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Abstract—The problem of resource-efficient beam alignment
is a long standing one within massive MIMO (mMIMO) enabled
wireless communication networks. In device-to-device enabled
networks, the beam alignment problem is repeated for every
new pair that appears and wishes to communicate, leading to a
seemingly unbounded resource expenditure as the network grows
dense. In this paper, we develop a new approach that uses the
implicit geometric structure of such networks to break the spell.
Instead of combatting it, our method exploits densification to
facilitate alignment with minimal resources. Assuming a static
(or slow varying) network, the intuition behind our approach
is to utilize the beam alignment solutions at prior device pairs
to predict optimal alignment in future pairs at independent
new locations. We show the equivalence between this problem
and a non-linear matrix completion (MC) problem under some
sparsity condition. In order to solve it, we design a MC technique
based on attention-based graph neural network (GNN) which
proves effective to predict optimal beam pairs with little side-
information.

Index Terms—Beam alignment, D2D communication network,
matrix completion, graph neural network, machine learning

I. INTRODUCTION

Recent years have seen a rise in interest for 5G mmWave
and in device-to-device (D2D) networks, sometimes combined
together [1], [2]. In 5G mmWave communication systems,
large-scale yet compact antenna arrays (mMIMO) may be
equipped at both transmitter and receiver sides, such that
high path losses can be compensated by generating narrow
beams with strong beamforming gains. In this context, effi-
cient communications hinges on the ability to identify beam
pairs (one beam at TX, one beam at RX) which are well
aligned with the channel propagation paths. Traditional beam
alignment based on exhaustive scanning (beam sweeping)
involves systematically steering a set of predefined beamform-
ing vectors across the angular space to cover all potential
beam directions. The receiver measures the received signal
quality for each beam combination, such as the received signal
strength or signal-to-noise ratio (SNR), and provides feedback
to the transmitter. While exhaustive sweeping helps identify
the directions with the strongest signal, the scanning leads
to a long training process, particularly when the number of
antennas and the number of device pairs is large. To address
these issues, various beam alignment mechanisms have been
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proposed to reduce beam training overhead or to enhance
beam alignment accuracy. The majority of existing works
address beam alignment in the context of a single point-to-
point link. For instance, methods based on iterative refinement
can be found in [3]. Other lines of work includes exploiting
the duality between beam pairing, which in Ricean channel
environment is akin to predicting the orientation of the TX-
RX axis, and the device localization problem [4]–[6]. Hence
device localization can be utilized in order to supervise beam
alignment.

In scenarios where prior localization information is not
accessible, the above methods can’t be used and other ap-
proaches must be resorted to. In this work, we leverage instead
the underlying spatial structure of beam pairing. Assuming a
network with a number of devices communicating directly in
D2D mode, we exploit past beam pairing solutions available
for a subset of past device pairs at unknown locations in
order to predict the optimal TX and RX beams at future new
random device pairs at new independent locations. To the best
of our knowledge, no prior attempt has been made to improve
the optimal beam alignment prediction by utilizing secondary
AoA information from other devices in the network.

The main contributions of this paper can be summarized
as follows: First we note that in the particular case of Line
of Sight (LoS) channels, the problem of predicting new
beam directions is equivalent to predicting angle of arrival
(AoA) and angle of departure (AoD) information. In this case,
our first contribution demonstrates analytically the minimum
number of prior beam pairing solution needed to reconstruct
optimal beam direction for any new device pair in a N -
device network. While the number of pairs grows with O(N2),
the number of pre-trained pairs in our solution only grows
linear with O(N). In the second contribution, we extend our
results to more general Ricean channels and develop a novel
solution relying on GNN-based matrix completion (MC) to
reconstruct optimal beams for any device pair. Interestingly,
device localization itself has also previously been reformulated
as a MC problem [7], [8]. In these papers the Euclidean
distance matrix- and eventually the location map- is recovered
from partially observed distance information. The Euclidean
distance matrix in a k-dimensional Euclidean space is known
to be at most of rank k+2 [8], whereas the rank of the AoA
matrix is not known a priori in our case and a different MC
form must be developed here.



Simulation results are provided to demonstrate the effective-
ness of our proposed method and robustness with respect to
multi-path outdoor model. We also shown how beam pairing
performance improves with the density of devices distributed
in the network as it allows a better leverage of the geometry
structure, yielding a more resource-efficient approach com-
pared with classical methods like beam sweeping.

Notations: We adopt x, x, and X to denote a scalar, vector,
and matrix, respectively. Superscripts ∗, T , and H stand for the
conjugate, transpose, and conjugate transpose, respectively.

II. SYSTEM MODEL & PROBLEM FORMULATION

As shown in Fig. 1, we consider a static (or slow moving)
communication network, where N devices each equipped with
M -antenna MIMO arrays are distributed space. Each device
can transmit (resp. receive) over a TX beam (resp. RX) beam
selected from a codebook of M fixed beams. The network is
D2D enabled, in the sense that device pairs can establish direct
communication links, relying on the joint selection of a pair
of the TX and RX beams to enhance the link SNR. Let the
graph G = {N , E} represent such a network, where the node
set N includes all devices and the edges in E represent the
beam pairs selected for communication between two nodes. In
this work, we assume that a (small) random subset of initial
device pairs have already performed beam pairing. The goal
of the study is to analyze the identifiability of beam pairing
solutions for all remaining device pairs, along with a suitable
reconstruction/prediction algorithm for those beams.

A. Channel model and beam pairing performance

Let Hi,j denote a multi-path channel between device i and
device j, classically based on the sum of the contributions of
L scattering clusters [9]:

Hi,j =

L∑
l=1

βi,j,la(M,ϑi,j,l)a
H(M,ϕi,j,l), (1)

where βi,j,l is the complex gain of the l-th path between device
i and device j, ϑi,j,l ≜ sin(θi,j,l) and ϕi,j,l ≜ sin(φi,j,l), θi,j,l
and φi,j,l are AoA and AoD of the l-th path between device
i and device j. The steering vector a(M,ϑ) is defined as

a(M,ϑ) ≜
1√
M

[
1, ej

2πd
λ ϑ, · · · , ej 2πd

λ ϑ(M−1)
]T

. (2)

where λ denotes the carrier wavelength and d denotes the
distance between two adjacent antennas.

The received signal at the RX j from TX i is given by

yi,j = Hi,jwi,jxi,j + nj , (3)

where wi,j and xi,j denote the beamforming vector and trans-
mitted signal from the device i to device j, nj ∼ CN (0, σ2I)
models the additive noise with zero mean and variance σ2.
After the receiver beamforming wj,i at device j, we have

x̂i,j = wH
j,iHi,jwi,jxi,j +wH

j,inj . (4)

The beam pairs, i.e. wi,j and wj,i, are selected from a pre-
defined beamforming codebook, which consists of M equally

spaced channel steering vectors pointing at M different direc-
tions:

W ≜ {w(1),w(2), · · · ,w(M)}, (5)

with
w(m) = a(M,−1 + (2m− 1)/M). (6)

The SNR between RX j and TX i is expressed as

γi,j =
|wH

j,iHi,jwi,j |2

σ2
. (7)

Assuming negligible inter-device interference, the optimal
beam pair is selected as the one maximizing the SNR:

wopt
j,i ,w

opt
i,j = arg max

wj,i,wi,j∈W2
γi,j , (8)

where wopt
i,j and wopt

j,i denote the SNR-optimal beamforming
vectors for communication between node i and node j,
selected from the common codebook. Note that the search
complexity using full scanning is M2 for each pair, hence up
to N(N−1)M2/2 for the whole network, with the 1/2 saving
obtained from symmetry arguments.

B. Beam alignment as AoA matrix completion

In order to build intuition and guide analytical work, we first
consider a propagation environment with a strong enough LoS
component, such that there a duality between optimal beam
pairs and the AoA and AoD information (this assumption is
then relaxed when designing the algorithm). Let θij denote
the AoA from TX j to RX i. Note that the AoD from TX j
to RX i can be obtained by symmetry.

Let A ∈ RN×N denote the entire AoA matrix, whose (i, j)
element is θij and the diagonal elements are left at 0. As
mentioned above, we assume part of the AoA matrix has been
observed through some pre-training on those device pairs that
previously initiated communication. Let Ω and Ω′ denote the
set of observed and missing entries in matrix A, respectively.
To find the estimate of the full AoA matrix such that it
matches all the known and observed values, any beam pairing
algorithm can be interpreted as a MC problem on A, with
a reconstruction performance indicator chosen to be the root
mean squared error (RMSE) between each of the estimated
and observed values, which is:

RMSE =

√√√√ 1

|Ω|
∑
θij∈Ω

(θij − θ̂ij)
2
, (9)

where θ̂ij denote the estimated AoA from TX j to RX i.

III. ANALYSIS OF AOA IDENTIFIABILITY CONDITIONS

In this section, we analyze for the dominant LoS scenario
the AoA identifiability conditions using geometric arguments
allowing the completion of matrix A on the basis of a limited
set of observed entries. In what followed we refer to all AoA
elements of A which have been observed a priori as trained
AoA. A training pattern refers to particular subset of trained
AoA elements within A.



(a) D2D Network (b) AoA-based beam alignment (c) AoA estimation

Fig. 1. Example of Beam alignment with mMIMO in an ultra-dense D2D communication networks. (a) An ultra-dense D2D network with N randomly
located devices. (b) Example of AoA-based beam alignment where the beams are assumed to be infinitely narrow. The blue nodes denote the devices and
the red links represent perfect-alignment of the transmitter and receiver beams between two devices, which signify successful communication between the
devices. (c) Example of AoA estimation where the black dashed lines represent the AoA information that needs to be estimated.

(a) 4-device network (b) Scale-invariant triangle (c) N -device network

Fig. 2. Beam pairing as a AoA reconstruction problem. (a) AoA reconstruction for a 4 device networks: AoA for the (1,4) device pairing is feasible, based
on previous pairing information for (1,2), (1,3), (2,3), (4,2), (4,3) (b) Geometric solution for 4 device network based on scale-invariant triangle. (c) Assuming
full pairing among N − 1 devices, the optimal beam pairs for the N -device network is feasible provided pairing is available for (at, nt) and (bt, nt) device
pairs.

Proposition 1. For a D2D communication networks consisting
of N ≥ 2 static devices, hence with N(N − 1)/2 ordered
communication pairs, there exists a AoA training pattern with
only 2N−3 trained AoA elements allowing the reconstruction
of all N(N − 1) AoA elements in A.

Proof: First note that in the LoS-dominant scenario, A
exhibits some symmetry between upper and lower triangles.
Without loss of generality, we reconstruct the N(N − 1)/2
AoA elements in the upper triangle. The rest of the proof is
by induction. It is trivial when N = 2 and N = 3. To prove
the proposition in the general case, let us first examine N = 4,
see Fig. 2(b). Specifically, we assume the AoA estimation has
been solved for all D2D pairs within A,B,C network. Now
consider device X: the AoA information for (X,A) can be
found uniquely from AoA information for (X,B) , (X,C)
and within A,B,C network as follows:

Consider Fig. 2(b), where without loss of generality device
A is considered the reference point at location xA = (0, 0).
Then, based on the AoA knowledge for (A,C), (A,B) and
(B,C) device pairs, the location of B and C, relative to
X , is implicitly and uniquely determined. Based on location
information for B and C and based on additional AoA for
(B,X) and (C,X) pairs, the location of X is uniquely
determined, hence AoA for (X,A) is uniquely determined.

The AoA for the 4-device network is fully reconstructed with
just 5 AoA information elements (instead of 6 in theory).

Now consider, as in Fig. 2(c), a network with (t−1)-devices
(circled) for which AoA for all pairs have been determined,
based on pre-training of 2(t− 1)− 3 AoA elements. Assume
a t-device network is created by injecting a new device nt,
where nt seeks to connect to arbitrary devices within the
existing (t− 1)-device network. Assume two additional AoA
elements are made available, between nt and two arbitrary
previous devices at and bt. Assume nt seek to align with an-
other random device ct. Then, based on the 4-device argument
above, the AoA for (nt, ct) is uniquely determined from prior
AoA in (nt, bt), (nt, at) and the 3-device network (at, bt, ct).
Hence AoA for the t-device network is full determined. Note
that at each iteration, a new device is added and we assume two
new links (between this new device and two arbitrary previous
devices) are AoA trained. By induction, after N iterations and
assuming the above AoA training pattern of 2N −3 elements,
the AoA for the entire matrix can be reconstructed.

IV. ML-BASED MATRIX COMPLETION APPROACH

The above mathematical Proposition 1 provides the intuition
that the underlying geometric structure can be leveraged to
save a significant amount of resources when scanning across



beam pairs for a dense network (i.e. N large). The proof is also
a constructive one in that it also suggests a way to recover all
missing AoA elements in N -device network when a subset of
2N−3 device pairs have been beam-trained. This approach is
referred to as Structured-Training Matrix Completion (ST-MC)
because the choice of device pairs selected for initial beam
training is done according to the above proof. This algorithm
is summarized in the Algorithm 1.

Algorithm 1 Structured Training Matrix Completion (ST-MC)
Algorithm
Require: Node set with N devices (N )
Ensure: Estimated AoA matrix for all devices (Â)

1: Initialize a graph G0 = {V0, E0}
2: Randomly select two nodes a0, b0 ∈ N to construct

initial set V0 = {a0, b0}, and perform the beam searching
between a0 and b0

3: Add θa0,b0 into the initial edge set E0
4: for t = 1, 2, . . . , N − 1 do
5: Randomly select one node nt ∈ N \ Vt−1

6: Construct Vt ← Vt−1 ∪ nt

7: Randomly select two different nodes at, bt ∈ Vt−1 and
perform the beam searching for (at, nt) and (bt, nt)
pairs, as shown in Fig. 2(c)

8: Add θat,nt
and θbt,nt

into edge set Et−1

9: for ct ∈ Vt−1 \ {at, bt} do
10: θct,nt ← ADNH (θat,vt , θbt,vt , θat,bt , θat,ct , θbt,ct)
11: Add θct,nt

into edge set
12: end for
13: end for

Function ADNH (AoA Discovery with Neighbor Help)
14: Initialize device 1 as the reference point A = (0, 0)
15: Construct scale-invariant triangle as shown in Fig. 2(b)

with ∠θ21,∠θ31 and and ∠θ21, where B = (xB , yB) and
C = (xC , yC)

16: Construct vectors
−→
b and −→c from the θ24 and θ34 and the

gradient of vectors are m−→
b
= tan θ24 and m−→c = tan θ34,

respectively.
17: Find the intersection point of

−→
b and −→c by computing

X =

[
tan(θ24)− 1
tan(θ34)− 1

]−1 [
tan(θ24)xB − yB
tan(θ34)xc − yc

]
(10)

18: Computing as θ14 = arctan(xX

yX
)

19: return Â ∈ RN×N

In reality however, some of the idealized assumptions used
in the analysis should be relaxed: (i) The propagation may ex-
perience significant multi-path and beams may not be infinitely
narrow: i.e., AoA estimation and optimal beam selection are
no longer equivalent, (ii) the sequence of pre-observed beam
pairs may not adhere to the pattern used in Proposition 1 and
may be random. In what follow, we design a ML-aided MC
algorithm providing a near-optimum solution for such realistic
cases. In such cases, the element θij in A is the AoA of path
with the maximum SNR among all L paths from TX j to RX

i, and A is not necessarily symmetric.

A. Collaborative Filtering Matrix Factorization (CFMF)

Consider a partly observed AoA matrix, whose known ele-
ments constitute a small subset Ω of the matrix, Collaborative
Filtering Matrix Factorization (CFMF) methods aim to learn
two latent feature matrices to recover the whole matrix by
product of corresponding feature map [11]. The solution to
the previous problem is equivalent to the following program:

argmin
U,V

∥∥Ω ◦ (A−UVT )
∥∥2
F
+ λ(∥U∥2F + ∥V ∥2F ), (11)

where U,V ∈ RN×q and q ≪ N denotes the dimension of the
latent feature vector, Ω ◦ (·) is the binary projection operator
that only counts observed entries of the matrix which lie in the
set Ω, and ∥·∥F denotes the Frobenius norm. The first term and
the second term denote reconstruction error and regularization
penalty, respectively. Actually, CFMF-based MC method can
be considered as a process of generating the original data by
linear combinations of the latent features.

The CFMF has to be performed with only partially observed
entries Ω in A and not the complete entries of A, which
remain mostly unknown under sparsity condition. To obtain U
and V, the two matrices are first initialized the with random
values, and the error between the product of U and V, i.e. Â
to A for the observed entries Ω, are measured. This error is
then minimized iteratively until a local minimum is obtained.

Note the AoA relationship is not linear as discussed in Al-
gorithm 1, however, the performance of matrix factorization is
well known to be hindered by the simple choice of interaction
between the latent vectors, i.e., the inner products. This may
not be able to capture the complex structure of the interactions
between the row and column features. Additionally, CFMF
methods are based on low-rank assumption, whereas in our
case the rank of the AoA matrix is not known a priori.

B. GNN-based Matrix Completion (GNN-MC)

To tackle this high-sparse and non-linear MC problem, we
propose a novel graph neural network (GNN) with attention
mechanism to learn meaningful dense feature representations
from sparse input data by fully utilizing node feature and
geometric structure. Specifically, we perform attention-based
graph filtering on the original sparse AoA matrix to su-
percharge the prediction with non-linearities, where graph
convolution network (GCN) acts as a feature extractor and
attention block helps to solve the non-linear issue in the
propagation layer.

1) Graph Convolution: Given a graph G = {N , E}, let
L = I−D−1/2WD−1/2 denote the normalized graph Lapla-
cian matrix, D denote the degree matrix. Considering that L is
symmetric, it can be eigen-decomposed as L = ΦΛΦT . Until
the loss function is small enough, the input data is propagated
and aggregated across edges using an iterative process known
as graph convolution. Let X = {§1, §2, ..., §N} ∈ RN×Ki , §i ∈
RKi denote the Ki-dimension input data for graph convolution
layer, and Y = {†1, †2, ..., †N} ∈ RN×Fo , †i ∈ RKo denote



the Ko-dimension output feature. The learning procedure can
be expressed as †j = arctan(

∑Ki
i=1 ΦkĜijΦk§i), where

arctan is a nonlinear activation function, Φk = (ϕ1, ..., ϕk)
denotes N × k matrix of the first k eigenvectors and Ĝij =
diag (ĝij,1, .., ĝij,k) denotes k × k diagonal matrix of spectral
multipliers representing a learnable filter in frequency domain.
This operation is computationally expensive due to matrix
multiplication. In order to get around this problem, a normal-
ized polynomial filter with Chebyshev coefficients can be used
to extract features. The learning procedure is expressed as

†j = arctan(

Ki∑
i=1

P−1∑
p=0

ζij,pTp(L̂)§i), (12)

where ζij,p denotes learnable coefficients of Chebyshev poly-
nomial filter, L̂ = 2L/λmax − I, λmax is the maximum
eigenvalue, Tp(·) denotes recursively-generated Chebyshev
polynomial, and p denotes the Chebyshev polynomial order.
This indicates that Laplacian is a local operator with p-
hop neighborhood. To estimate the entire AoA matrix, let
H(0) = A and for the t-th hidden layer, we have

H(t+1) = arctan(H(t)W(t)
ζ (L)) (13)

where W(t)
ζ denotes weight matrix at the t-th layer, whose

elements is w
(t)
ζij

=
∑p−1

p=0 ζ
(t)
ij,pTp(L̂).

2) Attention Mechanism: The relevance of different node
to a target node can be adjusted by an attention score. In
our model, each GCN block is followed by an attention-based
propagation layer. The output weighted feature of node i after
the l-th GCN block is

H̃(t)
i =

∑
j∈N (i)

κ
(t)
ij H

(t)
j , (14)

whereNi denote all one-hop neighborhood of node i including
itself, κ(t)

ij denote the attention score, which is calculated as
follows

κ
(t)
ij =

e(β(t) cos(H
(t)
i ,H(t)

j ))∑
j′∈N (i)

e
(β(t) cos(H(t)

i ,H(t)

j′ ))
, (15)

where cos (x,y) = xTy
∥x∥∥y∥ . Considering the training instabil-

ity of highly sparse MC problems, this paper adopts a rela-
tively simple attention formulation with only one parameter
per layer. Both the weight sharing matrix W(t)

ζ (L) and the
attention hyper-parameter β(t) are trained by minimizing the
loss function given in (11).

V. EXPERIMENT RESULTS

A. Experiment Setup

In this section, we numerically evaluate the performance
of the proposed algorithm in the ultra-dense D2D massive
MIMO communication network. The cardinality of analog
beamforming codebook is set to be M = 64. The number of
resolvable multipath in mmWave channel is set to be L = 5 for
each device, while the complex channel gain is set as βi,j,1 ∼

CN (0, σ2
LoS) for LoS path and βi,j,l ∼ CN (0, σ2

NLoS), i ̸= 1
for the other scattered paths. Let P be the total power of all
paths, and Kr be the Ricean factor, thus, we have

σ2
LoS =

Kr

1 +Kr
P, σ2

NLoS =
P

(L− 1)(1 +Kr)
. (16)

1) Baselines: In this work, we adopt beam sweeping and
vanilla matrix factorization algorithm [10] as comparison
benchmarks. We set the maximum number of iterations to
1000 and then calculated the average of 50 trials. The CF-MC,
GNN-MC and ST-MC models are implemented on Google
TensorFlow. The Adam optimizer was employed for training
with a learning rate of 0.05 and weight decay of 1e−5. Cross-
validation is used to tune hyper-parameters such as dropout
rate and regularization factor.

2) Performance Metric: Since the absolute reference point
for performance is given by the exhaustive beam sweeping
baseline, we seek to bound the average SNR loss with respect
to beam sweeping to a small desired value, such as -1dB.

Lγ =

∑
i,j∈Ω′ |ŵH

j,iHi,jŵi,j |2∑
i,j∈Ω′ |{ŵopt

j,i}
H
Hi,j{ŵopt

i,j}|2
, (17)

where ŵj,i denote the beamforming vector based on AoA
estimation.

Under the constraint on SNR loss, the negative performance
metric is measured by how many beam pairs need to be trained
(measured) in order to predict the optimum beam pairs at any
arbitrary device pair.

3) Data Pre-processing: In order to facilitate the processing
of training data by ML models, the AoA information are first
normalized adjusted for its cyclic quantity for the training
and testing purpose. We will set the training pattern as
different sizes in order to compare the performance of various
algorithms under different sparsity conditions.

B. Performance Comparison

In this work, we will conduct experiments to verify that in
an ultra-dense network, once a certain proportion of the beam
alignment is determined, the beam alignment between all other
nodes can be estimated without the need for extra time and
resources to perform beam scanning.

1) Impact of the Number of Devices: As shown in Fig. 3,
beam sweeping, as an exhaustive method, requires N(N −
1)M2/2 beam pair scans. The ST-MC method requires the
least number of pre-trained beam pair scans, that is, (2N −
3)M2, nevertheless, it requires a structured selection of pre-
trained RX-TX pairs. For a training pattern with random
selection of RX-TX pairs, both CFMF-based and GNN-based
MC methods need perform |Ω|M2 beam pair scans in ad-
vance. Compared with CFMF-MC method, GNN-MC method
requires less communication overhead to achieve a given SNR
loss. In other words, the GNN-MC algorithm can perform
well in beam alignment prediction by selecting a training
patter with a smaller size. The CFMF-MC method do not
predict AoA information well under high sparsity conditions
due to its linear operation and low-rank assumption. In fact,



Fig. 3. The required number of pre-trained beam pair scans with different
number of devices where the number of beams is 64. The proposed MC
approaches save a factor of up to 70 times scanning resources over beam
sweeping.

in our scenario, the AoA matrix is full rank and the rank
is equal to the number of devices. However, only a few of
the eigenvalues of this matrix have relatively large magnitude,
and the rest have relatively small magnitude (very close to
0), which indicates that this matrix can be approximated as
a low-rank matrix to some extent. Therefore, the classical
matrix factorization method could also accomplish this MC
task, while GNN performs better because it does not rely on
the low-rank assumption. Furthermore, the results demonstrate
that, as the network becomes denser, the general trend is that
the number of pre-training beam searching required by MC
methods increases almost linearly with the number of devices.

2) Impact of the Number of Beams: As shown in Fig. 4, it
can be seen that compared to beam sweeping, the MC-based
methods can greatly reduce the required number of pre-trained
beam pair scans regardless of the number of beams. We also
set different Ricean factors, i.e., Kr = 3, 5 and 10, and found
that the required number of pre-trained beam pairs for a given
SNR loss is almost the same as long as the LoS transmission is
dominant. This paper serves as a preliminary work for future
research on this paradigm in order to analyze more realistic
scenarios involving mobile nodes and more intricate networks
with more reflective surfaces and large-size obstacles.

VI. CONCLUSION

This paper presents a new paradigm to perform fast beam
alignment in large D2D network by scanning beams over a
small subset of devices and leveraging the underlying geomet-
ric structure to recover all missing beam pairing information.
For a N device network, the proposed method reduces the
number of required beam scans from O(N2) to O(N) to
achieve an SNR performance close to that obtained under the
classical beam sweeping method, as N grows large.

Fig. 4. The required number of pre-trained beam pair scans with different
number of beams where the number of devices is 1000. The proposed MC
approaches save a factor of up to 65 times scanning resources over beam
sweeping.
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