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Abstract—Semantic Communication (SeCom) has garnered
widespread attention due to its effectiveness and intelligence as
an emerging technique. The current image SeCom system, based
on Deep Joint Source-Channel Coding (JSCC), requires joint
model training at both ends, leading to coupled models that need
concurrent updates. Additionally, the semantics transmitted via
joint training are feature vectors, which lack interpretability.
To address these issues, we design an Explainable Semantics-
based Image Semantic Communication (ES-ISC) demo. This
demo transforms images into explainable semantic texts and
segmentation maps for transmission. By leveraging the univer-
sality of these semantic carriers, we facilitate the decoupling of
transmitter (TX) and receiver (RX) training without substantially
impacting performance. Moreover, the interpretability of the
designed semantic carriers supports multiple downstream tasks.
Experimental results demonstrate that our system can transmit
images with over 100-fold compression while maintaining high-
quality reconstruction at the RX.

Index Terms—Semantic Communication, Explainable Seman-
tics, Ultra-high compression rate, Image Transmission, hardware
friendly

I. INTRODUCTION

Semantic Communication (SeCom) emphasizes the
semantics-level transmission between transmitter (TX) and
receiver (RX), in contrast to standard digital communication
systems that prioritize bit-level correctness. However, image
semantic extraction faces substantial challenges due to its
richness and ambiguity. For efficient image transmission,
Eirina et al. proposed a Deep Joint Source-Channel Coding
(JSCC) scheme by using a unified neural network to extract
and encode image semantics [1]. This method requires
joint model optimization at both the TX and RX, and its
superiority in image reconstruction quality is verified by
simulation experiments. However, it still faces the following
significant limitations: i) the models at the TX and RX
require joint training and simultaneous updates, which
complicates deployment; ii) the semantic feature vectors
generated by the existing scheme are uninterpretable, which
hinders human understanding and extended applications;
iii) the existing scheme assumes that any complex-valued
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Fig. 1. An Explainable Semantics-based Image Semantic Communication
(ES-ISC) System. This demo system runs on two host computers equipped
with Ubuntu22.04 system and Nvidia RTX4060 graphics card. For on-site
presentation, we need a desk to provide enough space for two host computers,
two displays, keyboard and mouse, and also four three-legged sockets to power
the computers and displays.

signal can be transmitted in the channel, and directly maps
the image into continuous signals for transmission, which
is not only inconsistent with the hardware design, but also
difficult to be compatible with the existing communication
system. Therefore, we propose an Explainable Semantics-
based Image Semantic Communication (ES-ISC) system
that converts images into discrete explainable semantics
for transmission using segmentation mapping and text
extraction techniques. ES-ISC system maintains exceptionally
high transmission efficiency while supporting a multitude
of downstream functions. The discrete representational
characteristics of these explainable semantics ensure their
compatibility with modern digital communication systems.
Our proposed ES-ISC demo is displayed in Fig. 1.

II. TECHNICAL DESCRIPTION

As illustrated in Fig. 2(a), the key components of the pro-
posed ES-ISC demo are the image semantic encoder, channel
encoder and modulator, channel decoder and demodulator,
and Explainable Semantic Image Reconstruction Module (ES-
RIM). At the TX, the image to be sent is converted using
image-to-text and image semantic segmentation technologies
into image semantic text, image semantic segmentation unit,
and additional image subgraph. The channel encoder and
modulator at the TX and the channel decoder and demod-
ulator at the RX are consistent with those in modern digital
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(b) Design Details

Fig. 2. Architecture of the proposed ES-ISC demo, where A-seg and B-seg
denote the segmentation maps based on semantic segmentation and based on
Segment Anything, respectively, TN and IN denote the generated text and
image feature vector, ZN denotes the additional noise for generative model
training, NER stands for Named Entity Recognition, and DFS-block stands
for Deep text-image-segmentation Fusion Block.

communication systems. These modules convert the semantics
extracted by the image semantic encoder into analog signals
for transmission through the physical channel, and vice versa.
As shown in Fig. 2(b), the implementation details are listed
as follows:

• Image semantic encoder, mainly consists of one image-
to-text model and one image-to-segmentation model. The
role of the former is to generate semantic text corre-
sponding to the input image, and the latter is used to
generate two types of image semantic segmentation maps.
It is worth mentioning that image semantic segmentation
includes two key sub-modulator: i) Type-A segmentation
maps (A-seg) based on semantic segmentation, primar-
ily containing the category label, overall boundary and
instance box of each segmentation object; ii) Type-B
segmentation maps (B-seg) based on Segment Anything,

mainly containing the detail boundaries of all segmen-
tation instances. These two types of semantics can be
directly understandable by humans and be used for in-
ference tasks. To facilitate the image reconstruction task,
image semantic encoder also extracts sub-images (S-img)
corresponding to various objects in the Region of Interest
(ROI) based on the semantic segmentation map in A-
seg. Both semantic text and image semantic segmentation
maps can be directly transmitted over physical channels
using modern digital communication systems.

• Explainable Semantic Reconstruction Image Module (ES-
RIM) is designed to ensure the high-quality image recon-
struction at the RX and to fully utilize the two types of ex-
plainable semantics. It is based on Contrastive Language-
Image Pre-training (CLIP) model [2] and Generative
Adversarial CLIP model [3]. The core architecture of
ES-RIM consists of one CLIP text encoder and its corre-
sponding generator, as well as one CLIP image encoder
(CLIP-ViT) and its corresponding discriminator. A key
feature is the Deep text-image-segmentation Fusion Block
(DFS-Block) within the generator, which integrates the
segmentation map into the image reconstruction process
at the feature map level. To enhance consistency between
generated and original images, we incorporate a spa-
tial normalization layer that considers segmentation map
textures. This approach ensures that images generated
from text maintain structural consistency with the original
images.

III. RESULTS AND APPLICATIONS

The proposed demo addresses key limitations of traditional
Deep JSCC by transforming images into explainable semantic
texts and semantic segmentation maps. This approach resolves
the issues of non-decoupled models at the TX and RX, as
well as the uninterpretable nature of transmitted semantics.
The generated semantics offer two significant advantages:
their discrete representation facilitates integration with current
communication systems, and their universality allows for de-
coupled training of both ends without significantly compromis-
ing performance. Consequently, this demo supports a variety
of downstream sub-tasks with extremely high transmission
efficiency. Real-world experiments demonstrate the demo’s
capability to transmit images with a compression ratio exceed-
ing 100 times, while simultaneously accomplishing multiple
sub-tasks such as image captioning, semantic segmentation,
and reconstruction. This performance represents a substantial
improvement over conventional schemes.
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