fuzzer are negatively affected by the program sizes (bbs and size).
They also confirm that grimoire tends to perform worse than other
fuzzer with large corpus’s testcase sizes, while cov-accounting per-
forms better in programs that invoke many security-related APIs.

Table 7 shows the results for AFL++, LibFuzzer, and HonggFuzz.
For the purpose of comparing our results with those of Wolff et
al. [47], we consider the same features that they use. Likewise, the
result of Kendall’s 𝜏 is similar to Spearman’s R but with a less strong
value. Interestingly, some features positively affect AFL++ and have
a negative effect on LibFuzzer (since this is a ranking correlation,
whenever something benefits the ranking of a fuzzer it also has a
negative effect on the ranking of others). In particular, this is the
case for the size and number of the initial corpus (which also helps
HonggFuzz) as well as for metrics related to the initial coverage.

These findings are in line with the ones of Wolff et al., who re-
ported that “LibFuzzer’s ranking worsens as the coverage, average
size and average execution time of the seeds in the initial corpus in-
creases, or as the size of the program increases. [...] Similarly, AFL++
’s ranking improves on benchmarks with larger programs or where
the initial seed corpus executes faster.”
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Table 7: Comparison of AFL++, LibFuzzer, and honggfuzz

Feature Spearman’s R Kendall’s 𝜏

aflplusplus

corpus 0.163 0.119
corpus_sz 0.238 0.163
ln_cov 0.301 0.213
fn_cov 0.307 0.209
cmps 0.333 0.233
br_cov 0.336 0.228
rg_cov 0.362 0.247

honggfuzz

cmps −0.161 −0.108
fn_cov −0.104 −0.0513
corpus 0.107 0.0620
corpus_sz 0.194 0.141
size 0.252 0.174
bbs 0.313 0.209

libfuzzer

rg_cov −0.321 −0.213
br_cov −0.316 −0.207
ln_cov −0.299 −0.195
corpus −0.246 −0.177
corpus_sz −0.232 −0.164
fn_cov −0.171 −0.116
bbs −0.119 −0.0757

The rank correlation analysis on LibAFL-based fuzzers
shows a similar trend as Pearson’s correlation analysis.
Meanwhile, our comparison on AFL++, LibFuzzer, and
HonggFuzz also aligns with the result from the previous
study.

7 Prediction Results

The correlation results we presented in the previous section pro-
vide a valuable guideline on how to choose different algorithms to
increase the accuracy of a fuzzing campaign. However, features are
not mutually exclusive, and therefore, a given target might have
two different characteristics that favor different techniques. In that
case, it is unclear which choice would be more beneficial simply by
looking at the correlation results.

For this reason, as explained in Section 3, we divided the tech-
niques into three groups (schedulers, feedbacks, and mutators), and
then trained a separate ML predictor to rank all the methods from
each group. Table 8 summarizes the results, showing for each tar-
get which one was the technique suggested by our classifier, its
rank in the actual experiments, and the technique that provided the
best results in practice. We would like to stress that our prediction
model was trained on different programs, and therefore, without
any previous knowledge about the actual experiment results.

The first important observation is that there is no technique
that is universally superior per se. In fact, all six schedulers, four
feedback approaches, and three mutators returned the (actual) best
results on at least one target. This supports our initial hypothesis
that simply adopting one technique is rarely the best approach, and

thus, being able to predict which fuzzing solution to use for a given
experiment will play a key role in the future of software testing.

In 42.4% of the cases, our prediction model correctly chose the
best-performing technique, and in 67% of the experiments, the pre-
dicted choice was in the top-two best performers. It is important to
note that in some categories, the best technique and the second best
performed equally well, with a difference in the effect size of less
than 0.2, which is considered to be a small effect size, according to
Sullivan. et al [43]. These cases are marked with an asterisk ∗ sign in
the table. Table 9 compares the actual branch coverage obtained by
the baseline fuzzer, the fuzzer obtained by our prediction classifiers,
AFL++, LibFuzzer, and HonggFuzz . 2

Each cell in the table reports the raw branch coverage as well as
its improvement ratio compared to the baseline fuzzer. Overall, our
predicted solution and LibFuzzer ranked first on four benchmarks
each, AFL++ dominated on three, and HonggFuzz on none. More
importantly, LibFuzzer discovered on average 1% more coverage
than the baseline fuzzer, followed byHonggFuzzwith 3% andAFL++
with 5%. The fuzzer based on our prediction resulted instead in a
12% improvement over the baseline – more than the other three
off-the-shelf fuzzers combined.

8 Discussion

In this section, we interpret our results, compare them against
previous research, and discuss alternative design choices and the
potential limitations of our approach.

8.1 Novelty

Our research deviates from previous studies in two fundamental
directions. First, we broke down fuzzing into its basic components
and compared them against a baseline implementation, instead of
comparing pre-assembled fuzzers made of fixed components.

Second, we compare fuzzers and compute which aspects of the
target programs affect given techniques by using effect size rather
than comparing the ranking of pre-selected fuzzers.

The issue with comparing pre-assembled fuzzers such as AFL++,
LibFuzzer, and HonggFuzz is that it does not allow us to distin-
guish the root cause of the difference in the fuzzer performance. For
instance, since AFL++ employs the FAST power schedule, a standard
branch coverage feedback, and the cmplogmutator, it is hard to sepa-
rate the contribution of the three and to tell which advantages or dis-
advantages each component brings to a certain result. If AFL++ per-
forms better than LibFuzzer, this might be due just to its scheduler
or its set of mutators. Unfortunately, we are unable to find the source
of the difference. Our approach allowed us instead to perform a
more fine-grained attribution and precisely pinpoint how the choice
of each specific fuzzer component correlated with the final results.

Next, we investigated the limitations of rank comparisons. The
critical aspect is that the correlation analysis for ranking will only
explain how one fuzzer performs relative to others. This means that
comparing different fuzzers would, therefore, often return different
results and that the entire analysis needs to be repeated when a
new fuzzer is added to the arsenal. In other words, this result is
only valid as long as the set of fuzzers used remains the same.

2On some of the benchmarks, AFL++, LibFuzzer, or HonggFuzz did not build denoted
by “–” in the table.
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Table 8: The fuzzer ranks of the prediction and experiment result

Benchmark name Technique group Predicted technique Predictions’ rank The best technique

𝑎𝑠𝑠𝑖𝑚𝑝_𝑎𝑠𝑠𝑖𝑚𝑝_𝑓 𝑢𝑧𝑧𝑒𝑟 schedulers fast 1/6 fast
feedbacks naive 2/5 value-profile
mutators cmplog 1/3 cmplog

𝑎𝑠𝑡𝑐-𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑓 𝑢𝑧𝑧_𝑎𝑠𝑡𝑐_𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑡𝑜_𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 schedulers explore 2/6 weighted
feedbacks value-profile 1/5 value-profile
mutators mopt 1/3 mopt

𝑏𝑟𝑜𝑡𝑙𝑖_𝑑𝑒𝑐𝑜𝑑𝑒_𝑓 𝑢𝑧𝑧𝑒𝑟 schedulers fast 3/6 weighted
feedbacks value-profile 5/5 naive
mutators naive 2/3∗ mopt

𝑑𝑜𝑢𝑏𝑙𝑒-𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛_𝑠𝑡𝑟𝑖𝑛𝑔_𝑡𝑜_𝑑𝑜𝑢𝑏𝑙𝑒_𝑓 𝑢𝑧𝑧𝑒𝑟 schedulers fast 3/6 cov-accounting
feedbacks ngram8 2/5∗ value-profile
mutators cmplog 1/3 cmplog

𝑑𝑟𝑎𝑐𝑜_𝑑𝑟𝑎𝑐𝑜_𝑝𝑐_𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑓 𝑢𝑧𝑧𝑒𝑟 schedulers fast 1/6 fast
feedbacks value-profile 1/5 value-profile
mutators cmplog 1/3 cmplog

𝑓𝑚𝑡_𝑐ℎ𝑟𝑜𝑛𝑜-𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛-𝑓 𝑢𝑧𝑧𝑒𝑟 schedulers fast 4/6 rand-scheduler
feedbacks value-profile 1/5 value-profile
mutators cmplog 3/3 naive

𝑔𝑢𝑒𝑡𝑧𝑙𝑖_𝑔𝑢𝑒𝑡𝑧𝑙𝑖_𝑓 𝑢𝑧𝑧𝑒𝑟 schedulers explore 4/6 weighted
feedbacks value-profile 1/5 value-profile
mutators naive 2/3∗ mopt

𝑖𝑐𝑢_𝑢𝑛𝑖𝑐𝑜𝑑𝑒_𝑠𝑡𝑟𝑖𝑛𝑔_𝑐𝑜𝑑𝑒𝑝𝑎𝑔𝑒_𝑐𝑟𝑒𝑎𝑡𝑒_𝑓 𝑢𝑧𝑧𝑒𝑟 schedulers explore 3/6 weighted
feedbacks value-profile 3/5 naive
mutators cmplog 3/3 naive

𝑙𝑖𝑏𝑎𝑜𝑚_𝑎𝑣1_𝑑𝑒𝑐_𝑓 𝑢𝑧𝑧𝑒𝑟 schedulers explore 2/6 weighted
feedbacks value-profile 1/5 value-profile
mutators mopt 1/3 mopt

𝑙𝑖𝑏𝑐𝑜𝑎𝑝_𝑝𝑑𝑢_𝑝𝑎𝑟𝑠𝑒_𝑓 𝑢𝑧𝑧𝑒𝑟 schedulers rand-scheduler 6/6 naive
feedbacks value-profile 2/5 ngram8
mutators cmplog 1/3 cmplog

𝑙𝑖𝑏ℎ𝑒𝑣𝑐_ℎ𝑒𝑣𝑐_𝑑𝑒𝑐_𝑓 𝑢𝑧𝑧𝑒𝑟 schedulers explore 1/6 explore
feedbacks value-profile 2/5 ngram4
mutators cmplog 3/3 naive

Table 9: The branch coverage result of SBFT benchmark programs

Benchmark name Baseline Prediction best AFLplusplus LibFuzzer Honggfuzz

𝑎𝑠𝑠𝑖𝑚𝑝_𝑎𝑠𝑠𝑖𝑚𝑝_𝑓 𝑢𝑧𝑧𝑒𝑟 2849.0 5755.5(202%) 3366.0(118%) 2923.5(103%) –
𝑎𝑠𝑡𝑐-𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑓 𝑢𝑧𝑧𝑎𝑠𝑡𝑐_𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑡𝑜_𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 489.0 492.0(101%) – 511.0(104%) –
𝑏𝑟𝑜𝑡𝑙𝑖_𝑑𝑒𝑐𝑜𝑑𝑒_𝑓 𝑢𝑧𝑧𝑒𝑟 902.0 903.5(100%) 903.0(100%) – –
𝑑𝑜𝑢𝑏𝑙𝑒-𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛_𝑠𝑡𝑟𝑖𝑛𝑔_𝑡𝑜_𝑑𝑜𝑢𝑏𝑙𝑒_𝑓 𝑢𝑧𝑧𝑒𝑟 498.0 495.0(99%) 507.5(102%) – 502.0(101%)
𝑑𝑟𝑎𝑐𝑜_𝑑𝑟𝑎𝑐𝑜_𝑝𝑐_𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑓 𝑢𝑧𝑧𝑒𝑟 1514.0 1924.0(127%) 1796.5(119%) – 1731.5(114%)
𝑓𝑚𝑡_𝑐ℎ𝑟𝑜𝑛𝑜-𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛-𝑓 𝑢𝑧𝑧𝑒𝑟 1082.0 1086.0(100%) 1088.0(101%) 1094.0(101%) 1091.0(101%)
𝑔𝑢𝑒𝑡𝑧𝑙𝑖_𝑔𝑢𝑒𝑡𝑧𝑙𝑖_𝑓 𝑢𝑧𝑧𝑒𝑟 1492.0 1492.5(100%) 1497.0(100%) 1456.0(98%) 1470.5(99%)
𝑖𝑐𝑢_𝑢𝑛𝑖𝑐𝑜𝑑𝑒_𝑠𝑡𝑟𝑖𝑛𝑔_𝑐𝑜𝑑𝑒𝑝𝑎𝑔𝑒_𝑐𝑟𝑒𝑎𝑡𝑒_𝑓 𝑢𝑧𝑧𝑒𝑟 1339.0 1302.0(97%) 1340.0(100%) 1341.0(100%) 1316.5(98%)
𝑙𝑖𝑏𝑎𝑜𝑚_𝑎𝑣1_𝑑𝑒𝑐_𝑓 𝑢𝑧𝑧𝑒𝑟 10968.5 11235.5(102%) 11084.0(101%) 10171.0(93%) 11016.0(100%)
𝑙𝑖𝑏𝑐𝑜𝑎𝑝_𝑝𝑑𝑢_𝑝𝑎𝑟𝑠𝑒_𝑓 𝑢𝑧𝑧𝑒𝑟 745.0 758.0(102%) 817.0(110%) 825.0(111%) 824.0(111%)
𝑙𝑖𝑏ℎ𝑒𝑣𝑐_ℎ𝑒𝑣𝑐_𝑑𝑒𝑐_𝑓 𝑢𝑧𝑧𝑒𝑟 10321.5 10334.0(100%) 10353.0(100%) 10269.0(99%) 10321.5(100%)
Mean improve over the baseline 112 % 105% 101% 103%
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Table 10: Unstability of rank correlations

Target Fuzzer A Fuzzer B Fuzzer C

𝑇1 2 5 8
𝑇2 5 2 1

We can demonstrate this concept with a simple example. Let’s
say that we have fuzzer A and fuzzer B with the branch coverage
score shown in the Table 10. Based on these results, fuzzer A ranks
second on program𝑇1 and first on program𝑇2, while fuzzer B ranks
first on program 𝑇2 and second on 𝑇1. By observing only these two
fuzzers, we could claim that fuzzer B positively correlates with some
features in program 𝑇1 since its ranking is better on that target.

However, if we add fuzzer C into the comparison, it completely
alters the conclusion and even the relationship among the other
two fuzzers. Now, the B ranks second on both targets, 𝑇1 and 𝑇2.
Therefore, if we only consider the ranking for comparison, the
positive correlation we previously observed now disappears. The
rankings were affected by a change in the set of fuzzers, leading to
a subsequent impact on the correlation and the overall conclusions
of the experiment.

This form of instabilitymakes the results difficult to generalize,
and is an inevitable drawback of this approach. Meanwhile, our
approach based on the effect size remains unaffected by changes
in the set of fuzzers under comparisons, as the correlation between
a technique and a set of features of the program is not affected by
other fuzzers. This makes our solution a more reliable method for
evaluating correlations.

One potential downside of our approach is that Pearson’s cor-
relation may not be the most appropriate metric if the dataset does
not exhibit a linear relationship. We checked this by plotting the
data and did not observe any obvious curvy relationships. However,
it is not possible to determine what relationship exists between
the program feature and fuzzer performances beforehand. In fact,
determining this relationship is the very objective of this work. This
is why we have also included the results of Spearman’s correla-
tion and Kendall’s tau in our evaluation for a more comprehensive
evaluation to supplement our analysis and address this limitation.

8.2 Classification Models

Wolff et al. employed a multiple linear regression model to quan-
tify the effect of benchmarks and program properties. Therefore,
it might have seemed natural for us to employ a similar MLR (mul-
tiple linear regression) model as well. However, multicollinearity,
namely the correlation between the predictors [18], introduced an
obstacle to the application of a multiple linear regression model to
our data. Previous research was not affected by this problem since
the number of features used for their MLR models were small.

In our case, instead, we extracted 59 program features that might
or might not correlate with each other. For example, the frequency
of cmp instruction and the frequency of i32 cmp instruction nat-
urally have positive correlation with each other. We detailed and
diversified the program features to have a finer analysis of the pro-
gram; however, the increased complexity made it impossible for us
to apply a liner regression model, and we decided to make use of
random forest model to circumvent the problem.

8.3 Alternative Coverage metrics

We used branch coverage for our evaluation. In fact, evaluating the
fuzzer performance based on branch coverage can be considered
the golden standard, as branch or edge coverage, is the most used
evaluation metric in recently published papers [37]. Besides the
standard branch coverage, we also considered function coverage
metrics. However, the result provides less insightful results, and
therefore, we published the result on our artifact page.

8.4 Interference

One of the potential drawbacks of our approach is that we as-
sume that fuzzing techniques are orthogonal and independent. For
instance, we separately predict the feedback component and the
scheduler. However, in reality, the combination of two techniques
might have consequences that could positively or negatively af-
fect the performance (i.e., a given scheduler might undermine the
advantages brought by the feedback algorithm).

Ideally, one should run the experiment with every possible com-
bination of techniques. However, this would require an unfeasible
amount of time and resources, as we need to try every combination
of different techniques from each category. Instead, we conducted
a small-scale experiment to assess the degree of the interference.
Suppose that we have two techniques, 𝑡1, 𝑡2. We can define their
effect on the fuzzer performance compared to the baseline fuzzer
as Δ𝑡1 and Δ𝑡2. If we consider the interaction between techniques,
then the predicted performance is modeled as

𝑝𝑒𝑟 𝑓 =𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒+Δ𝑡1+Δ𝑡2+Δ𝑡1Δ𝑡2

We can compare the degree of the “non-linear” term Δ𝑡1Δ𝑡2 to
assess the degree of interference.

The most obvious possible interference is between the scheduler
and the feedback. In [45], it was concluded that “A more sensitive
coverage metric may select more inputs as seeds, but the fuzzer may
not have enough time budget to schedule all the seeds or mutate them
sufficiently.” Therefore, in our experiment, we will examine the
interference of the combination of the scheduler technique and
feedback technique. To this end, we will evaluate the performance
of fuzzer pairs of (fast, ngram4), and (fast, value-profile) using the
same 22 benchmarks we used to compute the correlation. 3.

First, we evaluate the performance of the individual fuzzer of
the pairs by measuring its effect size, namely Cohen’s d, compared
to the baseline fuzzer. Next, we measure the performance of the
single fuzzer using both techniques combined. If the sum of the
individual performance from the two technique pairs is similar to
the performance of the combined fuzzer, then we can say that the
effect of the interference or the non-linear term is small. The result
is presented in Figure 4.

Each dot represents an individual benchmark, and the x-axis
value represents the sum of Cohen’s d of the two fuzzers in the
same pair, and the y-axis value represents the Cohen’s d of the
combined fuzzer.

The closer the scattered data points are to the reference line “y
= x”, the smaller the non-linear term is; therefore, the interference
between the two techniques is minor. For the technique pair of (fast,

3For one of the benchmark out of 23, libpcap_fuzz_both, we could not retrieve the result
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Figure 4: Interference assessment
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value_profile), almost all the data points are pretty close to the ref-
erence line, and therefore we can conclude that for this technique,
their contributions are orthogonal and do not interfere too much.

For the technique pair of (fast, ngram4), we see some remote
data points colored in red. Interestingly, the three data points in the
bottom right, bloaty, harfbuzz, and freetype2 are all large programs.
Furthermore, the fact that these points are below the reference
line means that the combined fuzzer is worse than the sum of fast
and ngram4. This observation exactly matches with the previous
statement from [45], as with ngram4 feedback, when the target
gets large, the fast scheduler has difficulty scheduling the testcases,
resulting in worse performance.

While our experiment provides some insight into the poten-
tial interference between techniques, such as the pair of fast and
value_profile showing little interference, and the pair of fast and
ngram4 exhibiting noticeable interference in several cases, particu-
larly for larger benchmarks. It is important to note that the scale of
our experiment is limited, and further research with more extensive
data is needed to draw definitive conclusions.

8.5 Limitations and Future Works

We conclude the discussion section with an overview of our study’s
limitations and future works. First of all, it is essential to clarify that
our research centers on branch coverage and identify program
features that correlate with this metric. We then proceed to create
prediction models that select the combination of fuzzing techniques
that output the highest branch coverage.

However, there is a difference between coverage and the ability to
find bugs. Böhme’s research [14] highlighted the strong correlation
between high coverages and the ability to discover bugs in modern
fuzzers, although the study also claimed that there is no firm agree-
ment between the two metrics. As a result, it is important to stress
that our study focuses solely on coverage and does not make any
claims about the actual bug-finding ability of the different fuzzers.

One line of possible improvement is to extend the benchmark.
Diversifying the benchmark suite would help to limit the influence
of outliers, which in a few cases introduced spurious correlations
in our results. For instance, Figure 5 shows such a case. The image
depicts the correlation between the grimoire fuzzer and struct_al
program feature. As we reviewed in Section 6, this produced a
counter-intuitive result. Focusing on the graph, we observe that
the majority of the program feature values are locally concentrated
around one side, causing the entire linear relationship to lean to-
wards the outliers. In our experiment, we employed 34 (23+ 11)
benchmark programs, and this dataset already required 250,240

Figure 5: An example correlation affected by the outliers
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cpu hours to test them on 16 fuzzer, and it was hard to extend the
benchmark suite due to the limitation of the resource.

9 Related Works

One of our challenges is to identify the optimal fuzzer configura-
tion from a vast array of techniques, and collaborative fuzzing - a
method of coordinating multiple different fuzzers during testing
- is a related area of interest. Enfuzz [15] and Collabfuzz [35]
are the initial attempts to coordinate various types of fuzzers to
enhance the results. The motivation behind these works is that
when different fuzzers are combined and run together, the program
space missed by one fuzzer can be covered and complemented by
others. The main challenge of collaborative fuzzing is to identify
the most effective combination of fuzzers to use.

However, the ultimate goal of these collaborative fuzzing frame-
works and our work differs. What collaborative fuzzing answers
is the combination of pre-made fuzzers complementing each other
when they are run together. On the other hand, our work aims to
give the best choice of techniques to fuzz when you use a single
fuzzer to fuzz. This is not what collaborative fuzzing answers for us.

Additionally, we reiterate that the key differences that distin-
guishes our study from prior research is that prior studies employed
fuzzers that do not share the same baseline. The fact that using
fuzzers that cannot be decomposed into orthogonal approaches will
mistify the individual contribution of its techniques.

10 Conclusion

We presented a novel approach to correlate static analysis fea-
tures extracted during compilation with the performance results
of various fuzzing techniques and, on top of this, we developed a
prediction model to get a combination of techniques to be used as
fuzzer configuration tailored for each target.

Our research pioneers the investigation of the relationship be-
tween program characteristics and fuzzer performance. We hope
that our work will serve as the foundational work in this field.
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Table 11: All the extracted program features.

Features in blue correlates with at least one fuzzer, while the ones in red don’t have any correlation.

Feature name Type Interpretation

bbs Generic Feature Number of basic blocks
size Generic Feature Size of the program binary in

bytes
ne_level Generic Feature Nested level of the source code

program
corpus Initial Seeds Number of initial corpus entry
corpus_sz Initial Seeds Size of initial corpus entry
br_cov Initial Seeds Initial branch coverage
ln_cov Initial Seeds Initial line coverage
fn_cov Initial Seeds Initial function coverage
rg_cov Initial Seeds Initial region coverage
branches Instruction Type Number of branch instructions

per BB
cmps Instruction Type Number of cmp instructions

per BB
loads Instruction Type Number of load instructions

per BB
binaryops Instruction Type Number of binary op instruc-

tions per BB
alloca Instruction Type Number of alloca instructions

per BB
call Instruction Type Number of call instructions per

BB
stores Instruction Type Number of store instructions

per BB
array_al Operand Type Number of array alloca instruc-

tions per BB
array_vector_al Operand Type Number of array and vector

alloca instructions per BB
struct_al Operand Type Number of structure alloca

instructions per BB
i8_arg Operand Type Number of i8 argument in call

instruction per BB
i16_arg Operand Type Number of i16 argument in call

instruction per BB
i64_arg Operand Type Number of i64 argument in call

instruction per BB
pointer_arg Operand Type Number of pointer argument in

call instruction per BB
pointer_st Operand Type Number of pointer store in-

struction per BB
i32_arg Operand Type Number of i32 argument in call

instruction per BB
i32_i64_arg Operand Type Number of i32 and i64 argu-

ment in call instruction per BB
i32_al Operand Type Number of i32 alloca instruc-

tion per BB
i64_al Operand Type Number of i64 alloca instruc-

tion per BB
i32_i64_al Operand Type Number of i32 and i64 alloca

instruction per BB
i32_i64_i128_al Operand Type Number of i32 and i64 and i128

alloca instruction per BB
pointer_al Operand Type Number of pointer alloca

instructions per BB

Feature name Type Interpretation

i32_i64_i128_arg Operand Type Number of i32 and i64 and i128
argument in call instruction
per BB

i8_st Operand Type Number of i8 store instruction
per BB

i16_st Operand Type Number of i16 store instruction
per BB

i32_st Operand Type Number of i32 store instruction
per BB

i64_st Operand Type Number of i64 store instruction
per BB

i32_i64_st Operand Type Number of i32 and i64 store
instruction per BB

i32_i64_i128_st Operand Type Number of i32 and i64 and i128
store instruction per BB

pointer_st Operand Type Number of pointer store in-
struction per BB

floats_cmps Comparison Type Number of float comparisons
per BB

pointer_cmps Comparison Type Number of pointer comparisons
per BB

i64_cmps Comparison Type Number of i64 comparisons per
BB

str_mem_cmps Comparison Type Number of string or memory
comparison APIs per BB

vector_cmps Comparison Type Number of vector comparisons
per BB

array_vector_cmps Comparison Type Number of array and vector
comparisons per BB

int_cmps Comparison Type Number of integer comparisons
per BB

i8_cmps Comparison Type Number of i8 comparisons per
BB

i16_cmps Comparison Type Number of i16 comparisons per
BB

i32_cmps Comparison Type Number of i32 comparisons per
BB

i64_cmps Comparison Type Number of i64 comparisons per
BB

i32_i64_cmps Comparison Type Number of i32 and i64 compar-
isons per BB

i32_i64_i128_cmps Comparison Type Number of i32 and i64 and i128
comparisons per BB

m_ap API Type Security-sensitive API calls per
BB

h_ap API Type Heap memory API calls per BB
min_path CFG Feature The length of shortest paths

per CFG (There are multiple
shortest paths)

avg_min_path CFG Feature Average length of shortest
paths per CFG

cycle CFG Feature Occurrence of cycles (loop-back
edges) per CFG

edge_ddgs DDG Feature Number of edges per DDG
node_ddgs DDG Feature Number of nodes per DDG
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