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Abstract. We present a stealthy privacy attack that exposes links in
Graph Neural Networks (GNNs). Focusing on dynamic GNNs, we pro-
pose to inject new nodes and attach them to a particular target node to
infer its private edge information. Our approach significantly enhances
the F1 score of the attack compared to the current state-of-the-art bench-
marks. Specifically, for the Twitch dataset, our method improves the F1

score by 23.75%, and for the Flickr dataset, remarkably, it is more than
three times better than the state-of-the-art. We also propose and eval-
uate defense strategies based on differentially private (DP) mechanisms
relying on a newly defined DP notion. These solutions, on average, reduce
the effectiveness of the attack by 71.9% while only incurring a minimal
utility loss of about 3.2%.
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1 Introduction

Graph-structured data is prevalent in applications like social networks, biologi-
cal systems, and recommendation engines. Graph Neural Networks (GNNs) are
powerful for analyzing such data but they pose significant privacy risks as the
graph structure is often sensitive. For instance, social network links can reveal
common interests or personal beliefs, leading to privacy breaches [3].

This paper advances edge privacy in GNNs by introducing the Node In-
jection Link Stealing (NILS) attack and a tailored Differential Privacy (DP)
defense. The adversary infers links among target nodes in a GNN trained for
node classification. The GNN processes graph structure and node features to
produce class membership predictions which are accessed via an inference API.

Previous works like the Linkteller attack [23] and studies on feature corre-
lation [9] have shown that attackers can infer graph links by analyzing node
features and GNN outputs. Our NILS attack introduces a stronger adversary
exploiting GNN dynamics. The adversary adds a node, connects it to the target
node, and queries the model with malicious features, inferring neighbors and
stealing graph connections using various strategies.
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The NILS attack is akin to activities in social networks, where sending a
friend request is analogous to injecting a new node into the network. By con-
necting this new node to a target node, the attacker can observe changes in
the network’s behavior, similar to how content recommendations or interactions
change when a new connection is established. This method allows the attacker to
infer hidden links within the network, posing a significant threat to user privacy.

We also study potential defense strategies based on DP mechanisms. Specifi-
cally, we propose a new privacy notion, one-node-one-edge privacy, and evaluate
existing DP-based defense strategies under this definition.

To summarize, we make the following contributions:

– We propose a novel attack (denoted NILS) for inferring private links in a
graph structure by injecting a new node, linking it to a target node, and
employing various strategies to analyze the changes in the GNN’s output;

– We provide a comprehensive evaluation of the proposed attack’s effectiveness
on various datasets, demonstrating its superior performance compared to
existing work such as LinkTeller [23] and link-stealing [9];

– We explore the application of DP mechanisms as a means to mitigate the
effectiveness of our proposed attack, evaluating the trade-off between privacy
preservation and model utility. To this end, we introduce a new notion of
privacy and evaluate defense strategies under this new notion.

2 Background

We present a brief introduction to GNNs and formulate the concept of DP.

2.1 Graph Neural Networks

GNNs Overview. GNNs [18] are powerful machine learning models designed
for graph-structured data. They effectively capture complex patterns in graphs,
excelling in tasks like node classification [21], link prediction [26], and graph
classification [24]. Node classification, the focus of this paper, involves assigning
labels to nodes based on their features and graph structure.

A graph G = (V,E) consists of nodes V and edges E. Nodes represent data
points like users in social networks or proteins in biological networks, while
edges represent relationships or interactions. Graphs are represented using an
adjacency matrix A ∈ Rn×n, where n is the number of nodes, and Aij = 1 if
there is an edge between nodes i and j, and Aij = 0 otherwise. Nodes have
feature vectors represented by the matrix X ∈ Rn×d, containing information
like demographic data in social networks.

GNNs use a message-passing mechanism [18] for nodes to exchange and aggre-
gate information from their neighbors, capturing local and global graph struc-
ture. For instance, Graph Convolutional Networks (GCNs) [11], a well-known
GNN model, use graph convolutional layers formulated as:

H(0) = X, H(l+1) = σ(ÂH(l)W (l)), H(L) = P.
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Here, H(0) is the node feature matrix X; H(l) is the hidden node represen-
tation at layer l; P represents prediction scores for each node class; W (l) is the
learnable weight matrix; σ(·) is an activation function (e.g., ReLU); and Â is the
normalized adjacency matrix.

GNNs with Dynamic Graphs. GNNs handle dynamic graphs as in social networks
or recommendation systems where graphs evolve over time. New nodes and edges
are introduced, requiring updates to the adjacency matrix A ∈ Rn×n and the
feature matrix X ∈ Rn×d. The matrices expand to A′ ∈ R(n+1)×(n+1) and X ′ ∈
R(n+1)×d, incorporating new nodes’ connections and features. Once updated,
the GNN performs inference on the modified graph using the message-passing
mechanism described earlier.

2.2 Differential Privacy

Differential Privacy (DP) is a framework for ensuring the privacy of individual
records in a database. In the context of GNNs, it helps protect the privacy of
graph structures. For detailed definitions and mechanisms, please refer to the
Appendix.

3 Related work

GNNs have gained significant attention for their effectiveness in handling graph-
based data across various applications [1, 18, 12]. As GNN adoption increases,
concerns about privacy and adversarial attacks also rise [20]. Several privacy-
preserving methods have been developed to mitigate these attacks [17, 15].

Privacy Attacks on GNNs. Privacy attacks on GNNs target graph nodes, at-
tributes, or edges. Node privacy attacks, like membership inference attacks (MIA)
[22], determine if a node was part of the training set. Attribute inference attacks
[4] reveal sensitive node attributes. This work focuses on edge privacy violations,
where attacks like link stealing, re-identification, or inference aim to uncover
graph edges.

Early works [9, 4, 23] demonstrated the feasibility of link-stealing attacks. In
[9], the adversary uses prior knowledge about the graph to infer links, applying
clustering methods to predict connections among nodes. In [4], node embeddings
trained to preserve the graph structure are used to recover edges by training a
decoder. The Linkteller attack [23] involves probing node features and studying
their GNN output predictions to infer links.

Existing link-stealing attacks have weaknesses. The attack in [9] requires a
powerful adversary with access to features, a shadow dataset, and the ability
to train shadow GNNs. Its performance declines in the inductive setting, where
training and inference occur on different graphs. The Linkteller attack [23] has
non-stealthy perturbations, especially with discrete data, making it easier to
detect. Its effectiveness decreases against deeper GNNs.
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This paper proposes a novel link-stealing attack, NILS, which addresses these
limitations by exploiting the dynamic nature of GNNs through malicious node
injection. NILS outperforms previous attacks [9, 23]. Concurrent with our re-
search, [14] proposes a link inference attack using node injection. The attack
injects multiple target nodes and nodes with zero features, training an attack
model to infer links. While effective on high-homophily graphs [23], this method
assumes the adversary has access to a partial graph and does not address low-
homophily graphs.

Differential Privacy Mechanisms for Graphs. DP has been studied and applied
to graphs to preserve sensitive information. Various DP mechanisms protect
node and edge information [2]. Node-level DP [8] protects individual nodes from
attacks like MIA [22]. Edge-level DP [13] protects edge information, preventing
link stealing attacks [4, 23, 9].

Research has focused on achieving node-level and edge-level DP in graph
models. Approaches allow the publication of graph statistics with edge-level DP
guarantees, such as degree subgraph count and degree distributions [10]. While
beneficial for graph analysis, these statistics are inadequate for GNN training,
which requires access to the raw graph structure. Other approaches use input
perturbation DP to release graphs while ensuring edge-level DP [23].

In designing DP solutions, specific privacy threats and adversary strengths
must be considered. For the NILS attack, the adversary injects a node to a
specific node to discover sensitive edge information, violating edge privacy. We
propose a customized DP notion addressing this attack, leveraging the LapGraph
algorithm [23] to achieve desired DP guarantees.

4 Node injection link stealing attack

GNNs are vulnerable to various privacy attacks aiming to learn about their
underlying graph structure. They inherit attacks from standard neural networks,
such as membership inference attacks (MIA) [22], where the adversary tries to
determine if a sample is included in the training dataset. This paper focuses
on the link stealing attack, where an adversary, without access to the adjacency
matrix, aims to learn whether a particular edge exists. We introduce our node
injection link stealing (NILS) attack that exploits the dynamic nature of GNNs.

4.1 Threat model

Environment We consider a GNN application where a server trains the GNN
using a specific dataset and provides access through a black-box API. This API
allows users to interact with the pre-trained GNN model without accessing its
internal components. Users can submit prediction queries using node IDs and
add new nodes using a connect query. The API processes input data and returns
output predictions, ensuring the model’s computations remain hidden. Users
only know the set of node IDs.
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Adversary’s goal and knowledge The adversary, A, acts as a GNN user aiming to
determine the neighbors of a specific target node, vt, from a set of target nodes,
VA. If A aims to identify all links, VA would include all nodes in the graph
V . A may perform multiple node injections, but this approach’s practicality is
debatable. In social networks, the adversary’s background knowledge, like users’
interests, guides the selection of target nodes more likely to be connected. We
choose target nodes uniformly at random. A obtains prediction scores of VA by
querying their IDs through the API and can use the connect query to connect a
node vm to vt.

4.2 Node injection link stealing attack

The NILS attack exploits the dynamic nature of GNNs. The adversary A can
connect new nodes and query prediction scores of nodes VA in the graph. By
adding a new node vm, A can discover neighbors of vt. The attack is depicted
in Figure 1, outlined in Algorithm 1 and involves the following steps:

1. A queries the prediction scores of target nodes VA and receives prediction
matrix P .

2. A generates malicious features for node vm based on P .
3. A sends a connect query to inject node vm, specifying the features xm and

the ID of target node vt.
4. The server adds node vm to the graph and links it to vt.
5. A queries the server again for the new prediction matrix P ′ of VA.
6. A computes the L1 distance between P (v) and P ′(v) for each node v in VA.

A significant change in prediction scores indicates a high probability of being
a neighbor of vt. If the difference exceeds a threshold R, A infers that node
v is a neighbor of vt.

Selection of the decision threshold R. The threshold R is determined through
parameter tuning, aiming for an optimal trade-off between precision and recall
in identifying true neighbors of the target node, represented by the F1 score.
Various values of R are evaluated, and the one yielding the highest F1 score is
selected as optimal. In practice, the adversary can select R by estimating the
graph’s density d̂ and picking the top d̂ nodes with the highest changes before
and after injection.

4.3 Strategies for generation of malicious node’s features

To evaluate how injecting the malicious node vm affects GNN predictions, we
study five strategies to generate the malicious node’s features xm. These strate-
gies vary in sparsity and stealthiness, allowing us to assess their effectiveness in
altering the model’s predictions. The proposed strategies are:

1. All-ones strategy: Generates a dense feature vector of all ones:

xm = 1.
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Fig. 1: Adversary-Server Interaction: At inference, A first queries prediction
scores P of target nodes VA. Next, the server sends predictions P to A. Then,
A sends Connect query to inject malicious node vm, with features xm, to target
node vt. Finally, A queries prediction scores P ′ of target nodes VA.

This can cause significant prediction changes but is less stealthy due to its
density.

2. All-zeros strategy: Creates a sparse feature vector of all zeros:

xm = 0.

This subtly alters GNN output, causing smaller prediction changes while
being more stealthy.

3. Identity strategy: Uses a feature vector identical to the target node’s:

xm = xt.

This confuses model predictions for neighboring nodes, with variable stealth-
iness depending on similarity to the target node’s features.

4. Max attributes strategy: Computes the element-wise maximum of each
attribute in the target nodes’ feature matrix, excluding the target node’s
class:

xm,k = max
i∈VA, with Ci ̸=Ct

Xi,k, for k = 1, . . . , d.

Here, Ci and Ct represent the classes of node i and the target node, respec-
tively. This strategy causes significant prediction changes but may be less
stealthy due to exaggerated features.

5. Class representative strategy: Selects the feature vector of the node with
the highest confidence score for a different class than the target node’s:

xm = xi∗ with i∗ = argmax
i∈VA,
Ci ̸=Ct

pi,j .

In this equation, i∗ is the index of the node with the highest confidence
score for a class different from the target node’s. This strategy leverages
model predictions to alter neighboring node predictions, potentially increas-
ing stealthiness.
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Algorithm 1: Node Injection Link Stealing Attack
Input: set of nodes VA and target node vt.
Output: the identified neighbors of vt by the adversary.
P = GNN(VA, XVA) ▷ Step 1
Generate malicious features xm of node vm ▷ Step 2
Connect node vm to vt. ▷ Step 3-4
P ′ = GNN(VA ∪ vm , XVA ∪ xm) ▷ Step 5
for each node v in VA do

D(v) = ∥P (v)− P ′(v)∥1 ▷ Step 6
if D(v) ≥ R then

v is a neighbor of vt
end
else

v is not a neighbor of vt
end

end

Additionally, we introduce the LinkTeller Influence strategy, which incor-
porates the feature perturbation strategy from [23]. This involves perturbing the
target node’s features by adding a small real value α:

xm = xt + α.

We compare the Influence strategy’s performance with other strategies to deter-
mine if attack performance gains are due to node injection or malicious feature
crafting. However, this strategy may be easily detected if xt has discrete features,
as xm becomes real-valued.

5 Evaluation of the attack

We present the evaluation results of our proposed attack, starting with a brief
summary of the experimental setup and then analyzing its performance on var-
ious datasets. Detailed experimental setup information is provided in the ap-
pendix. We also address one limitation of the attack related to the depth of the
GNN, discussed in the appendix.

5.1 Summary of experimental setup

We evaluated our attack on several real-world datasets, including the Flickr
dataset [25], and two Twitch datasets (TWITCH-FR and TWITCH-RU) [16],
following the approach in [23]. For the transductive setting, we used three citation
network datasets: Cora, Citeseer, and Pubmed [19]. The models were trained
using Graph Convolutional Networks (GCNs) with hyperparameters selected
through a grid search strategy. Evaluation metrics include precision, recall, and
the F1 score. Detailed information on datasets, models, and evaluation metrics
is provided in the appendix.
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5.2 Analysis of strategies for malicious node’s features

We analyze the impact of different strategies for generating the features xm of
the malicious node vm on the success of our attack.

The success rates, shown in Table 1, indicate that the All-ones, Max at-
tributes, and Class representative strategies are the most effective in causing
significant changes in the predictions of the target node’s neighbors. Injecting
nodes with high-valued or class-specific features effectively disrupts the model’s
output predictions.

Conversely, the All-zeros and Identity strategies exhibit lower success rates.
While these strategies offer stealthiness, their impact on graph structure and pre-
dictions is less pronounced, highlighting a trade-off between attack effectiveness
and stealthiness.

For the Influence strategy, NILS shows modest improvement over the Link-
Teller baseline for the Twitch-FR dataset (Table 1), suggesting the effectiveness
of node injection. However, for the Twitch-RU dataset, NILS underperforms
compared to LinkTeller. The most significant improvement is seen in the Flickr
dataset, where NILS increases the F1 score of LinkTeller from 0.32 ± 0.13 to
0.89± 0.10, showcasing the advantage of node injection.

The Max attributes approach significantly enhances the F1 score beyond
the LinkTeller baseline [23]. For the Twitch datasets, it improves the F1 score
by 23.75% on average. For the Flickr dataset, it records a remarkable increase,
raising the F1 score from 0.32 to 1.0, a 212.5% improvement over LinkTeller [23].

These findings underscore the importance of considering both the effective-
ness and stealthiness of malicious feature generation strategies in link inference
attacks on GNNs.

Table 1: F1 scores for different attack methods and datasets.
Method Twitch-FR Twitch-RU Flickr

Class Rep. 0.94± 0.01 0.83± 0.06 0.96± 0.06
Max Attr. 0.99± 0.00 0.98± 0.02 1.00 ± 0.00
All-ones 0.99 ± 0.00 0.97 ± 0.01 0.99± 0.02
All-zeros 0.58± 0.02 0.48± 0.01 0.71± 0.07
Identity 0.81± 0.02 0.69± 0.01 0.95± 0.07
Influence NILS 0.81± 0.02 0.70± 0.01 0.89± 0.10
Influence LinkTeller [23] 0.80± 0.02 0.74± 0.01 0.32± 0.13

5.3 Comparison with the baselines

We evaluate the performance of the NILS attack compared to the LinkTeller
attack using an identical experimental setup. Our focus is on analyzing the opti-
mal attacks for both approaches, accurately estimating the number of neighbors
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of the target nodes. The results in Table 2 show that NILS outperforms Link-
Teller on both Twitch datasets (TWITCH-FR and TWITCH-RU). Additionally,
NILS exhibits a substantial improvement over LinkTeller on the Flickr dataset,
achieving nearly double the precision and recall values. NILS demonstrates sta-
ble performance across varying node degrees, with only a marginal decrease for
high-degree target nodes. This slight decrease in performance for high-degree
nodes is due to the reduced influence of each neighboring node. When the target
node has a high degree, the impact of each individual neighbor is diluted in the
aggregated information of the GCN layer. Overall, NILS consistently outper-
forms LinkTeller.

We also compare NILS with the link-stealing attacks introduced in [9], where
different attack strategies rely on various types of background knowledge, such as
node attributes and shadow datasets. Specifically, in Attack-2, the adversary has
access to both the features and prediction scores of the nodes, creating LSA2-attr
and LSA2-post attacks. LSA2-attr calculates distances between node attributes,
while LSA2-post computes distances between prediction scores. These attacks
align closely with our threat model, making them relevant for comparison. As
shown in Table 3, NILS outperforms both LSA2-post and LSA2-attr attacks but
performs nearly equivalent to LinkTeller. These results demonstrate that NILS
maintains effectiveness in both transductive and inductive settings.

Table 2: Performance of NILS and LinkTeller across TWITCH-FR, TWITCH-
RU, and Flickr under low, unconstrained, and high constraint settings.

Dataset Method low uncontrained high
precision recall precision recall precision recall

TWITCH-FR NILS (Ours) 100.0±0.0 100.0±0.0 99.1±0.8 99.6±0.35 99.9±2.6 100.0±0.0

LinkTeller 92.5±5.4 92.5±5.4 84.1±3.7 78.2±1.9 83.2±1.4 80.6±6.7

TWITCH-RU NILS (Ours) 100.0±0.0 100.0±0.0 96.4±0.4 98.3±0.7 99.9±0.1 99.4±0.1

LinkTeller 78.8±1.9 92.6±5.5 71.8±2.2 78.5±2.4 89.7±1.7 65.7±3.9

Flickr NILS (Ours) 100.0±0.0 100.0±0.0 99.1±1.7 95.8±5.0 93.7±3.1 78.9±1.9

LinkTeller 51.0±7.0 53.3±4.7 33.8±13.3 32.1±13.3 18.2±4.5 18.5±6.1

Table 3: Performance of NILS, LinkTeller [23], and link-stealing attacks [9] across
Cora, Citeseer, and Pubmed.

Method Cora Citeseer Pubmed
precision recall precision recall precision recall

NILS (Ours) 99.7±0.2 99.6±0.3 97.4±0.2 98.2±0.1 99.7±0.0 100.0±0.0

LinkTeller 99.5±0.1 99.5±0.1 99.7±0.0 99.7±0.0 99.7±0.0 99.7±0.0

LSA2-post 86.7±0.2 86.7±0.2 90.1±0.2 90.1±0.2 78.8±0.1 78.8±0.1

LSA2-attr 73.6±0.1 73.6±0.1 80.9±0.1 80.9±0.1 82.4±0.1 82.4±0.1
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6 Defense

This section introduces DP in the context of GNNs to protect the privacy of the
graph, preventing an adversary from discovering whether there is a link between
two nodes. We define the neighboring relation of graphs and revise the definition
of DP accordingly.

6.1 DP for graphs

DP was originally defined for microdata, where two databases are neighbors if
they differ by one record. For graphs, this notion must be adapted since two
graphs may differ by either one edge or one node. In the literature, two adap-
tations of DP for graphs are proposed: edge-level DP [13] and node-level DP
[8]. A graph G = (V,E) is represented by adjacency matrix A, where Aij = 1
if there is a link between node i and node j, and Aij = 0 otherwise, where
i, j ∈ {1, . . . , |V |}.

Edge-level DP considers graphs G and G′ as neighbors if they differ by a
single edge, while node-level DP considers them neighbors if they differ by a
single node and all its incident edges.

6.2 One-node-one-edge-level DP

The adversary defined in Sec. 4.2 adds a malicious node to a graph and connects
it to a target node through a single edge. Countering such an adversary with
node-level DP would increase noise and decrease model accuracy unnecessarily.
Therefore, we define a new notion of neighborhood between graphs and the
corresponding DP mechanism.

Definition 1 (One-node-one-edge-level adjacent graphs). G and G′ are
one-node-one-edge-level adjacent if one can be obtained from the other by adding
a single node with one edge only.

The adjacency matrices of such neighboring graphs differ by one row and one
column, and the difference in L1-norm is always one.

Definition 2 ((ε, δ)-One-node-one-edge-level DP). A randomized mecha-
nism M satisfies (ε, δ)-one-node-one-edge-level DP with ε, δ ⩾ 0 if, for all
pairs of one-node-one-edge-level adjacent graphs G,G′ and for all measurable
O ⊆ Range(M), the following holds:

P{M(G) ∈ O} ⩽ eε P{M(G′) ∈ O}+ δ.

6.3 Countermeasures for our attack

To defend against the NILS attack, we propose using the LapGraph mechanism
introduced in [23]. While output perturbation [6] can also satisfy one-node-one-
edge-level DP, it significantly deteriorates the GNN output accuracy due to the
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Fig. 2: F1 score of the attack for different values of ε.
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Fig. 3: F1 score utility of the GCN for different values of ε.

large L1-global sensitivity of the prediction matrix. Instead, the LapGraph algo-
rithm perturbs the adjacency matrix using the Laplace mechanism and binarizes
it by replacing the top-N largest values by 1 and the remaining values by 0. Here,
N represents the estimated number of edges in the graph, computed using the
Laplace mechanism.

Leveraging the post-processing property of DP4, the edge information re-
mains protected even if the adversary observes the GNN’s predictions. Each
time a user connects a new node, a new adjacency matrix is generated using Lap-
Graph, accumulating the privacy budget by the sequential composition property
of DP [7].

Although LapGraph was proposed to meet edge-level DP, it can also satisfy
one-node-one-edge-level DP. Let fA be the query function returning the adja-
cency matrix of a graph G. For one-node-one-edge neighboring graphs G and
G′, the adjacency matrices A and A′ have different dimensions. We append one
zero-row and one-zero column to A, resulting in Ā. The (n+ 1)-th columns (or
rows) of Ā and A′ always differ in one element, yielding an L1-global sensitivity
of 1. Thus, the LapGraph mechanism provides stronger protection for the same
level of utility compared to edge-level DP.

4 The post-processing property allows arbitrary data-independent transformations to
DP outputs without affecting their privacy guarantee [27].
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6.4 LapGraph evaluation

We evaluate the effectiveness of LapGraph [23] in reducing the success of the
NILS attack while ensuring our one-node-one-edge-level DP notion. We also
investigate the utility of GCN models trained with LapGraph protection.

Evaluation setup. We use the same training hyperparameters and normalization
techniques as in the vanilla case, where DP is not applied. Initially, we protect
the training graph with LapGraph. Subsequently, we apply LapGraph each time
the graph changes due to node injection by the adversary. Following [23], we
compute the F1 score for our NILS attack and the classification task’s F1 score
for the GCN. This allows us to measure LapGraph protection and GCN utility
across various privacy budgets ε. We report the results averaged over 5 runs with
different random seeds for LapGraph.

Evaluation results. Figure 2 presents the F1 score of the attack for various ε
values. We observe that applying LapGraph reduces the effectiveness of NILS.
The F1 score becomes almost zero when the privacy budget ε is small. However,
for large ε, LapGraph provides moderate protection, but the attack’s F1 score
remains significantly lower than in the non-private case where DP is not applied.

In the LinkTeller [23] attack, where LapGraph is applied only once to en-
sure edge-level DP, LapGraph offers limited protection when ε is large, allowing
LinkTeller to achieve a success rate nearly as high as in the non-private case.
Conversely, in our scenario, where LapGraph is also applied after the adversary’s
node injection, LapGraph provides stronger protection.

Applying LapGraph during inference makes it more challenging for the ad-
versary to distinguish between the target node’s neighbors and non-neighbors,
as the prediction scores of all target nodes change after each inference query.
Consequently, the distances between the prediction scores P and P ′, before and
after the node injection, become noisier due to LapGraph’s application.

To provide insights about the privacy-utility tradeoff of LapGraph, we present
in Figure 3 the utility of the GCNs for different values of the privacy budget.
We observe that the utility increases when ε increases, as expected. Large val-
ues of ε ≥ 7 give a better utility close to that in the non-private vanilla case.
Therefore, carefully choosing an ε will give fairly good utility and a certain level
of protection against the NILS attack.

7 Conclusion

In this paper, we have presented a powerful new NILS attack—a link-stealing
attack using node injection against GNNs. Our results have demonstrated the
superior performance of NILS compared to previous attacks, further emphasiz-
ing the vulnerabilities of GNNs regarding edge information leakage. We have
also evaluated NILS against differentially private GNNs, ensuring a one-node-
one-edge-level DP notion specifically designed to protect against our proposed
attack.
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A Appendix

A.1 Differential Privacy

The original definition of Differential Privacy (DP) [5, 7] was introduced in the
context of microdata, i.e., databases containing individual records. A central
aspect of DP is the concept of neighborhood, originally defined for that data
structure.

Definition 3 (Neighboring Databases). Let D be the class of possible databases.
Any two databases D,D′ ∈ D that differ in one record are called neighbors. For
two neighboring databases, d(D,D′) = 1, where d denotes the Hamming distance.

Definition 4 ((ε, δ)-Differential Privacy [5, 7]). A randomized mechanism
M satisfies (ε, δ)-DP with ε, δ ≥ 0 if, for all pairs of neighboring databases
D,D′ ∈ D and for all measurable O ⊆ Range(M),

P{M(D) ∈ O} ≤ eεP{M(D′) ∈ O}+ δ.

In simple terms, the output of a DP mechanism should not reveal the presence
or absence of any specific record in the database, up to an exponential factor ε
and additional δ. When each record corresponds to an individual, DP ensures
their information remains confidential. A lower ε, known as the privacy budget,
provides stronger protection.

The most popular DP mechanism is the Laplace mechanism, which relies on
global sensitivity, defined as follows:
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Definition 5 (Global Sensitivity [7]). The Lp-global sensitivity of a query
function f : D → Rd is defined as

∆p(f) = max
D,D′∈D

∥f(D)− f(D′)∥p,

where D,D′ are any two neighboring databases.

Definition 6 (Laplace Mechanism [7]). Given any function f : D → Rd,
the Laplace mechanism is defined as:

ML(D, f(·), ε) = f(D) + (Y1, . . . , Yd),

where Yi are i.i.d. random variables drawn from a Laplace distribution with
zero mean and scale ∆1(f)/ε.

A.2 Experimental Setup

Datasets We evaluated our attack on several real-world datasets used in related
research. We include the Flickr dataset [25], where nodes represent images and
edges connect nodes with shared properties. Node features contain word repre-
sentations. We also use two Twitch datasets (TWITCH-FR and TWITCH-RU)
[16] to evaluate NILS and Twitch-ES for training GNNs in an inductive set-
ting, as done in [23]. Twitch datasets map follow connections between users and
aim to classify if a streamer uses explicit language, using features like preferred
games and location. For the transductive setting, where training and testing oc-
cur on the same graph, we use three citation network datasets: Cora, Citeseer,
and Pubmed [19]. These involve predicting the topic of publications based on
textual features and citation relationships.

Models We follow the approach in [23] for training models and selecting hyper-
parameters. The authors trained Graph Convolutional Networks (GCNs) using
various configurations, including normalization techniques, the number of hid-
den layers, input and output units, and dropout rates. A grid search strategy
identified optimal hyperparameters, evaluating performance on a validation set.
By using the same training procedures and hyperparameter tuning strategies,
we ensure consistency across studies.

Evaluation Metrics We employ precision, recall, and the F1 score as our primary
evaluation metrics, following [23]. These metrics are suitable for addressing the
imbalanced binary classification problem, where the minority class (connected
nodes) is of central interest. We select target nodes VA such that |VA| = 500, us-
ing uniform random sampling. We explore scenarios where target nodes exhibit
either low or high degrees, as discussed in [23, Section V.D.]. Results are aver-
aged over three runs with different random seeds, along with the corresponding
standard deviation.
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A.3 Limitations: Depth of the GNN

We examine the impact of increasing the GNN depth on the success rate of the
attack for the Twitch-FR dataset. Our findings in Figure 4 show that as GNN
depth increases, the attack’s success rate decreases. This reduction is due to the
dilution of the injected node’s influence within the target node’s neighborhood.
As GNN depth increases, the model aggregates information from a larger neigh-
borhood, diluting the influence of the injected malicious node and diminishing
the attack’s effectiveness.

Compared to LinkTeller [23], as shown in Table 4, NILS outperforms Link-
Teller across various GCN depths. For the Twitch-FR dataset, NILS demon-
strates higher precision and recall values at GCN depth 3 (precision: 85.1 ±1.2,
recall: 81.6±1.2) compared to LinkTeller at depth 2 (precision: 84.1±3.7, recall:
78.2±1.9). These results highlight the effectiveness of our node injection strategy,
consistently outperforming LinkTeller across different GCN depths.
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Methods
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Fig. 4: Success rates of the attack for different depths and malicious features
generation strategies for Twitch-FR dataset

Dataset Method Depth-2 Depth-3
precision recall precision recall

TWITCH-FR NILS (Ours) 99.13±0.8 99.57±0.35 85.06±1.2 81.56±1.2

LinkTeller 84.1±3.7 78.2±1.9 50.1±5.1 46.6±5.0

TWITCH-RU NILS (Ours) 96.45±0.4 98.34±0.7 78.78±3.8 76.35±9.3

LinkTeller 71.8±2.2 78.5±2.4 45.7±2.2 50.0±2.8

Table 4: Success rates of the attack for different depths in comparison with
LinkTeller [23]. We use the all-ones strategy and Twitch-FR dataset.


