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We continue the study of the learnability of quantum
measurement classes in the setting where the learner is given
access only to prepared quantum states, aiming for necessary
and sufficient conditions for PAC learnability, along with cor-
responding sample complexity bounds. In the quantum setting,
in contrast with the classical probabilistically observed case,
sampled states are perturbed when a quantum measurement is
applied, according to the Born rule, so that distinct samples in
the training data cannot be arbitrarily reused. We first probe
the results from previous works on this setting. We show that
the empirical risk defined in previous works and matching
the definition in the classical theory can fail to satisfy the
uniform convergence property enjoyed in the classical learning
setting for classes that we can show to be PAC learnable.
Moreover, we show that VC dimension generalization upper
bounds in previous work are in many cases infinite, even for
measurement classes defined on a finite-dimensional Hilbert
space. We then show that, nonetheless, every measurement
class defined on a finite-dimensional Hilbert space is PAC
learnable via a modification of the ERM rule.

I. INTRODUCTION

Classical statistical learning theory formulates the broad
problem of learning a relationship between two random quan-
tities X ∈ X – known as features – and Y ∈ Y – class labels
– as follows: the data are assumed to be generated from some
unknown probability distribution PX,Y , and a learner is given
access to a dataset consisting of m independent and identically
distributed samples (Xi, Yi). The learner’s task is to select a
hypothesis from a fixed, known set Hyp of functions from X
to Y (the hypothesis/concept class) that best approximates the
joint distribution PX,Y , without knowledge of PX,Y itself.

a) This work: The intent of this work is to make fur-
ther progress in understanding learnability in the following
supervised quantum learning scenario: there is an unknown
joint probability distribution on prepared quantum states and
classical labels. A hypothesis class consisting of quantum
measurements is fixed and known to a learner. The learner
is given access to a training dataset of these state-label pairs

sampled from the unknown data-generating distribution, but
can only interact with the states by observing the classical
outcomes of measuring them. It then outputs a hypothesis
that is as close as possible to minimizing the expected risk
over all hypotheses. This learning scenario was first posed
in [1] as a quantum version of the classical PAC (Probably Ap-
proximately Correct) learning setting in which hypotheses are
quantum measurements. This setting has extensive motivations
ranging from building universal quantum state discriminators
to classification of unknown quantum processes to classifying
quantum phases of multipartite systems (see also [2], [3]).
The setting was then further developed in [4]. In contrast
with more well-established quantum learning frameworks [5],
which deal with quantum algorithms for learning classical
hypotheses (e.g., boolean functions f : {0, 1}n → {0, 1})
from superpositions of states corresponding to classical bit
strings, our framework covers a distinct scenario in which
input data consists of unknown quantum states, and the goal is
to learn a measurement that predicts classical attributes (e.g.,
a class label) of those states.

More specifically, the authors of [1] formulated the quan-
tum PAC learning framework that we study as follows: we
fix a domain X consisting of quantum states, along with
a codomain Y . Analytically, quantum states are described
by density matrices1 on a fixed Hilbert space H over the
complex numbers C. We take the codomain Y = {0, 1} for
binary classification, but our results can be generalized further,
for example to any finite codomain. A POVM hypothesis
class Hyp is a set of positive operator-valued measures [6]2,
which specify quantum measurements with outcomes in Y .
Additionally, we fix a loss function ` : Y × Y → [0,∞].
For binary classification, we take the misclassification loss
`(y1, y2) = I[y1 6= y2], where I[·] is the indicator function.
The learning process is as follows: an unknown distribution
D on X × Y is fixed. To produce a single training example,

1A density matrix is a positive semidefinite Hermitian matrix with trace 1.
2A 2-outcome POVM is a pair Π := (Π0,Π1) of positive semidefinite

operators on H summing to the identity. Measurement of a state ρ with Π
has outcome 0, 1 with probabilities Tr(ρΠ0),Tr(ρΠ1), respectively.



(X,Y ) ∼ D is sampled, and then a quantum register is
prepared in state X . Here and throughout, a quantum
register is a collection of qubits prepared in a state that
is a density matrix in H, which may be multidimensional.
The learner is given access to the quantum register and Y ,
and can only interact with the quantum register by measuring
it and observing the outcome. This occurs independently m
times to produce a training set of size m. The learner is then
allowed to make arbitrarily many measurements of the given
quantum registers and by an arbitrary procedure then produces
a resulting POVM h from the class Hyp. We note that each
measurement alters the state of the register according to the
axioms of quantum mechanics. The risk of a hypothesis is
given by R(h) = E(X,Y )∼D[`(h[X], Y )], where h[X] denotes
a random variable whose distribution is that of the outcome of
measuring a quantum register in state X with POVM h. Then
the goal of the learner is to output a hypothesis with risk close
enough to the minimal risk achieved by any hypothesis in the
class. We define this setup formally in Definition II.1 below.

The main problems of interest are similar to the ones asked
in the classical PAC learning framework: perhaps the most
immediate one is, what is a natural necessary and sufficient
condition for PAC learnability of a POVM concept class?
Is there a learning rule that is universal, in the sense that
it is a PAC learning rule whenever the concept class is
learnable? The present paper answers both of these questions.
In the classical case with deterministic (function) concept
classes, one of the fundamental results, which is sometimes
called the fundamental theorem of concept learning, gives a
necessary and sufficient condition for learnability of a concept
class for binary classification under the misclassification loss:
namely, learnability is equivalent to finiteness of the Vapnik-
Chervonenkis (VC) dimension of the class [7]. The recent
paper [4] gave one possible generalization of VC dimension
to the quantum setting, resulting in a sufficient condition for
learnability of POVM classes, along with a sample complex-
ity3 upper bound for one particular learning rule. However, it
gave no necessary conditions and did not explore the tightness
of the upper bound or the universality of the learning rule. The
present paper finds that this sufficient condition is substantially
weak and that the learning rule is very far from universal.

A. Prior work

The literature on statistical problems involving quantum
states and measurements is quite broad. For example, a wealth
of quantum state estimation problems have been posed [8]–
[10], wherein the input is a sequence of multiple quantum
registers, all prepared in a single unknown state. This set of
works also includes works on state tomography [11]–[19].
The task in such studies is to glean information about the
single, unknown state – specifically, to estimate it. Estimation
is not the same thing as learning, and so these are is in
contrast with our work, in which the goal is more analogous

3The sample complexity of a learning rule is the minimum number of
samples required to guarantee that with probability at least 1−δ, the risk (i.e.,
expected loss) of the learned hypothesis is within ε of the minimum possible.

to the classical supervised learning problem: i.e., our goal is
to learn a statistical association between unknown quantum
states sampled according to an unknown distribution and their
classical labels. This statistical association need not reflect any
intrinsic physical information about the states. We also point
out that there are various works, such as [20], [21] that mix
what is called PAC learning with quantum information, but
these differ substantially from our setting: e.g., they assume a
uniform distribution on the input, so they are not distribution-
free; or they strongly constrain the input state to correspond
to a bit string; or they output a boolean function instead
of a POVM. There is also a large and expanding body
of work in quantum machine learning in which hypothesis
classes consist of specially structured POVMs – as a recent
example, [22]. The focus in such works is different from that
of the framework we study, since they aim to solve classical
learning problems by suitably encoding classical input data as
quantum states, then choosing a suitable measurement from
the hypothesis class. In our case, the inputs X are intrinsically
quantum and are not encodings of known classical inputs.

At first glance, the paper [23] has a more related goal to ours
– producing an optimal POVM from training data. However,
training samples consist of the density matrices encoding
states, rather than quantum registers, as well as the proba-
bilities of outcomes of measurements by an unknown POVM.
In contrast, in the framework that we consider, the inputs to
a learner are not analytical state descriptions; rather, they are
quantum registers prepared in those states. Furthermore, we
are given, not probabilities of outcomes, but the outcomes
themselves. Finally, the statistical relationship between the
state and the label in our case can be arbitrary, whereas in
the cited paper, it is governed by a single unknown POVM.

Two recent papers are the most relevant to the present one
and, indeed, are the sources of the framework that we study in
this paper: [1], [4]. The paper [1] formulated the POVM class
PAC learning framework, showed that finite-cardinality POVM
classes are PAC learnable, and pointed out the usefulness of
joint measurability in reducing sample complexity, resulting in
the Quantum Empirical Risk Minimization (QERM) learning
rule. The QERM rule is a generalization of the classical ERM,
which is the cornerstone of classical statistical learning theory.

The paper [4] studied the same setting, extending the sample
complexity upper bounds for the QERM rule under the as-
sumption that a partition is given, by formulating one possible
generalization of the classical VC dimension of a probabilisti-
cally observed concept class. This implicitly showed that there
exist PAC learnable POVM classes with infinite cardinality
but left open the problem of giving necessary and sufficient
conditions for a given class to be learnable. For example, no
necessary conditions were given, in contrast with the present
work. We will also show in this work that the upper bounds
in that work are frequently vacuous.

In the course of proving our results, it will be convenient
to define a PAC learning framework for what we call proba-
bilistically observed concept classes (POCC), which we study
as a technical tool for our quantum results. In this framework,



each concept is a function from X to the set of probability
distributions on Y , and the task is, as usual to learn a risk-
minimizing concept. However, on any sampled x ∈ X from
the training set, for any concept h, the learner is only allowed
to see a sample from the distribution h(x). We will denote
such samples by h[x]. This is in contrast with the theory of
probabilistic concepts (p-concepts) introduced in [24]. There,
concepts are similarly conditional distributions, but the learner
is allowed to see the entire distribution h(x).

B. Our contributions

1) Results on failure of ERM and uniform conver-
gence: We first show that the natural ERM learning
rule proposed and studied in [1], [4] can fail for
probabilistically observed concept classes that are PAC
learnable. We probe this phenomenon further, showing
that the empirical risk can fail to satisfy the uniform
convergence property for learnable hypothesis classes
Hyp. That is, the supremal deviation of the empirical
risk from expected value, where the supremum ranges
over all elements of Hyp, does not converge to 0 as
the number of samples tends to ∞. This implies that in
the probabilistically observed and the quantum case, the
QERM learning rule cannot be universal in the sense
of being a PAC learning rule if and only if the class to
which it is applied is learnable.

2) Learnability of finite dimensional hypothesis classes:
We then show that every POVM class defined on
a finite-dimensional Hilbert space is PAC learnable.
This implies that the nontrivial qualitative question of
learnability/non-learnability only occurs in the infinite-
dimensional case. Furthermore, this implies that recov-
ering classical learning theory from the POVM class
framework requires mapping of classical classes to
POVM classes over infinite-dimensional Hilbert spaces.
This is an indication that infinite-dimensional Hilbert
spaces are of fundamental interest for a complete quan-
tum learning theory.

Complete proofs, examples, further results, and ex-
tended discussions of other prior works are provided in
https://arxiv.org/abs/2308.12304. Specifically, the proofs of
our Theorems II.4, II.6, and III.3 are in Sections 7.1, 7.2,
and 7.3, of the journal version, respectively. In Section 10,
we give a more extended discussion of prior works and
how they differ from ours, including, in particular, how
works on channel tomography are not applicable to solve
our learning problem.

II. MAIN RESULTS: LEARNABILITY, UNIFORM
CONVERGENCE, AND ERM

A. Preliminaries

We first define the learning problems relevant to us. Defi-
nitions from quantum mechanics can be found in [6] and in
the supplementary material.

Definition II.1 (POVM concept class learning problem [1],
[4]). In the POVM concept/hypothesis class learning problem,
we fix a set of possible input mixed states X , which are density
operators on a common Hilbert space H, and a set of possible
classical outputs Y . We fix a loss function ` : Y×Y → [0,∞].

We fix a POVM concept class Hyp, which is simply a
set of POVMs on H having |Y| outcomes. Informally, a
learning rule A in this context takes as input a dataset
{(ρj , Yj)}mj=1 consisting of quantum registers in states ρj ∈ X
and classical outputs Yj ∈ Y . This dataset is sampled from an
unknown joint distribution D on X × Y . The learning rule
interacts with the ρj via quantum measurements (formally,
POVMs). Finally, it outputs a POVM Φ∗ ∈ Hyp with the goal
of minimizing E(X,Y )∼D[`(Φ∗[X], Y )], where Φ∗[X] ∈ Y
denotes the random outcome from measuring X with ρ∗.

We say that a POVM learning rule A is (ε, δ)-probably
approximately correct (PAC) for Hyp if there exists a sample
size m = m(ε, δ) such that for all distributions D on X × Y
with S ∼ Dm, with probability at least 1− δ, A(S) outputs a
hypothesis h ∈ Hyp satisfying R(h)− infh∗∈HypR(h∗) ≤ ε.

We then say that Hyp is (ε, δ)-PAC learnable if there exists
an (ε, δ)-PAC learning rule for Hyp. Finally, we say that Hyp
is PAC learnable if it is (ε, δ)-PAC learnable for all ε, δ > 04.

The learning problem defined in Definition II.1 is related
to the problem of probabilistically observed concept class
learning, which we introduce below.

Definition II.2 (Probabilistically observed concept class learn-
ing problem). In the probabilistically observed concept class
(POCC) learning problem, X becomes an arbitrary set, and
Hyp consists of functions f : X → ∆(Y), where ∆(S)
denotes the set of probability distributions on a set S.

When a hypothesis h ∈ Hyp is applied to an element x ∈
X , the learning rule only observes a random sample Z ∼ h(x),
not h(x) itself. We denote a generic sample from h(x) by h[x].

Given this setting, the definition of PAC learning remains
the same as before.

Remark II.3 (Probabilistic versus probabilistically observed
concept learning). We emphasize the important distinction
between the probabilistic concepts (also called p-concepts)
of [25] and the probabilistically observed concepts in the
present paper: in the p-concept framework, the output proba-
bility distribution itself is observed, rather than just a sample
from it. In our setting, in contrast, our learning rules are only
allowed to see a sample from an unknown output probability
distribution.

1) Connecting POVM classes with POCCs: Here we de-
scribe the connection between the POVM and POCC frame-
works. The POVM framework is more general than the POCC
one: we first show how to translate the problem of learning

4The notion of PAC learnability formulated here is only concerned with
learnability with finite sample complexity, not necessarily polynomial in the
relevant variables. This is the same as in the classical definition of PAC
learnability.



a POCC class to one of learning a POVM class, along with
translations of POCC learning rules to POVM learning rules.

Given a POCC learning problem with domain X and
hypothesis class Hyp, the quantumization of this problem
is formulated as follows: we introduce a Hilbert space H
with dimension equal to |X | (which may be uncountably
infinite), and we choose, arbitrarily, an orthonormal basis
B = {ex}x∈X . Each x ∈ X corresponds to a basis element
ex ∈ H. The domain of the POVM learning problem is
the basis B. Each hypothesis h ∈ Hyp bijectively maps
to a corresponding POVM Πh defined as follows: Πh first
measures in the basis B, uniquely identifying the input state ex
with probability 1, then postprocesses ex through the classical
channel corresponding to h(x). (We note that a POVM may
be constructed by measurement of a state with a POVM, then
postprocessing the outcome through a classical channel.)

A POCC learning rule is a function of inputs x and samples
from an arbitrary set of hypotheses h[x]. The analogous POVM
learning rule is the same function as in the classical case,
applied to the classical outcome of measurement in the basis
B, along with results of passing this outcome through channels
associated with hypotheses in Hyp.

Thus, a POCC learning rule can be translated to a quan-
tum one with exactly the same error characteristics. The
situation becomes more complicated when we generalize to
truly quantum learning settings, because certain operations
that are possible in the classical case are not possible in the
quantum. In particular, in quantum settings, the hypothesis
class consists of non-orthogonal states, which cannot be almost
surely distinguished from one another. Thus, our learning rules
cannot be functions of the inputs themselves, but instead can
only be functions of outcomes of measurements applied to
these inputs.

B. Failure of uniform convergence and ERM for PAC learn-
able probabilistically observed hypothesis classes

We next develop our first main results. The empirical
risk minimization (ERM) rule is a cornerstone of statistical
learning theory in the setting of deterministic concept classes.
For a dataset S = {(Xi, Yi)}mi=1, the empirical risk of a
hypothesis h ∈ Hyp is given by

R̂(h, S) =
1

m

m∑
j=1

`(h[Xi], Yi). (1)

In the deterministic case, a hypothesis class Hyp being
PAC learnable is logically equivalent to ERM being a PAC
learning rule, which is logically equivalent to it satisfying
the following uniform convergence property: for any hy-
pothesis h ∈ Hyp and any data-generating distribution D,
PS∼D[|R(h)− R̂(h, S)| ≥ ε] ≤ δ.

The ERM rule has been proposed for use as a subroutine
in the quantum setting in prior work [1] and also adopted in
the more recent work [4]. Both of these works give sample
complexity upper bounds for this ERM rule. Our first main
result is that uniform convergence and the ERM rule can fail
for a POCC class Hyp, despite Hyp being PAC learnable. This

is in stark contrast to the deterministic case. We show, in our
Theorem II.6, that this has further implications for the quantum
setting, and thus for the tightness of the bounds in [4].

Theorem II.4 (Failure of uniform convergence and ERM for
POCC classes). There exists a POCC class Hyp that is PAC
learnable but for which the ERM rule is not PAC and does
not satisfy the uniform convergence property.

Furthermore, there exists a POCC class Ĥyp and a choice
of X ,Y , and D for which the uniform convergence property
is not satisfied, but the ERM rule is PAC.

C. Failure of uniform convergence for most finite-dimensional
POVM classes

We next show that the situation regarding ERM is even
worse in the quantum case. In particular, a consequence of
what we show next is that the sample complexity upper bounds
in [4] are infinite (i.e., vacuous) for a very large class of POVM
classes that are learnable. To do so, we recall the definition of
a deterministic POVM.

Definition II.5 (Deterministic POVM). A POVM Π =
{Π0,Π1} is deterministic if either Π0 = 0 or Π1 = 0.

That is, the outcome of a deterministic POVM is the same
when used to measure any state. We note that if a POVM is
not deterministic, then its outcome is statistically dependent
on the state that it is used to measure.

We also define the L1 operator norm for operators on a
Hilbert space H. For an operator Γ : H → H, the L1

operator norm is given by ‖Γ‖op,L1
= supx∈H

‖Γx‖1
‖x‖1 . Any

norm generates a topology, which allows us to talk about open
and closed sets. This is used in the next theorem.

Theorem II.6 (Failure of uniform convergence of ERM for
most finite-dimensional POVM classes). Let X be a subset
of a finite-dimensional Hilbert space H. Consider an L1

operator norm-closed POVM hypothesis class Hyp satisfying
the following conditions:

1) Hyp is jointly measurable5.
2) Hyp has infinite cardinality.

Then exactly one of the following conclusions holds:
1) Uniform convergence for ERM does not hold for Hyp,

and ERM is not PAC.
2) The only points of accumulation of Hyp are determin-

istic POVMs.

Theorem II.6 effectively says that an infinite-cardinality
(but possibly finite-dimensional) POVM class can only enjoy
the uniform convergence property for ERM if it “clusters”
around deterministic measurements. The only deterministic
measurements are the ones whose outcomes do not depend
on the states being measured. This implies that ERM is not a
useful learning rule for a rich enough set of POVM classes.
Since ERM was a core subroutine of [4], this provides useful

5A set of POVMs is called jointly measurable if there exists a root POVM
Π such that every h ∈ Hyp can be simulated on a state ρ by measuring ρ
with Π and then classically post-processing the outcome.



insight on prior work: in particular, in that work, a sample
complexity upper bound for the ERM rule is given in the
case where one can find a finite-cardinality jointly measurable
partition. Our theorem above implies that this upper bound
must be ∞ unless almost all of the hypotheses are close to
deterministic (and, thus, independent of the input state). In
our subsequent theorem, we will show that the upper bound
of infinity is, in finite-dimensional cases, loose.

III. MAIN RESULTS: EVERY FINITE-DIMENSIONAL POVM
CLASS IS LEARNABLE

In this section, we give a complete characterization of
learnability of POVM classes in the case where X is a
(possibly infinite-cardinality) subset of the set of density
operators on a finite-dimensional Hilbert space H. We call
a POVM class defined on X a finite-dimensional POVM
class. It turns out that every finite-dimensional POVM class
is learnable – Theorem III.3. To state the sample complexity
bound, we introduce the total variation covering number of a
POVM hypothesis class.

Definition III.1 (Total variation distance between POVMs).
Let Π1,Π2 be two POVMs with common domain X . We
define the total variation distance between Π1,Π2 as follows:

dTV (Π1,Π2) = sup
x∈X

dTV (Out(Π1, x),Out(Π2, x)), (2)

where Out(Π, x) denotes the random outcome of the POVM
Π on the mixed state x.

Definition III.2 (Total variation covering number of Hyp).
Let Hyp be a POVM hypothesis class. We define an ε-dTV
covering of Hyp to be a subset Hyp′ ⊆ Hyp such that for any
h ∈ Hyp, there exists h′ ∈ Hyp′ such that dTV (h, h′) ≤ ε. We
then define the ε-total variation covering number of Hyp to
be the infimum cardinality over all possible ε-dTV coverings
of Hyp.

Theorem III.3 (Every finite-dimensional POVM class is learn-
able). Let the span of the domain X be a finite-dimensional
subspace of the space of density operators on a Hilbert space
H. Let Hyp be a POVM class all of whose POVMs are defined
on X . Then Hyp is PAC learnable with the following sample
complexity:

nHyp(ε, δ) ≤
N∑
r=1

8

ε2
log

2N

δ
=

8N

ε2
log

2N

δ
, (3)

where N <∞ is the ε
4 -TV covering number of Hyp.

In the worst case, the covering number in Theorem III.3
can be exponential in the dimension of the Hilbert space.
However, hypothesis classes of interest, where the POVMs
have constrained structure, have a much smaller covering
number. Additionally, in certain cases, one can take advantage
of joint measurability in order to tighten this bound.

The above theorem provides infinitely many examples of
POVM classes that are learnable. Furthermore, this class
of examples includes ones such that the sample complexity

upper bounds given in [4] were infinite. Therefore, this is a
substantial improvement on the previous results.

Interestingly, the proof involves concocting a learning rule
that uses ERM, but in a different manner from prior work
– in particular, on a smoothing of the original hypothesis
class. This approach only works for the finite-dimensional
case, necessitating yet another learning rule for our subsequent
results – included in the journal version of this paper.

The proof of Theorem III.3 consists of the following steps:
1) We show that the total variation distance has the property

that any two hypotheses within distance γ of each other
have expected risks within γ of each other. Throughout,
we choose γ = ε/4.

2) We show that for every γ, the dTV γ-covering number
of a finite-dimensional POVM class is finite: i.e., it can
be covered by finitely many dTV balls of radius < γ.

3) Using the finiteness of covering numbers, we define the
smoothing of the hypothesis class by a given γ-covering,
which is a hypothesis class consisting of the centers of
the balls in the covering. This class is necessarily finite-
cardinality.

4) By previous results in the literature [1], the smoothed
class is agnostically PAC learnable via ERM because
it is finite-cardinality. The output of a (ε/4, δ)-PAC
learning rule on this hypothesis class has true risk within
ε/2 of the minimum possible within the smoothed class.
This minimum has, by our result on the total variation
metric, a true risk that is within ε/2 of the infimum
of possible true risks in the original hypothesis class.
Thus, the hypothesis returned by the learning rule on
the smoothed class has true risk within ε of the infimum
for the original class, with probability at least 1− δ.

IV. CONCLUSION

We have studied learnability of POVM hypothesis classes
and shown that the standard ERM rule fails to satisfy the
uniform convergence property and to be a universal learning
rule. This is in contrast to the classical setting of determinis-
tic hypotheses, and it illustrates limitations of certain prior
results. Nonetheless, we showed that all finite-dimensional
POVM classes are learnable via a modification of ERM, and
we provided quantitative sample complexity bounds for this
learning rule. There are various possible extensions of our
work: for instance, a characterization of the sample complexity
of learning a hypothesis class in terms of its Hilbert space
geometry would be of interest. Additionally, our learning rule
only makes separable measurements. In quantum hypothesis
testing, where the goal is to distinguish between two known
states with minimal error probability from m copies of one of
them, block measurements have a provable advantage in terms
of sample complexity. It would be interesting to understand
whether this phenomenon holds in the learning setting.
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