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Abstract—By developing a new framework of likelihood
POVMs, analysis techniques and a new proof of the quantum
covering lemma, we address the simulation of separable quantum
measurement over bipartite states. In addition to a new one
shot inner bound that naturally generalizes to the asymptotic
case, we demonstrate the power, generality and universality
of the developed techniques in the most general distributed
measurement scenario by recovering all current known inner
bounds. In addition to the above results, this framework is
appealing in being the most natural and simple POVM simulation
protocol.

I. INTRODUCTION

The measurement compression problem (MCP) [1]–[4] of
quantifying the information content in a quantum measure-
ment’s outcome is of fundamental interest. Here, we develop
a new frameworkof measurements and tools to solve the MCP
in diverse network scenarios and thereby derive a new inner
bound for a distributed network MCP in the one-shot regime.

An elegant formulation coupled with his profound insight
into the measurement process, Winter [4] solved the MCP in
the single Tx-Rx scenario.At the heart of the MCP is Quantum
Classical covering [5], a notion central to several fundamental
problems [6]–[10]. This has motivated MCP studies in diverse
network scenarios [11], [12] and fostered connections to sev-
eral problems. Going beyond conventional asymptotic setting
[4], [13], recent studies [14] focus on the one-shot regime.
One-shot studies [15], [16], unable to utilize ideas like time
sharing and measure concentration tools, are more general and
challenging. These studies have led to powerful tools such
as convex-split[17]–[19], position-based decoding [20], among
others [21].

In this article, we consider the distributed MCP scenario in
its full generality (Fig. 1), wherein the outcome of a separable
POVM on a bipartite state distributed among two Txs has to be
simulated at a central Rx. First, we consider(Sec. IV) simula-
tion via POVMs based on IID random codebooks. Developing
the likelihood POVM and new techniques (Sec. III), we derive
a new inner bound to the MCP in the one-shot regime (Thm. 1)
that naturally generalizes to the current known best inner
bound achievable (Thm. 2) via IID random code based POVMs
in the asymptotic regime.

In contrast to conventional/widely-held belief, simulation
via POVMs based on IID random codebooks can be strictly
sub-optimal for distributed MCP. Specifically, if the separable
POVM to be simulated has a ‘certain coupled’ structure, then
simulation via structured POVMs, i.e POVMs based on jointly
designed codes possessing algebraic (closure) properties can
yield strictly smaller inner bounds in the asymptotic regime.
This can be traced back to the ingenious work of Körner
and Marton [22] in the context of mod-2 sum recovery -
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Fig. 1. Txs j, holding system j of bipartite state ρ12 shares (i) common
randomness at rate Cj bits/measurement (msmt) and (ii) noiseless bit pipe of
rate Rj bits/msmt, both with Rx. The goal is to simulate separable POVM λ.

an instance of distributed classical covering - and subsequent
works [23]–[25]. Recently, the use of structured POVMs for
MCP has been studied in [26] where it has been proven [26,
Rem. 1, Ex. 1,2] that structured POVMs can outperform IID
unstructured POVMs.

While random structured codes - random jointly designed
codes with algebraic properties - can yield strictly better inner
bounds in multiple network scenarios [24], it is more involved.
Indeed, the distribution of jointly designed random codes with
inter and intra- algebraic properties do not possess simplifying
properties such as mutual independence etc., that IID random
codes enjoy, lending the former’s analysis more involved. For
instance, the operator Chernoff bound (OCB) of Ahlswede
Winter [27] which is often used to analyze performance in
MCP, relies on mutual independence and cannot be employed
to analyze structured POVMs. Moreover, while we are able
to achieve better inner bounds using structured codes in
the asymptotic regime, there have been no studies aimed at
achieving corresponding inner bounds in the one-shot regime.
These point to the challenges of deriving inner bounds via
structured codes.

Beyond the distributed MCP scenario (Fig. 1) we men-
tioned earlier, the larger contribution of this work is a unified
framework of likelihood POVMs, ideas and analytical tools
(Sec. III) that address all the above problems in a unified
framework. The latter enable us treat both unstructured (IID
random code) POVMs and structured POVMs. This includes a
simplified of a general measure-transformed quantum covering
lemma (QCL) (Lemma 1) that does not rely on, and whose
proof is different from that of the OCB [27]. For instance, our
QCL (Lemma 1) does not require mutual independence, and it
suffices that the random codewords are pairwise independent -
a property critical for proving Thm. 3. While the inner bounds
in Thms. 1 and 2 are known [11], [26], our framework is much
simplified, result in shorter proofs and is applicable even in
centralized joint POVM MCP with distributed Rxs [12]. These
demonstrate power & universality of the proposed framework.



In Sec. III, we introduce our likelihood POVM framework,
indicate the challenges and our approaches and our tools. We
build on this in Sec. IV to derive a new result - a one shot
inner bound for distributed MCP.

II. PRELIMINARIES AND PROBLEM STATEMENT

We supplement notation in [5] with the following. For
n ∈ N, we let [n] =∆ {1, · · · , n}. An underline denotes an ap-
propriate aggregation of related objects. For ex. if HX1 ,HX2

are Hilbert spaces, HX denotes HX1
⊗ HX2

, whereas when
kj ∈ [Kj ] for j ∈ [2] are elements in index sets, k = (k1, k2).
L(H), P(H) and D(H) denote linear, positive and density
operators acting on H. For state ρ ∈ D(H) with spectral
decomposition ρ =

∑
x αx |ex⟩⟨ex|, |ϕρ⟩ ∈ HR ⊗ H denotes

a purification, |φρ⟩ =
∑

x

√
αx |ex⟩ ⊗ |ex⟩ ∈ H ⊗H denotes

the canonical purification and we let ϕρ =∆ |ϕρ⟩⟨ϕρ| , φρ =∆

|φρ⟩⟨φρ|. Associated with POVM λY = {λy ∈ P(H) :
y ∈ Y} is a Hilbert space HY =∆ span{|y⟩ : y ∈ Y} with
⟨ŷ|y⟩ = δŷy and CPTP maps E

λ
(·),E λ(·) defined as E

λ
(s) =∑

y∈Y
√
λys

√
λy ⊗ |y⟩⟨y| and E λ(s) =

∑
y tr(λys) |y⟩⟨y|.

For a stochastic matrix (pY |W (y|w) : (w, y) ∈ W ×
Y), we let E

Y |W
p (·),E Y |W

p (·) denote the CPTP maps

E
Y |W
p (a) =∆

∑
(w,y)∈W×Y pY |W (y|w) |w⟩ ⟨w|a|w⟩⟨w|⊗|y⟩⟨y|

and E
Y |W
p (a) =∆

∑
(w,y)∈W×Y pY |W (y|w) ⟨w|a|w⟩ |y⟩⟨y|.

Defn 1. A POVM λY = {λy ∈ P(HX) : y ∈ Y} acting
on bipartite states is separable if there exists POVMs µWj =
{µwj

∈ P(HXj
) : wj ∈ Wj} for j ∈ [2] and a stochastic

matrix pY |W = pY |W1W2
such that∑

w1,w2

pY |W (y|w1, w2)µw1
⊗ µw2

= λy for all y ∈ Y. (1)

We now describe the scenario of interest (Fig. 1). Tx j holds
system j of the bipartite state ρX = ρX1X2

∈ D(HX) where
HX =∆ HX1

⊗HX2
. The goal is to simulate the action of the

separable POVM λY = {λy ∈ P(HX) : y ∈ Y} with the
classical outcome available at the Rx. To achieve this, Tx j
shares (i) Cj bits/msmt of common (independent) randomness
and (ii) a noiseless bit pipe of Rj bits/msmt, both with Rx.

These two resources are used (in the one-shot setting) as
follows. For j ∈ [2], a bank of Kj = 2Cj POVMs are
designed, each with atmost Mj = 2Rj outcomes. The shared
common random bits kj ∈ [Kj ] is used by Tx j to choose
a POVM in its bank. The chosen POVM is performed and
its outcome is communicated to Rx via the noiseless bit
pipe. The Rx has all common random bits k = (k1, k2)
and the observed outcomes of the k-indexed POVMs. It
employs a decoder CPTP ∆ : L(HKM ) → L(HY), where
HKM = ⊗2

j=1HKj
⊗ HMj

, HKj
= span{|kj⟩ : kj ∈ [Kj ]}

and HMj = span{|mj⟩ : mj ∈ [Mj ]}, where
〈
k̂j

∣∣∣kj〉 = δkj k̂j

and ⟨m̂j |mj⟩ = δmjm̂j
. We formalize a simulation protocol.

Defn 2. A (K,M, θ,∆) one-shot (POVM simulation) pro-
tocol consists of (i) bank of Kj POVMs θkj

= {θkj ,mj
∈

P(HXj
) : mj ∈ Mj} for kj ∈ Kj each with at most

Mj outcomes for j ∈ [2], and a (decoder) POVM ∆ =

{∆y ∈ P(HKM) : y ∈ Y}. λY ’s action on ρX can be η-
simulated with (communication) cost (R,C) if there exists a
(K,M, θ,∆) one-shot POVM simulation protocol such that
logKj ≤ Cj , logMj ≤ Rj for j ∈ [2] and∥∥(iR ⊗

[
E ∆ ◦ {E θ1 ⊗ E θ2} − E λY

]
)(ϕρX

)
∥∥
1
≤ η. (2)

λY ’s action on ρX can be perfectly simulated with (commu-
nication) cost (R,C) if for every η > 0, there exists Nη such
that for all n ≥ Nη , ⊗n

t=1λY ’s action on ⊗n
t=1ρX can be

η-simulated with cost (nR, nC). We define

Cη(ρX , λY) =
∆

{
(R,C) : λY ’s action on ρX can be

η-simulated with cost (R,C)

}
, and

C (ρX , λY) =
∆

{
(R,C) : λY ’s action on ρX can be
perfectly simulated with cost (R,C)

}
. (3)

III. LIKELIHOOD POVMS AND ANALYSIS TOOLS

As we discussed in Sec. II and Defn. 2, designing POVMs
for the simulation protocol are central to solving the MCP.
These designed POVMs perform quantum covering and are
central in several fundamental problems [6]–[10]. To compre-
hend this design problem, let ρ ∈ D(H) denote a state and
λY = {λy : y ∈ Y} a POVM. A n-fold product measurement
on tensor state ρ =∆ ρ⊗n results in post-measurement QC state

Υn
XY =∆

∑
yn∈Yn

√
ρλyn

√
ρ⊗ |yn⟩⟨yn|. For large n,Υn

XY

tends to state Γn
XY =∆

∑
yn∈Tδ(pY )

2−nH(Y )
[
2−nH(X|Y )Πyn

]
⊗|yn⟩⟨yn|

where the PMF pY (y) = tr(λyρ), Πyn is a projector of
dimension 2nH(X|Y ), where H(·), H(·|·) are Von-Neumann
entropies. The goal is to design an n−letter simulation POVM
θ which when performed on ρ, results in a post-measurement
state Γn

XY . Ideally, one would employ the operators θyn =√
ρλyn

√
ρ

pY (yn) : yn ∈ Tδ(pY ) for the simulation POVM design.
However,

∑
yn∈Tδ(pY ) θyn might dominate I⊗n

H .1. This has led
to ‘coating’ θyn with several projectors - typical, conditional-
typical, cut-off etc. This coating results in several difficulties,
starting from its very definition2, inapplicability to one-shot,
involved analysis for even the point-to-point scenario etc.3

A. Likelihood POVMs : Definition and Context
Given a collection (a codebook) ck = (yn(m, k) ∈ Yn :

m ∈ [M ]), we define the likelihood POVM θk = {θk,m ∈
P(H⊗n) : m ∈ [M ]} with M outcomes as

θk,m=∆
S
− 1

2

k

√
ρλyn

√
ρS

− 1
2

k

MpY (yn)
, where Sk =∆

∑
m∈[M ]

√
ρλyn

√
ρ

MpnY (y
n)

. (4)

1Note the normalization by pnY (yn)
2 [13] defines the simulation POVM through a 3 page description starting

in [13, Eqn. 22 on Pg. 16] through [13, Eqn. 32 on Pg. 19]
3It is possibly for this reason that the natural distributed scenario (Fig. 1)

has not been addressed till 2017 and surprising still that [11], [28] in 2020
employs the same simulation POVM designed by Winter [4].



Clearly, θk is a POVM4 and indeed the most natural from
the above discussion. Though well known, its analysis for
the MCP is very involved. Among others, one issue is that
when we randomize over the codebook ck, the presence
of inverse term S

− 1
2

k in defn. θk, now a random object,
lends the likelihood POVMs not analyzable. It is for these
analysis difficulties that despite awareness5 and simplicity, the
likelihood POVMs, to the best of the author’s knowledge have
not been employed for the MCP.

A New Approach via a Proxy State: Starting from [30], [31]
we have developed a new approach at analyzing the likelihood
POVMs. Instead of analyzing the action of the likelihood
POVMs on the given state ϕρ - a purification of ρ - as
is convention, we analyze the likelihood POVM’s action on
a proxy state. Specifically, we analyze it on the canonical
purification φSk

of Sk in (4). An informed reader recognizes
that Sk approaches ρ. In fact, this yields one of our rate
bounds. However, purifications of close states need not be
close. Utilizing the freedom in purifications and the closeness
of canonical purifications [4, App. A], we developed[30], [31]
a new approach to the MCP in the single terminal case.
B. Challenges in Distributed Scenario

To simulate a separable POVM in a distributed scenario,
we need to design atleast 2 likelihood POVMs both acting
on components of the same entangled state. Refer to. With
limited freedom on purifications (owing to entanglement) and
the availability of bounds on closeness of only canonical
purifications, we now need φSk1

and φSk2
to be separately

close to the same corresponding components of a single
purification of ρX1X2

, the latter possibly φρ12
. Next, the

known results in regards to closeness of canonical purifications
[4, App. A] relies on the two operators whose closeness we
study, to be states, i.e. unit trace. Due to the two codebooks
- c1, c2 in proof of Thm. 1- being independently distributed -
Sk1 ⊗ Sk2 is not guaranteed unit trace.
C. Techniques, Tools and Contributions

We develop an intricate sequence of steps to handle
the above mentioned challenge. Carefully respecting non-
commutativity, utilizing the structure of Skj

and leveraging
the equivalence of purifications [5, Thm. 5.1.1], we develop
a robust technique to analyze likelihood POVMs. We indicate
these steps in Sec. IV-B, but reserve a detailed step-by-step
analysis to [30].

We highlight the power, universality and simplicity of the
above developed techniques. With this work, we have now
achieved the best known inner bounds for single POVM
simulation in point-to-point, multiple POVM simulation in
distributed and multiple POVM simulation in a distributed
decoder setup. Moreover, we are able to handle both one-
shot (See Sec. IV and in particular Rem. 1) and structured

4with the appended operator θk,−1 =
∆

I⊗n
H − πk where πk is a projector

on range space of Sk , if needed
5As noted in [13], the classical version of MCP is the channel synthesis

problem [29] and the above likelihood POVM is a quantum version of Cuff’s
encoder [29]. In spite of its simplicity, [11], [13], aware of [29] have not
adopted the same.

likelihood POVMs (Sec. V) in a unified approach. This is on
top of the likelihood POVMs simplicity we alluded to.

In generalizing the above approach, the distributed scenario
offers

IV. INNER BOUNDS VIA UNSTRUCTURED IID POVMS

A. Distributed POVM Simulation in One-Shot

We present our first contribution - a new inner bound to the
distributed MCP in the one-shot regime. In the following for
j ∈ [2] and j denotes complement index, i.e., {j, j} = {1, 2}.

Defn 3. For POVM λY = {λy ∈ P(HX) : y ∈ Y}, we
let τ(λY) denote the collection of all triples (W, µ, p), where
(W, µ, p) represents (i) POVMs µWj

=∆ {µwj
∈ P(HXj

) :
wj ∈ Wj} with outcome set Wj for j ∈ [2] and (ii)
stochastic matrix pY |W = pY |W1W2

satisfying (1). For a triple
(W, µ, p) ∈ τ(λY), we let σ

RXWY
W,µ,p =∆ σRX1X2W1W2Y

W,µ,p =∆

(iR ⊗
[
E

µW1 ⊗ E
µW1

]
⊗ E

Y |W
p ){φρ12

} and associate the
set A1(W, µ, p) of all quadraples (R1, R2, C1, C2) ∈ R4

≥
satisfying

Rj>I(Wj ;R)−I(W1;W2), R1+R2>I(W ;R)−I(W1;W2),

Rj+Cj>I(Wj ;R, Y )−I(W1;W2),

2∑
j=1

Rj+Cj>I(W ;RY )

R1+R2+Cj>I(Wj ;R, Y )+I(Wj ;R)− I(W1;W2),

for j = 1, 2, where W = W1,W2 and
I(W1;W2) =∆ D

η
8

H (PW1W2
∥PW1

× PW2
) + log

(
η
8

)
,

I(Wj ;R) =∆ D
η
16
max(σWjR∥σR ⊗ σWj

) + log
(

64
η2

)
,

I(Wj ;RY ) =∆ D
η
16
max(σWjRY ∥σRY ⊗ σWj

) + log
(

64
η2

)
,

I(W ;RY ) =∆ D
η
16
max(σWRY ∥σRY ⊗ σW ) + log

(
64
η2

)
,

I(W ;R) =∆ D
η
16
max(σWR∥σR ⊗ σW ) + log

(
64
η2

)
all

information quantities are evaluated wrt state σRX1X2W1W2Y
W,µ,p .

Here, Dϵ
H(·||·) is smooth hypothesis testing divergence and

Dϵ
max(·||·) is the smooth max divergence. See [32] for these

definitions.

Thm 1. The action of λY on ρX1X2
can be η-simulated in

one-shot with communication cost (R1, R2, C1, C2) if there
exists a (W, µ, p) ∈ τ(λY) for which (R1, R2, C1, C2) ∈
A1(W, µ, p).

Proof. Here, we provide the main steps, highlighting the
novel elements. See [30] for a complete proof. We adopt
a few notational simplifications. We let Hj = HXj

for
j ∈ [2], H12 = H1 ⊗ H2, ρ12 = ρX = ρX1X2

, ρ1 =
trX2

{ρX}, ρ2 = trX1
{ρX}, |φρ12

⟩ ∈ HR ⊗ H12 denote
the canonical purification of ρ12 and hence HR = H12. We
now specify the POVMs and decoder that define our POVm
simulation protocol. Towards that end, let σRXWY

W,µ,p for some
(W, µ, p) ∈ τ(λY) and let (R1, R2, C1, C2) ∈ A (W, µ, p).

POVM Simulation Protocol : Throughout, Kj = 2Cj ,Mj =
2Rj , Bj = 2βj ∈ N and [Kj ], [Mj ], [Bj ] denote common
randomness, message and bin index sets respectively. Since,



the two POVM outcomes are correlated, a Slepian-Wolf [33]
binning can reduce message rates R1, R2. The outcomes are
therefore binned and the bin index bj ∈ [Bj ] is not commu-
nicated to the Rx. For j ∈ [2], let cj = (wj(kj ,mj , bj) ∈
Wj : (kj ,mj , bj) ∈ [Kj ] × [Mj ] × [Bj ]) be codes and let
µkj ,mj ,bj =∆ µwj(kj ,mj ,bj) ∈ P(Hj). For j ∈ [2], we let

Skj =
∆

Mj∑
mj=1

Bj∑
bj=1

√
ρjµkj ,mj ,bj

√
ρj

KjMjBjpWj (wkj ,mj ,bj )
, θkj ,mj=

∆

Bj∑
bj=1

θkj ,mj ,bj

θkj ,mj ,bj=
∆
S
− 1

2

kj

√
ρjµkj ,mj ,bj

√
ρjS

− 1
2

kj

KjMjBjpWj (wkj ,mj ,bj )
, θkj=

∆

{
θkj ,mj

∈ P(Hj)
for mj ∈ [Mj ]

}
where pWj (wkj ,mj ,bj ) = tr

(
ρjµkj ,mj ,bj

)
. θkj is a POVM.6

The decoder CPTP map is standard hypothesis-testing based
one-shot decoder used in channel coding [34].

B. Breakdown of Error ∥·∥1
A POVM simulation protocol must accomplish two tasks

- a QC covering of the post measurement quantum-classical
space and a Q-covering of the post measurement quantum
space. In addition, the two distributed outcomes are correlated,
permitting distributed compression via binning. We shall see
the error in (2) splits into 3 corresponding terms.

To fish out the binning error term, we introduce a proxy
protocol that communicates the bin indices. Let the proxy
likelihood POVMs θkj = {θkj ,mj ,bj : kj ∈ [Kj ],mj ∈
[Mj ], bj ∈ [Bj ]} communicate the bin index and the cor-
responding proxy decoder ∆ utilize the same. Save for this
change, proxy protocol is identical to the proposed protocol.

Towards identifying the 3 error terms, let target T =∆ (iR ⊗
E λ)(φρ12), Sk =∆ (iR ⊗ E ∆k ◦ [E θk1 ⊗ E θk2 ])(φρ12). (2) is∥∥∥∥∥∥T−

∑
k

Sk

K

∥∥∥∥∥∥
1

≤ A+
∑
k

Bk+Ck+Dk

K
, A=∆

∥∥∥∥∥∥T−
∑
k

S12

k

K

∥∥∥∥∥∥
1

Bk =∆
∥∥∥S12

k − S12
k

∥∥∥
1
, Ck =∆

∥∥∥S12
k − S2

k

∥∥∥
1
, Dk =∆

∥∥∥S2
k − Sk

∥∥∥
1

S2
k=
∆
∑
m2,b2

E ∆k ◦tr2◦Eθk1{Jk2m2b2(φρ12⊗|m2⟩⟨m2|)J†
k2m2b2

},

S12
k =∆

∑
m,b

E ∆k ◦ tr12
{
Jk,m,b(φρ12⊗ |m⟩⟨m|)J†

k,m,b

}
,

S12

k =∆
∑
m,b

E ∆k ◦ tr12
{
Jk,m,b(φρ12

⊗|m b⟩⟨m b|)J†
k,m,b

}
,

Jkjmjbj =
∆ (IR⊗I1⊗

√
µkj ,mj ,bj )

MjBjpWj
(wkj ,mj ,bj )

, Jk,m,b=Jk1m1b1Jk2m2b2 .

An informed reader will recognize Ck, Dk correspond to
Q-covering, Bk corresponds to the binning error event and
the first term in the above split corresponds to CQ-covering
mentioned earlier. The central challenge is in handling Ck.
Before discussing Ck, we address the rest. The analysis of

6If IHj
>

∑
mj

θkj ,mj
(= πSkj

), we choose θkj ,0,0 = IHj
− and

ensure θkj
appended with θkj ,0,0 is a POVM. The latter has no effect on

the analysis and we have assumed IHj
>

∑
mj

θkj ,mj
for simplicity.

Bk is straightforward and we refer to [30] for proof of the
same. A is handled in Lemma 1 directly by the change-of-
measure covering lemma (Sec. A). This brings us to Dk and
Ck. The novelty is in transforming S2

k in two different ways
appropriately to handle Dk and Ck. We only indicate steps
here and provide full details in [30].

Upper bound on Dk, Ck: Let UR1 =∆ URX1 : HR ⊗ HX1 →
HR ⊗HX1

and RR2 =∆ RRX2
: HR ⊗HX2

→ HR ⊗HX2
be

isometries such that (URX1 ⊗ IX2) |φρ1⟩ ⊗ |φρ2⟩ = (RRX2 ⊗
IX1) |φρ1⟩ ⊗ |φρ2⟩ = |φρ12⟩ from [5, Thm. 5.1.1], U1(A) =

UX1AU†
X1 and R2(B) = RX2BR†

X2. The identities

K2E
θk2

{
(U1 ⊗ i2){φρ1

⊗ φSk2
}
}

=
∑
m2,b2

tr2

{
Jk2m2b2(φρ12

⊗ |m2⟩⟨m2|)J†
k2m2b2

}
(5)

K1E
θk1

{
(R2 ⊗ i1){φSk1

⊗ φρ2
}
}

=
∑
m1,b1

tr1

{
Jk1m1b1(φρ12

⊗ |m1⟩⟨m1|)J†
k1m1b1

}
(6)

are central to analyzing Ck, Dk. We verify (5), (6) in [30], we
show that truth of (5), (6) imply Ck, Dk reduce to familiar
Q-covering terms. Towards this, note that (5) implies

S2
k=

∑
m2,b2

E ∆k ◦tr2◦Eθk1{Jk2m2b2(φρ12⊗|m2⟩⟨m2|)J†
k2m2b2

}(7)

= K2E
∆k ◦ [Eθk1⊗ Eθk1 ]{(U1 ⊗ i2){φρ1

⊗ φSk2
}} and(8)

Sk= E ∆k ◦ [Eθk1 ⊗ Eθk1 ] {(U1 ⊗ i2){φρ1
⊗ φρ2

}} since(9)

φρ12
= (U1 ⊗ i2){φρ1

⊗ φρ2
}.

Ananlysis of Terms and Resulting Rate Bounds : Perusing (8),
(9), we have Dk =

∥∥∥S2
k − Sk

∥∥∥
1

≤
∥∥φρ2

−K2φSk2

∥∥
1

≤
4
√
∥ρ2 −K2Sk2

∥1, where the last inequality is due to close-
ness of canonical purifications [4, App. A]. This gives us
our first rate bound R2 + B2 > I(W2;R). The handling
of Ck results in

∥∥∥S12
k − S2

k

∥∥∥
1

≤
∥∥φρ2

−K2φSk2

∥∥
1

≤
4
√
∥ρ1 −K1Sk1

∥1. This gives our second rate bound R1 +
B1 > I(W1;R). As we mentioned earlier Bk is the standard
classical Slepian-Wolf binning term and using the hypothesis-
testing based one-shot decoder, we obtain the bound B1 +
B2 < I(W1;W2).

Remark 1. If one studies the pre-Fourier-Motzkin bounds,
they can be divided into three categories. The first is the
pure Q-covering bounds, the one we mentioned above in
regards to Rj + Bj . These bounds ensure only covering the
post-measurement quantum state. The second category is the
classical binning bound. The last is the joint quantum-classical
covering that covers both the RY QC space. Recall R is
reference and Y is the classical outcome. In the distributed
case, the first and third categories result in three bounds each.
The first category yields bounds on Rj + Bj for j ∈ 2 and
R1 + R2 + B1 + B2. The third category yield bounds on
Rj +Bj +Cj for j ∈ 2 and R1 +R2 +C1 +C2 +B1 +B2.
It turns out that, given the bounds R1 +B1 and R2 +B2, the



bound on R1 + R2 + B1 + B2 is superfluous. However, this
is not true with the third category of bounds wrt QC covering
of RY space. Here the R1 +R2 +C1 +C2 +B1 +B2 is not
superfluous. Since [35] performs time-sharing, they are unable
to achieve the one-shot rates. Again, they are able to achieve
the one-shot rates in the restricted feedback case [35, Thm. 3].
It turns out in this case, the bound R1+R2+C1+C2+B1+B2

becomes superfluous.

The bound on Ak is derived by direct application of
QCL in Lemma 1. Specifically, by choosing Y = HX1

⊗
HX2

⊗ HY , classical set X = W1 × W2, σ = (iR ⊗
E λY ){φX1X2

} = (iR ⊗ E
Y |W
p ) ◦

[
E θ1 ⊗ E θ2

]
{φρX1X2

},
qW1W2

(w1, w2) = tr
(
ρX [µw1

⊗ µw2
]
)

and pW1W2
(w1, w2) =

tr(ρX1
[µw1

]) tr(ρX2
[µw2

]). While we have a bipartite cover-
ing here, this can be straightforwardly managed using Lemma
1 to yield three bounds on Rj +Cj +Bj for j = 1, 2 and R1

C. Inner Bounds via IID POVMs in Asymptotic Regime

We state the following inner bound achievable via un-
structured POVMs based on IID random codes. The proof is
identical to that of Thm. 1 except for the bounds we obtain.
See [30] for a detailed proof. In the following j ∈ [2] and j
denotes complement index, i.e., {j, j} = {1, 2}.

Defn 4. For a triplet (W, µ, p) ∈ τ(λY) in Defn. 3, let
A (W, µ, p) be the set of all (R1, R2, C1, C2) ∈ R4

≥ satisfying

Rj>I(Wj ;R)−I(W1;W2), R1+R2>I(W ;R)−I(W1;W2),

Rj+Cj>I(Wj ;R, Y )−I(W1;W2),

2∑
j=1

Rj+Cj>I(W ;RY )

R1+R2+Cj>I(Wj ;R, Y )+I(Wj ;R)− I(W1;W2),

for j = 1, 2, where W = W1,W2 and all information
quantities are evaluated wrt state σRX1X2W1W2Y

W,µ,p .

Thm 2. The action of λY on ρX1X2
can be perfectly simulated

with communication cost (R1, R2, C1, C2) if there exists a
(W, µ, p) ∈ τ(λY) for which (R1, R2, C1, C2) ∈ A (W, µ, p).

V. INNER BOUNDS VIA STRUCTURED POVMS

Defn 5. For POVM λY = {λy ∈ P(HX) : y ∈ Y}, we
let τ⊕(λY) denote the collection of all quadraples (W =
Fq, µ

1
W , µ2

W , pY |W1⊕W2
), where (i) W = Fq is the finite field

of size prime power q, (ii) µj
W = {µj

w ∈ P(HXj
) : w ∈ W}

is a POVM on component j with outcome set W = Fq and
pY |W1⊕W2

(y|w1 ⊕ w2) is a stochastic matrix such that

λy =
∑

w1,w2

pY |W1⊕W2
(y|w1 ⊕ w2)µw1⊗ µw2 = λy ∀y ∈ Y. (10)

For quadraples (W = Fq, µ
1
W , µ2

W , pY |W1⊕W2
) ∈ τ⊕(λY),

let A⊕(W, µ, p) be the set of all (R1, R2, C1, C2) ∈ R4
≥0

such that

Rj > I(Wj ;R) + I(Z;Wj)− I(W1;W2)

Rj + Cj > I(Wj ;RY ) + I(Z;Wj)− I(W1;W2)
2∑

j=1

Rj+Cj>I(W ;RY )+
2∑

j=1

I(Wj ;Z)−I(W1;W2)

where j ∈ [2] denotes complement index, i.e., {j, j} = {1, 2},
W = W1,W2, Z = W1 ⊕ W2 and all information
quantities are computed with respect to state σRW1W2ZY =

(iR ⊗ E
Y Z|W1W2 ◦ [E µ1 ⊗ E µ2 ]){φρX1X2

}, where
pY Z|W1W2

(y, z|w1, w2) = pY |W1W2
(y|w1, w2)1z=w1⊕w2 .

Thm 3. The action of λY on ρX1X2
can be perfectly sim-

ulated with communication cost (R1, R2, C1, C2) if there
exists a quadraple denote the collection of all quadraples
(W = Fq, µ

1
W , µ2

W , pY |W1⊕W2
) ∈ τ⊕(λY) for which

(R1, R2, C1, C2) ∈ A⊕(W, µ, p).

APPENDIX A
CHANGE OF MEASURE QUANTUM COVERING LEMMA

We formulate and prove a slightly general quantum cov-
ering [5, Chap. 17] that permits choosing the random density
operators according to a different distribution than that is used
in the averaging.

Lemma 1. Let H be a finite dimensional Hilbert space
of dimension d, X be a finite set and for each x ∈ X ,
let ρx ∈ D(H) be density operators. Let pX and qX
be two distributions on X and σ =

∑
u∈X qX(u)ρu.

Suppose C = (Xn(m) ∈ Xn : 1 ≤ m ≤ M) be a
collection of M pairwise independent and identically
distributed vectors with P(Xn(m) = xn) =

∏n
t=1 pX(xt)

for each m ∈ [M ]. Then, there exists η > 0 such
that for sufficiently large n ∈ N, we have (11) below
A detailed proof is provided in attached appendix.

EP

{∥∥σ⊗n −A
∥∥
1

}
≤ exp

{
−n

[
logM

n
+

∑
x∈X

qx(x)S(ρx)−D(qX ||pX)[1 + 4η]− S(ρ)

]}
, (11)

where A =∆
1

M

M∑
m=1

A(m), A(m) =∆
qnX(Xn(m))

pnX(Xn(m))
ρXn(m), ρxn =

n⊗
t=1

ρxt
for any xn = (x1, · · · , xn) ∈ Xn.
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