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Abstract—Federated learning (FL) emerges as an innovative
approach to manage a collection of client UAVs in order to
co-train machine-learning models that are readily integrated
into an Unmanned Aerial Vehicle (UAV) swarm. However, due
to more erratic communication conditions than in terrestrial
wireless networks, synchronous aggregation—which is utilized in
traditional FL—is no longer feasible in UAV swarm. Additionally,
because of the various deployment zones or specifications of
UAVs, the data gathered by them are frequently heterogeneous.
A significant amount of unlabeled data will be collected by
UAV swarm in light of its new flight trajectory and unseen
scenarios. To address these issues, we propose a unique Semi-
synchronous Federated Cross-Sharpness Learning (SFedXSL)
framework to tackle the problems of asynchronous devices and
unlabeled data. This framework incorporates unsupervised pre-
training and client UAV clustering scheduling. These proposed
techniques aim to unlock the full potential of unlabeled and
labeled user data, expediting the training process. Simulation re-
sults demonstrate that our proposed algorithm surpasses state-of-
the-art FL techniques in terms of objection recognition accuracy
and service latency.

Index Terms—UAV swarm, semi-supervised learning, semi-
synchronous federated learning, unlabeled data, client schedul-
ing.

I. INTRODUCTION

Federated learning (FL) is an innovative decentralized
machine-learning paradigm that enables model training across
multiple local devices while maintaining data privacy. Under
FL, a central server orchestrates the process, merging updates
from various devices to develop a globally consistent statistical
model. This model effectively mitigates risks associated with
centralized data repositories, particularly in contexts where
privacy and security are crucial [1]. Within this framework,
a wide array of client devices collaborates in model training,
with the central server overseeing the coordination and aggre-
gation of updates, thereby prioritizing data confidentiality [2].
This method leverages the collective intelligence of distributed
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devices, seamlessly integrating with use cases like online
training with Unmanned Aerial Vehicle (UAV) swarms [3].

The evolution of edge computing and device-to-device com-
munication technologies has facilitated the extensive deploy-
ment of UAV swarm in various applications, including natural
disaster surveillance and urban traffic management. These
UAVs not only collect data but also possess computational
capabilities to train machine-learning models for tasks such as
object recognition and trajectory planning. However, the ap-
plication of FL in UAV swarm presents numerous challenges,
primarily due to the unpredictability of aerial transmission
links and the diversity of data collected by different UAVs [4].
Unlike terrestrial wireless networks, UAVs often face commu-
nication disturbances that compromise training performance.
This occurs because the synchronous aggregation of model
updates is hampered by connectivity issues and the presence
of straggler or disconnected UAVs [5]. Additionally, the het-
erogeneity of the data, influenced by varying viewpoints and
flight paths of the UAVs, complicates the learning process [6].
Furthermore, given the frequent use of UAVs in exploring new
or dynamically changing environments, a significant portion of
the data they collect may be unlabeled, adding another layer
of complexity to the training process.

Despite significant advancements in FL, designing an op-
timized FL framework that effectively addresses challenges
such as data heterogeneity, unlabeled data, and device di-
versity within UAV swarm remains a complex endeavor. To
confront these challenges, we introduce the Semi-synchronous
Federated Cross-Sharpness Learning (SFedXSL) framework.
This framework aims to enhance data utilization, expedite the
training process, and ultimately, improve model accuracy. The
key contributions of our work are detailed below:

• We introduce a streamlined semi-supervised federated
learning (SSFL) method that effectively utilizes the syn-
ergy between abundant unlabeled data and limited labeled
data. This approach overcomes the typical challenges of
traditional SSFL, where local optima may neglect the
potential of unlabeled data due to dependency on dataset
similarities and transferability. By reducing the cross-



sharpness in prediction functions, our method ensures
consistent performance across diverse data types and
boosts the overall effectiveness of SSFL.

• Addressing the asynchronous communication for a UAV
swarm, a theoretical model is proposed to explore the
impact of stragglers and dropped connections on training
latency under a FL manner. Based on this model, we
propose a clustering-based client selection algorithm that
not only decreases latency but also rests on a solid
theoretical foundation to prove its efficiency.

• The comprehensive simulation demonstrate that the
SFedXSL method outperforms traditional FL techniques
across several crucial metrics, including accuracy, robust-
ness in object recognition, and service latency. These
findings highlight the substantial practical advantages and
potential of our proposed framework in optimizing UAV
swarm operations in FL scenarios.

The rest of the paper is organized as follows: Section II
presents the system model and problem formulation. Section
III provides the algorithm description. Section IV demonstrates
the effectiveness of our proposed methods. Finally, Section V
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As illustrated in Fig. 1, we aim to implement the FL manner
in a UAV swarm consisting of C + 1 devices, denoted as
C ≜ {0, 1, 2, · · · , C}. In this swarm, all client UAVs have the
capability of data collection and computing, and one UAV as
the leader needs to act as a central server to coordinate the
cooperation of the whole swarm. During the flight, each UAV
will collect a large amount of unlabeled data and a few labeled
data. Let Dc,u = {zci}

Nc,u

i=1 and Dc,l = {(xcj , ycj )}
Nc,l

j=1

denote the unlabeled and labeled datasets on the c-th UAV,
respectively, where zci represents the i-th unlabeled sample in
the input space X , xcj is the i-th data feature in the input space
X , ycj is its corresponding label in the label space Y , Nc,u

and Nc,l indicate the size of the unlabeled dataset and that
of labeled dataset, respectively, and we have (Nc,u ≫ Nc,l).
Let Dl =

⋃C
c=1 Dc,l represent the global labeled dataset,

encompassing the labeled datasets of all UAVs. In a similar
vein, Du =

⋃C
c=1 Dc,u denotes the global unlabeled dataset.

A. Traditional FL with Labeled Data

In classical FL, the objective function of local training at
the c-th UAV over its own labeled dataset can be given as:

min
Mc

J(fMc
, Dc,l): =

1

Nc,l

∑Nc,l

i=1
ℓ(fMc

(xci), yci), (1)

where fMc
: X → Y is an r-layer neural network model

parameterized by Mc at the c-th UAV, and ℓ (fMc
(xci), yci)

denotes the loss function of the c-th UAV’s local model
fMc over the training sample (xci , yci). In this context, the
KL-divergence or cross-entropy loss functions are widely
adopted to evaluate the inconsistency between the model fMc

’s
predictions and the actual data labels yci , and we adopts the
cross-entropy as the local loss function for the client UAVs.
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Fig. 1: Overall semi-synchronous FL framework for a UAV
swarm and the main challenges.

Through the coordination between the leader UAV and
the other UAVs, the overarching objective of FL system is
to attain a global model fM that minimizes the global loss
function J(fM , Dl) across the entire dataset Dl, which can
be expressed as follows:

min
M

J(fM , Dl) :=

C∑
c=1

1

Nc,l

Nc,l∑
i=1

ℓ(fM (xci), yci), (2)

where M denotes the global model parameters.
A conventional optimization approach entails iterative com-

munication between several client UAVs, denoted as Uc,
and the server UAV, denoted as Us, coupled with gradient
descent methods, to update the global model. Without loss
of generality, we focus on the t-th communication round. At
the beginning of the t-th round, the server UAV selects a
portion of client UAVs Γt from entire UAV swarm for training,
let K denote the size of |Γt|. Subsequently, the server UAV
distributes the global model fMt to all selected client UAVs.
At each participating client’s side, they will perform El epochs
of local model updates, where El ≥ 1. Let e denote the index
of local updating. For c ∈ Γt, the evolution of local model
parameters of communication the t-th round at the c-th UAV
is given as:

M t
c,0 ←M t,

M t
c,e+1 ←M t

c,e − η∇Mt
c,e
J(fMt

c,e
, Dc,l), e = 0, · · · , El − 1,

M t+1
c ←M t

c,El
,

(3)
where M t denotes the downloaded global model parameters
during the t-th round, M t+1

c denotes the c-th UAV’s updated
local model parameters during the t-th round, M t

c,e denotes
the local model parameters at the e-th epoch of local update
at the c-th UAV during the t-th round, and η represents the
learning rate.

Let Γ
′

t denote the set of client UAVs whose model updates
are successfully received by the server UAV. Due to the
unreliable transmission, we have Γ

′

t ⊆ Γt. Let n denote
the number of client UAVs that the server UAV expects to
receive successfully, and we have n ≤ K. In this work, we
opt to employ a semi-synchronous communication protocol



to coordinate the FL training process. Specifically, the server
UAV will cease waiting and update the global model when
either of the following two conditions are met: receiving n
client UAV model updates or waiting for T̃t. In accordance
with the FedAvg framework [7], the evolution of global model
parameters at the t-th round is given as:

M t+1 ←
∑

c∈Γ
′
t
Nc,lM

t+1
c∑

c∈Γ
′
t
Nc,l

. (4)

B. Unlabeled Data Problem

In real-world scenarios, each UAV often collects a sub-
stantial amount of unlabeled data, especially in unseen envi-
ronments such as agricultural fields, disaster response zones,
forest monitoring and smart city [8], [9]. To effectively harness
these unlabeled data, the SSFL has emerged as a promising
solution [10]. The fundamental concept behind the SSFL
is to leverage an initially trained model with respectable
classification capabilities to generate surrogate labels for the
unlabeled data. The goal of the SSFL is to train a shared model
fM , which can perform well on a global data set. To utilize
both labeled and unlabeled data, the global loss function of
classical SSFL can be rewritten as follows:

min
M

JSSFL =min
M

(Jl(M,Dl) + Ju(M,Du))

=min
M

C∑
c=1

Nc,l∑
i=0

1

Nc,l
ℓ (fM (xci), yci)

+

C∑
c=1

Nc,u∑
j=0

I
Nc,u

ℓ
(
fM

(
A
(
zcj

))
, ŷcj

)
,

(5)

where Jl(M,Dl) is the loss function over the global labeled
data under supervised leaning, Ju(M,Du) denotes the semi-
supervised regularization term over the global unlabeled data,
A(·) is an augmentation function that transforms an original
input zcj to an augmented variable, ŷcj is the obtained pseudo
label, I is a Boolean variable to select the confident unlabeled
data, I = 1 if ŷcj > τ , otherwise, I = 0, where τ is a
predefined threshold.

Previous research indicates that training exclusively on
labeled data can lead to a significant generalization mismatch
when applied to unlabeled data, and shows that the introduc-
tion of the cross-sharpness term alleviates this problem [6].
As shown in Fig. 2, we plot the loss landscapes of a model
trained solely on labeled data and that of a model trained on
both labeled and unlabeled data with a cross-sharpness term.
It can be observed that the loss landscape becomes smoother
and the model achieves smaller loss and higher accuracy. The
value of the contour lines for the labeled and unlabeled data
in the first row is smaller than that in the second row of Fig.
2, indicating that the training technique based on minimizing
cross-sharpness may converge to a better model with a lower
training loss. Furthermore, focusing the two sub-figures in
the third row, we can find the general trend of the accuracy
curves of unlabeled data and labeled data is consistent in semi-
supervised learning based on cross-sharpness, while there is a

non-negligible mismatch in purely supervised learning scenar-
ios. To guarantee learning consistency between unlabeled and
labeled data in a UAV swarm, we introduce a cross-sharpness
regularization based FL algorithm described in Section III-A.

C. Straggler Problem

In this scenario, training latency comprises four key compo-
nents: client UAV model training and uploading latency, global
model aggregation time, client UAV selection time, and global
model distribution time. Among them, the first term dominates,
thus we investigate the details of client UAV model training
and uploading latency in this work.

1) Client UAV Updating Latency: Due to device hetero-
geneity, different UAVs will incur different computation la-
tency and communication latency, which are calculated as:

T cm
c =

Msize

B log2

(
1 +

Pc,txhc

N0

) , T cp
c =

σc

φc
, (6)

where T cm
c and T cp

c denote the communication latency and
computation latency of the c-th UAV, respectively. Msize

represents the amount of the uploading model parameters in
bits, B denotes the bandwidth allocated to each UAV, Pc,tx

denotes the transmission power of the c-th UAV, hc and N0

denote the channel gain and noise power between the server
UAV and client the c-th UAV, σc represents the total number
of clock cycles used by the c-th UAV for local training, and φc

represents the CPU frequency of the c-th UAV. Considering
the real-world communication environments, UAVs may be
disconnected when the communication is unreliable. In this
case, the expectation of local training latency is

Tc =

+∞, if the c-th UAV is dropping out,

T tr
c = T cm

c + T cp
c , otherwise.

(7)

2) Server Waiting Latency: Considering the poor commu-
nication conditions and inadequate computation capability of
certain users, the server UAV may suffer from the straggler
problem. To avoid the server UAV waiting indefinitely for a
dropped user, we adopt a semi-synchronous FL manner in this
work. Specifically, the server UAV will wait for at most T̃t time
before generating an aggregated global model, and expect to
receive at least n local model updates from K selected client
UAVs [11]. The waiting latency for server UAV during the
t-th round and its expectation are given as:

T sw
t = min

{
max
ci∈Γ′

t

{T tr
ci}, T̃t

}
,

E {T sw
t } = (1− Pstp) max

ci∈Γ′
t

{T tr
ci}+ PstpT̃t,

(8)

where ρc denotes the dropout probability for the c-th UAV
at each round, T̃t denote the maximum time for the server
to wait for client UAV updating during the t-th round1. Let

1As for the value of T̃t, a typical approach is to set it to the local
update latency of the slowest UAV among all UAVs [11]. In this work, we
dynamically set it as the latency of the slowest one in a given participating
client UAV set Γt.
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Fig. 2: Loss landscapes of labeled and unlabeled data were simultaneously generated by training on a single UAV with the
SAT6 dataset, using 100 labels per class. (i) The first row and second row show the results after the 60-th epoch of local
training with SGD, with and without cross-sharpness, respectively. (ii) The first and the second columns display the 2D loss
contours of labeled and unlabeled data, respectively, the third column presents the 1D loss curves.

Cm denote the set of straggler UAVs whose updating latency
with reliable transmission is longer than the maximum server
waiting time, namely, Cm = {c|T tr

c ≥ T̃t and c ∈ C}.
In this work, we define the straggler problem as T sw

t = T̃t

and it occurs in the following two scenarios: 1) at least (K−n)
UAVs are dropped in one training round, denoted by the event
Adrop ; 2) at least one straggler UAV in Cm is selected, denoted
by the event Alast. Since events Alast and Adrop are independent
of each other, the probability of the FL server needs to wait for
T̃t time before model aggregation can be expressed as follows:

Pstp = P (T sw
t = T̃t) = P (Adrop ∪Alast)

= P (Adrop) + P (Alast)− P (Adrop)P (Alast).
(9)

which is monotonically increasing with respect to P (Alast) and
P (Adrop). Since P (Adrop) is determined by the transmission
circumstance, and P (Alast) is determined by user selection
strategy, we aim to reduce the expectation of server waiting
latency via optimizing user scheduling to alleviate the straggler

problem, which will be described in Section III-B.

III. ALGORITHM DESCRIPTION AND ANALYSIS

A. Cross-Sharpness Learning (XSL) at User Side

In order to bridge the consistency of learning performance
between labeled and unlabeled data, a novel method based on
cross-sharpness minimization was proposed [6]. This method
first find the worst model by performing an adversarial per-
turbation on the model parameters, and then forces the worst-
case model and the original model to agree on the unlabeled
data by reducing their prediction difference, termed as cross-
sharpness. Thus, the rich amount of unlabeled data can be fully
exploited to calibrate the learning direction by minimizing
the cross-sharpness regularization. In our work, to efficiently
utilize unlabeled samples, each UAV add the cross-sharpness
regularization in local loss function as a penalty term, and the
worst-case model for each UAV is obtained by maximizing
the local loss function on the labeled data. Formally, the cross-



sharpness regularization of the c-th UAV is:

min
Mc

Jc,XS := min
Mc

∑
zci∈Dc,u

ℓ
(
f
M̃c

(zci), fMc(zci)
)
,

M̃c = Mc + ϵ∗c ,

(10)

where M̃c denotes the worst-case model with maximum loss
function over the c-th UAV’s labeled data, ϵ∗c denotes the
optimal model parameter perturbation at the c-th UAV. Fol-
lowing the existing research [12], the optimal model parameter
perturbation can be obtained as follows:

ϵ∗c = arg max
∥ϵc∥2≤β

ℓ(fMc+ϵc(xcj ), ycj )

≈ β
∇Mc

ℓ
(
fMc

(xcj ), ycj
)

∥∇Mcℓ
(
fMc(xcj ), ycj

)
∥2

(11)

where β > 0 is a constant to limit the magnitude of perturba-
tion over ϵc inside a l2-sphere.

Cross-sharpness based methods improve the generalization
ability by exploiting large amounts of unlabeled data to reduce
the prediction difference between unlabeled and labeled data.
Under an XSL manner, the local loss function of the c-th UAV
can be rewritten by substituting Ju in (5) with Jc,XS in (10),
which is as follows:

min
Mc

Jc,SSFL = min
Mc

(Jc,l + Jc,XS). (12)

Thus, the local update of the c-th UAV at the t-th round is
given as:

M t
c,0 ←M t,

M t
c,e+1 ←Mc,e − η∇Mc,eJc,SSFL, e = 0, ..., El − 1

M t+1
c ←M t

c,El
.

(13)

B. Client UAV Cluster Selection (CCS) at Server Side

To address the straggler problem caused by device dropout
and heterogeneity described in Section II-C, we propose a
utility-based client UAV clustering strategy and Client UAV
Cluster Selection (CCS) algorithm, as shown in Algorithm 2.

Algorithm 1 Cross-Sharpness Learning (XSL) Algorithm

Require: Labeled dataset Dc,l and unlabeled datasets Dc,u,
model parameters Mc, predefined constant β, Number of
local training epoch

Ensure: Local updated model parameters M t+1
c

1: Set local model parameters M0
c ←M t

2: for e = 0 to E − 1 do
3: Calculate local labeled loss Jc,l according to (1)
4: Calculate optimal model parameter perturbation ϵ∗c ac-

cording to (11).
5: Calculate worst-case model M̃c and cross-sharpness

regularization Jc,XS according to (10)
6: Update local model parameters according to (13).
7: end for
8: Return M t+1

c

Algorithm 2 Client UAV Cluster Selection (CCS) Algorithm

Require: Set of client UAVs C, number of client UAVs
selected by the server K, training the t-th round

Ensure: Set of selected client UAVs for the t-th round, Γt

1: Calculate the utility of all client UAVs, U =
{u1, u2, . . . , uc};

2: if t == 0 then
3: Divide all client UAVs into G clusters in descending

order of utility, and obtain the sets of client UAV
clusters G = {g1, . . . , gG}, G = ⌈CK ⌉

4: else
5: Divide all client UAVs into G clusters in descending

order of utility and pad the last group with K − |gG|
client UAVs from the first cluster, and obtain the sets
of client UAV clusters G = {g1, . . . , gG}, G = ⌈CK ⌉

6: end if
7: Randomly select one client UAV group and assign it to

Γt

8: Return Γt

Algorithm 3 Semi-synchronous Federated Cross-Sharpness
Learning (SFedXSL) Algorithm
Require: Set of client UAVs C, set of all collected labeled and

unlabeled datasets Dl =
⋃C

c=1 Dc,l and Du =
⋃C

c=1 Dc,u,
number of selected client UAVs for each round K, number of
expected received client UAVs’ updates for each training round n,
maximum number of communication round T , initialized global
model parameters M0

Ensure: Global model parameters MT

1: for t = 0 to T − 1 do
2: Server UAV calls CCS Algorithm to select the client UAV set

Γt;
3: Server UAV sends the current global model parameters M t to

all selected client UAVs in Γt

4: Server set the maximum waiting time T̃t

5: for each selected client UAV c ∈ Γt in parallel do
6: Perform local training based on XSL Algorithm
7: Upload the trained local model parameters M t

c

8: end for
9: while Γ′

t < n OR Tt < T̃t do
10: if Server receive client UAV updates M t

c then
11: Γ′

t = Γ′
t ∪ c

12: end if
13: end while
14: Server updates the global model parameters M t+1 according

to (4)
15: end for
16: Return MT

1) Algorithm Description: As shown in Algorithm 2, the
server first computes the utility of each client UAV and sorts
it in descending order of utility to obtain the corresponding
utility-based user sequence. The server groups all client UAVs
into G clusters based on this user sequence, with each client
UAV cluster’s size equal to the anticipated number of client
UAV updates the server receives throughout a training round.
For the t-th round, the server will choose a client UAV group at
random from the set of client UAV clusters G = {g1, . . . , gG}.



In this work, we define the utility function is uc = 1
E{T tr

c }
,

where uc represents the utility of client the c-th UAV.
2) Algorithm Analysis: To evaluate the efficacy of our CCS

algorithm, we provide the following theorem to analyze the
probability that at least one straggler client UAV is chosen at
each round, compared with the random selection technique.

Theorem 1: In semi-synchronous FL scenarios, let C and
Cm be a set of all client UAVs and a set of straggler client
UAVs, respectively, and |C| = C, |Cm| = m. Let PRS(Alast)
and PCCS(Alast) denote the probability that at least one strag-
gler client UAV is selected when the server selects K different
client UAVs under a random scheduling strategy for each
round and that of our proposed CCS algorithm, respectively,
we have

PRS(Alast) = 1−
(
C−m
K

)(
C
K

) , PCCS(Alast) =
a

⌈CK ⌉
≤ aK

C
,

PCCS(Alast) ≤ PRS(Alast),∀C,K,m ≥ 1.

(14)

where a denotes the number of client UAV clusters that contain
at least one straggler client UAV.

Theorem 1 states that our proposed CCS technique could
lower the likelihood of at least one user being chosen from the
straggler user set, resulting in a shorter server waiting latency
in semi-supervised FL circumstances.

C. Overall Algorithm

To address the aforementioned challenges, we pro-
pose Semi-synchronous Federated Cross-Sharpness Learning
(SFedXSL) framework, to incorporate semi-supervised learn-
ing and client UAV clustering. The overall design is illustrated
in Algorithm 3.

IV. SIMULATION RESULTS

A. Simulation Setup

In the work, we consider the image classification task for
a UAV swarm and adopt two open source datasets, namely
SAT6 [13] and FLAME [14] datasets. There are 1 leader
UAV and 10 client UAVs to collect data and participate in the
training process. We extract ρ percent of the whole dataset as
labeled data and the rest as unlabeled data. The number of
selected client UAVs at each round is set to 50% of the total
user number, i.e. K = 0.5 ∗ C. The user CPU frequency ϕc

follows a Gaussian distribution with a mean of 2.5 GHz and
a standard deviation of 0.25 GHz. The bandwidth allocated to
each client UAV B is set to 50 MHz. The user transmission
power Pc,tx follows a normal distribution N (0.1, 0.01). The
channel gain hc follows a uniform distribution U(0.5, 0.8).
The user dropout probability ρc follows U(0, 0.5).

1) Data Split: We extract a certain percent of the whole
dataset as labeled data and the rest as unlabeled data, and
the object recognition accuracy is calculated over the whole
dataset. As for the setting of user data heterogeneity, we
utilized the common Dirichlet distribution, in which variable
ϵq,c denote the ratio of instances of data with label q at
client the c-th UAV to the total instance of data with label
q, the probability vector follows Dirichlet distribution, i.e.

ϵq = (ϵq,1, ϵq,2, . . . , ϵq,C) ∼ DirC(α), where DirC(α) denotes
Dirichlet distribution with C users and α denotes the concen-
tration parameter. A smaller α implies a higher level of data
heterogeneity, and α =∞ represents the case of homogeneous
data. And we set α = 0.1,∀q ∈ {1, ..., Q} in this work, where
Q is the total number of label types.

2) Performance Metrics: The performance metrics used
in this paper are learning accuracy and training time. The
accuracy is calculated by:

Accuracy =
ntp + ntn

ntp + ntn + nfp + nfn
, (15)

where ntp, ntn, nfp and nfn denote the sample number of
true positive, true negative, false negative and false positive,
respectively.

3) Baselines: All experiments were implemented on Py-
torch. Each result is the average with a standard deviation of
5 simulations. To evaluate the effectiveness of our proposed
scheme, we compare our SFedXSL algorithm with the follow-
ing methods:

• Independent Training: Each client UAV independently
performs local training with its own labelled data without
collaboration. The learning accuracy is the average of all
client UAVs and the training delay of each round depends
on the slowest one.

• FedAvg [7]: As a baseline FL framework, the server
randomly selects K different client UAVs at each round.

• FedProx [15]: As a variation of FedAvg, the server
randomly selects the client UAVs and uses a random
function to determine the number of selected users at
each round.

• FedAvg+CCS: The server adopts our proposed CCS
algorithm to select K participating client UAVs at each
round.

• FedAvg+XSL: The server randomly selects K different
client UAVs at each round, and each client UAV performs
local training based on XSL scheme.

B. Performance Comparison

First, comparing with FedAvg, FedProx and independent
training, our SFedXSL performs the best in in terms of
learning accuracy and training time, which verifies the efficacy
of our proposed unlabeled data utilization and user scheduling
strategy. While the independent training algorithm always
obtains the worst learning accuracy, reflecting the necessity of
collaboration. Meanwhile, the learning accuracy of all methods
increases with the amount of labeled data, which illustrates the
importance of labeled data for specific learning tasks.

Second, to assess the efficacy of our proposed user schedul-
ing strategy, we compare FedAvg+CCS with FedAvg and Fed-
Prox algorithms, and find that our CCS strategy can obviously
achieve faster convergence at the cost of an imperceptible
reduction in learning accuracy learning accuracy. This is
attributed to the fact that our CCS algorithm can shorten the
time spent by users waiting for each other at each round by
grouping users with similar local updating time into the same



TABLE I: Accuracy Performance (%) on SAT6 and FLAME
Datasets.

Dataset SAT6

Percentage of labeled data 5% 10% Fully Supervised

Independent Training 39.57 ±0.02 45.12 ±0.02 48.47 ±0.02
FedAvg 53.32 ±0.10 69.96 ±0.81 68.06 ±2.16
FedProx 53.29 ±0.05 68.89 ±0.47 65.75 ±4.11
FedAvg+CCS 53.26 ±0.08 69.98 ±0.4 67.9 ±1.99
FedAvg+XSL 86.53 ±0.78 92.77 ±0.13 92.88 ±0.95
SFedXSL (ours) 86.81 ±0.18 92.62 ±0.05 92.17 ±0.15

Dataset FLAME

Percentage of labeled data 5% 10% Fully Supervised

Independent Training 49.15 ±0.02 43.77 ±0.02 58.47 ±0.02
FedAvg 77.38 ±0.12 68.94 ±0.94 81.06 ±1.91
FedProx 77.38 ±0.09 69.81 ±1.11 77.88 ±1.9
FedAvg+CCS 77.34 ±0.08 68.33 ±0.54 80.56 ±1.46
FedAvg+XSL 81.6 ±0.23 81.69 ±0.45 84.03 ±2.64
SFedXSL (ours) 81.58 ±0.14 82.69 ±0.22 83.8 ±2.12

TABLE II: Delay Performance (minutes) on SAT6 and
FLAME Datasets.

Dataset SAT6

Percentage of labeled data 5% 10% Fully Supervised

Independent Training 39.07 ±9.07 62.32 ±14.44 590.94 ±138.77
FedAvg 35.47 ±7.99 57.23 ±12.08 518.79 ±115.87
FedProx 36.01 ±2.81 61.95 ±12.95 562.09 ±120.02
FedAvg+CCS 32.29 ±7.36 51.28 ±11.18 457.07 ±107.73
FedAvg+XSL 40.88 ±3.54 67.81 ±13.3 612.11 ±127.77
SFedXSL (ours) 37.70 ±4.54 60.48 ±14.0 539.30 ±137.48

Dataset FLAME

Percentage of labeled data 5% 10% Fully Supervised

Independent Training 171.64 ± 40.51 316.12 ±25.99 3853.99 ±492.47
FedAvg 154.75 ±37.34 281.92 ±19.8 2906.16 ±384.64
FedProx 192.99 ±20.59 328.36 ±15.23 3338.81 ±583.62
FedAvg+CCS 135.74 ±32.92 243.51 ±22.63 2707.19 ±376.96
FedAvg+XSL 201.48 ±9.54 336.70 ±22.81 3414.55 ±903.87
SFedXSL (ours) 192.76 ±23.66 298.70 ±40.66 3120.49 ±591.51

cluster.By comparing FedAvg+XSL with SFedXSL, it is found
that although CCS leads to a slightly lower mean of training
accuracy, it also has a smaller variance. This shows that CCS
can significantly reduce the delay while stabilizing the learning
accuracy

Third, to assess the efficacy of our proposed local training
strategy, we compare FedAvg+XSL with FedAvg, and find
that our XSL strategy could significantly improve the learning
accuracy. This is attributed to the fact that our XSL algorithm
is optimized based on cross-sharpness between labeled and
unlabeled data, which enhances the generalization ability of
the model while utilizing unlabeled data. However, the XSL
algorithm will lead to longer training delay due to the increase
of the amount of training data. Fortunately, combing the
proposed XSL and CCS strategy, our proposed SFedXSL
algorithm can significantly enhance the learning accuracy and
reduce the training time.

V. CONCLUSION

Though FL emerges as a promising solution to coordinate
the UAV swarm, a practical implementation is hindered by
challenges such as heterogeneous devices, along with the

presence of unlabeled data. For the effective collaboration
in a UAV swarm, we proposed the SFedXSL framework to
integrate client UAV scheduling and semi-supervised learning
optimization. Simulation results unequivocally demonstrate
that SFedXSL surpasses traditional FL methods in terms of
learning accuracy and training efficiency, which underscores
its potential as robust solution to effectively handle unlabeled
data and asynchronous devices in unstable transmission envi-
ronments.
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