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Abstract—This paper explores uplink communication in cell-
free (CF) massive multiple-input multiple-output (MaMIMO)
systems, employing semi-blind transmission structures to mitigate
pilot contamination. We propose a simplified, decentralized
method based on Expectation Propagation (EP) for semi-blind
estimation challenges. By utilizing orthogonal pilots, we pre-
process the received signals to establish a simplified equivalent
factorization scheme for the transmission process. Moreover, this
study integrates Central Limit Theory (CLT) with EP, eliminating
the need for new auxiliary variables in the factorization scheme.
We also refine the algorithm by assessing the variable scales
involved. A decentralized approach is proposed to significantly
reduce the computational demands on the Central Processing
Unit (CPU).

I. INTRODUCTION

One of the unique features of Cell-Free (CF) Massive MIMO
(MaMIMO) networks is the absence of traditional cellular
boundaries, which introduces a critical challenge: the potential
for a high number of user terminals (UTs) in a given area
to exceed the length of the pilot sequence. This leads to
the problem of pilot contamination. Addressing this issue,
Semi-Blind approaches [1] have been explored to mitigate
the effects of pilot contamination. In [1], the authors consider
a deterministic approach treating the channel coefficients as
deterministic unknown parameters and delve into the analysis
of the Cramer-Rao bound and identifiability.
In the context of Bayesian inference, the Semi-Blind ap-
proach is modeled as a bilinear inference problem, where the
Access Points (APs) must jointly estimate both the channel
coefficients and the user signals. Message-passing algorithms
play a critical role here. (Loopy) Belief Propagation (BP)
[2] is a widely used method in Bayesian inference. It is an
iterative method exploiting the structure for a given factor-
ization scheme (e.g., joint/posterior distribution) to lower the
computational loads. One of the most potent message-passing
algorithms is Expectation Propagation (EP) [3]. Besides ex-
ploiting the factorization scheme, EP also projects the beliefs
(marginal posterior) to a family of simple distributions. We
can consider BP a special case of EP, in which we assume the
projection destination set to be the set of all distributions.
A centralized iterative algorithm has been explored based on
variable level EP (VL-EP) [4] in which the authors assume
Gaussian input and combine VL-EP with Expectation Maxi-
mization (EM). A more recent development is the distributed
method proposed in [5]. This approach distributes the compu-
tational load at the Central Process Unit (CPU) by enabling
each Access Point (AP) to carry out part of the computation.
In [6], the author introduces Decentralized Generalized Ap-
proximate Message Passing (D-GAMP). This method is a hy-
brid of Consensus Propagation [7] and Approximate Message
Passing (AMP), effectively eliminating the need for CPU.

A. Main Contributions

This paper presents a simplified, decentralized, EP-based
method designed to address the Semi-Blind estimation prob-
lem in communication systems. By utilizing orthogonal pilots,
we are able to decouple the channels for different users
into mutually exclusive groups, which reduces computational
complexity. To further decrease computational demands, we
integrate Expectation Propagation (EP) with Central Limit
Theory (CLT), treating the interference as noise. Drawing in-
spiration from [8], we introduce further simplifications through
scale analysis. Additionally, to lessen the load on the central
processing unit (CPU), we explore a decentralized scheme.

II. SYSTEM MODEL

We consider a semi-blind signal model containing L APs. At
the l-th AP,[

Yp,l Yl

]
= Hl

[
Xp X

]
+
[
Vp,l Vl

]
. (1)

The received signals are composed of pilot part Yp,l ∈ CN×P

and data part Yl ∈ CN×T . The channels between different
users are considered independent Gaussian i.e. vec(Hl) ∼
CN (0,Ξl) where Ξl ∈ CNK×NK is a block diagonal matrix
of K blocks Ξhlk

∈ CN×N . The transmitted symbols can
be decomposed as pilot symbols Xp ∈ SK×P and data
symbols X ∈ SK×T , where S is the constellation set. We
assume that the elements xkt in X follow the categorical
distribution p(xkt). The signal power is denoted as σ2

x. The
noise is considered as i.i.d. Gaussian distribution, and thus,
vec(

[
Vp,l Vl

]
) ∼ CN (0, σ2

vI).

A. Orthogonal Pilot sequences

If orthogonal pilot sequences are used, we can first preprocess
the pilot observation by right multiplying it with x∗

p,g which
is the conjugated g-th pilot sequence. This results in an
equivalent observation yp,lg

yp,lg = Yp,lx
∗
p,g =

∑
k∈Gg

Pσ2
xhlk + vp,lg (2)

where vp,lg = Vp,lx
∗
p,g ∼ N (vp,lg|0, Pσ2

xσ
2
vI), Gg denote

the set of users using the g-th pilot sequence. We observe
that every hlk occurs only in one group Gg , and the cross-
correlation E[vp,lgv

H
p,lg′ ] is an all-zero matrix for all g ̸= g′.

Therefore, the observations yp,lg and yp,lg′ are independent.
With orthogonal pilots, the factorization scheme is derived as

p({yp,lg}, {Yl}, {Hl},X, {Vl}) (3)

=
∏
k,t

p(xkt)
∏
l

T∏
t1=1

p(ylt1 |Hl,x:t1)
∏
g

p(yp,lg,Hlg)



AP:
AP:

Fig. 1. Partial factor graph

where Hlg is a matrix collecting all k ∈ Gg,hlk as its column
vectors, and x:t1 denotes the t1-th column of X. We will base
our EP (BP) algorithm based on this factorization scheme.

III. EXPECTATION PROPAGATION OVERVIEW

EP approximates the factors in a factorization scheme to sim-
pler ones [9]. With a given factorization, the update algorithm
in EP can be interpreted as message passing of two types of
messages, i.e., the message µΨ;θi(θi) from factor node Ψ to
variable node θi and the message µθi;Ψ(θi) from variable θi
to factor Ψ: [10]

µθi;Ψ(θi) ∝
∏
Φ̸=Ψ

µΦ;θi(θi); µΨ;θi(θi) ∝
proj(bΨ(θi))
µθi;Ψ(θi)

, (4)

where bΨ(θi) is the belief of θi at node Ψ:

bΨ(θi) ∝ µθi;Ψ(θi)

∫
Ψ(θ)

∏
j ̸=i

µθj ;Ψ(θj)dθi. (5)

The notation θi denotes all elements in θ except the i-th one.
The operation proj(p) project a given distribution p into a
target family Q [10], i.e.,

proj(p) = argmin
q∈Q

KLD(p∥q), (6)

where KLD(p∥q) =
∫
p(θ) ln p(θ)

q(θ)dθ is the Kullback–Leibler
divergence.
BP, on the other hand, can be considered a special form of
EP. The only difference between BP and EP is that there is
no projection step in BP. We assume all the messages in this
paper are normalized to 1.

A. Expectation Propagation on Semi-Blind structure

For simplicity, we denote the factors in the factorization
scheme (3) as

Ψ1,kt= p(xkt); Ψ2,lt= p(ylt|Hl, x:t); Ψ3,lg= p(yp,lg,Hlg).

The factor graph for (3) is illustrated in Fig. 1.

IV. MESSAGE PASSING DERIVATIONS

This paper uses EP to estimate channel coefficients hlk and
BP to estimate the data symbols xkt. Furthermore, we specify
the projection family of EP in this paper to be Gaussian
distributions with diagonal covariance matrices. Now, we will
examine each factor and derive its outbound message.
The message from Ψ1,kt to xkt can be computed directly since
no projection is needed, i.e., µΨ1,kt;xkt

(xkt) = p(xkt).

A. Message from Ψ2,lt to xkt

Following (4)-(5), the extrinsic at node Ψ2,lt is updated by
µxkt;Ψ2,lt

(xkt) ∝ p(xkt)
∏
l′ ̸=l

µΨ2,l′t;xkt
(xkt)

µhlk;Ψ2,lt
(hlk) ∝ µΨ3,lg ;hlk

(hlk)
∏
t′ ̸=t

µΨ2,lt′ ;hlk
(hlk), (7)

where the extrinsic of hlk can be computed as a Gaussian
µhlk;Ψ2,lt

(hlk) = CN (hlk|mhlk;Ψ2,lt
,Chlk;Ψ2,lt

) with

Chlk;Ψ2,lt
=

C−1
Ψ3,lg ;hlk

+
∑
t′ ̸=t

C−1
Ψ2,lt′ ;hlk

−1

mhlk;Ψ2,lt
= Chlk;Ψ2,lt

(
C−1

Ψ3,lg ;hlk
mΨ3,lg ;hlk

+
∑
t′ ̸=t

C−1
Ψ2,lt′ ;hlk

mΨ2,lt′ ;hlk


According to the EP rule, the message from Ψ2,lt to xkt is

µΨ2,lt;xkt
(xkt) ∝

proj[bΨ2,lt;xkt
(xkt)]

µxkt;Ψ2,lt
(xkt)

, (8)

where the belief (approximated posterior) at Ψ2,lt is defined
as bΨ2,lt;xkt

(xkt) with

bΨ2,lt;xkt
(xkt)∝µxkt;Ψ2,lt

(xkt)
∑
xkt

∫
p(ylt|xkthlk +

∑
i̸=k

xithli)

· µhlk;Ψ2,lt
(hlk)

∏
i̸=k

µhli;Ψ2,lt
(hli)µxit;Ψ2,lt

(xit)dHl. (9)

We use the notation xkt to denote all the elements in x:t except
the k-th element. The integral (and summation) in (9) can be
considered as a marginalization operation. Furthermore, we
can view the extrinsic messages as hypothetical priors. Due
to CLT, we approximate

∑
i̸=k xithli to a Gaussian where

xit ∼ µxit;Ψ2,lt
(xit), hli ∼ µhli;Ψ2,lt

(hli) [10]. Therefore, (9)
becomes
bΨ2,lt;xkt

(xkt) ∝ µxkt;Ψ2,lt
(xkt) (10)

·
∫∫

p(ylt|xkthlk + zlkt)µzlkt
(zlkt)dzlkt ·µhlk;Ψ2,lt

(hlk)dhlk,

where µzlkt
(zlkt) = CN (zlkt|mzlkt

,Czlkt
) with

mzlkt
=
∑
i̸=k

mxit;Ψ2,lt
mhli;Ψ2,lt

(11)

Czlkt
=
∑
i̸=k

rxit;Ψ2,lt
Chli;Ψ2,lt

+τxit;Ψ2,lt
mhit;Ψ2,lt

mH
hit;Ψ2,lt

where mxit;Ψ2,lt
, τxit;Ψ2,lt

and rxit;Ψ2,lt
are the mean, vari-

ance and second-order moment of the normalized message
µxit;Ψ2,lt

. By applying the Gaussian reproduction lemma [10]
and the fact that Gaussian distribution integrates to one, the
belief (10) becomes

bΨ2,lt;xkt
(xkt) ∝ CN (0|ylt−mzlkt

−xktmhlk;Ψ2,lt
,

Cv+Czlkt
+|xkt|2Chlk;Ψ2,lt

) · µxkt;Ψ2,lt(xkt).
(12)

Therefore, by BP rules, the outbound message is
µΨ2,lt;xkt

(xkt) ∝ CN (0|ylt−mzlkt
−xktmhlk;Ψ2,lt

,

Cv+Czlkt
+|xkt|2Chlk;Ψ2,lt

)
(13)



B. Message from Ψ2,lt to hlk

Based on EP rules (4), the message to hlk is

µΨ2,lt;hlk
(hlk) ∝

proj[bΨ2,lt;hlk
(hlk)]

µhlk;Ψ2,lt
(hlk)

, (14)

where the belief is defined as
bΨ2,lt;hlk

(hlk) ∝
∑
x:t

∫
p(ylt|

∑
i

xithli)

·
∏
i

µhli;Ψ2,lt
(hli)µxit;Ψ2,lt

(xit)dhlk

(15)

We use hlk to denote all the column vectors in Hl except the
k-th column. By using the same approach from (9) to (12),
and separating the terms that contains only xkt [10] [5], the
belief (15) becomes

bΨ2,lt;hlk
(hlk)

=EbΨ2,lt;xkt
{CN [hlk|mĥlk|xkt

(xkt),Cĥlk|xkt
(xkt)]}

(16)

where mĥlk|xkt
(·) and Cĥlk|xkt

(·) are defined as

Cĥlk|xkt
(x) = [|x|2(Cv +Czlkt

)−1 +C−1
hlk;Ψ2,lt

]−1

mĥlk|xkt
(x) = Cĥlk|xkt

(x)
[
C−1

hlk;Ψ2,lt
mhlk;Ψ2,lt

+|x|2(Cv +Czlkt
)−1ylt −mzlkt

x

]
,

(17)

where Cv = σ2
vI. The mean mĥ2

lk
and covariance Cĥ2

lk
of the

belief distribution (16) are

mĥ2
lk

= EbΨ2,lt;xkt
[mĥlk|xkt

(xkt)]

C′
ĥ2

lk

= EbΨ2,lt;xkt
[Cĥlk|xkt

(xkt)

+mĥlk|xkt
(xkt)mĥlk|xkt

(xkt)
H ]−mĥ2

lk
mH

ĥ2
lk

.

(18)

We project the belief at Ψ2,lt to a Gaussian with diagonal co-
variance matrix proj[bΨ2,lt;hlk

(hlk)] = CN (hlk|mĥ2
lk
,Cĥ2

lk
),

where Cĥ2
lk

is a digonal matrix with the same diagonal
elements as C′

ĥ2
lk

. Finally, the message from Ψ2,lt to hlk is

µΨ2,lt;hlk
(hlk) = CN (hlk|mΨ2,lt;hlk

,CΨ2,lt;hlk
)

∝
CN (hlk|mĥ2

lk
,Cĥ2

lk
)

CN (hlk|mhlk;Ψ2,lt
,Chlk;Ψ2,lt

)
.

(19)

C. Message form Ψ3,lg to hlk

We assume k ∈ Gg . The extrinsic at Ψ3,lg is updated by

µhlk;Ψ3,lg
(hlk) ∝

∏
t

µΨ2,lt;hlk
(hlk). (20)

We denote this extrinsic message as µhlk;Ψ3,lg
(hlk) =

CN (hlk|mhlk;Ψ3,lg
,Chlk;Ψ3,lg

) with

Chlk;Ψ3,lg
=

(∑
t

C−1
Ψ2,lt;hlk

)−1

mhlk;Ψ3,lg
= Chlk;Ψ3,lg

(∑
t

C−1
Ψ2,lt;hlk

mΨ2,lt;hlk

)
.

The belief of hlg at the Ψ3,lg is

bΨ3,lg
(hlg) ∝ p(yp,lg,hlg)

∏
k∈Gg

p(hlk)µhlk;Ψ3,lg
(hlk). (21)

All the factors appearing in (21) are Gaussian pdfs with
diagonal covariance matrices. Therefore, the projection of
bΨ3,lg

(hlk) results to itself. For simplicity, we define a hy-
pothetical prior qhlk|Yd

for hlk in (21) as
qhlk|Yd

(hlk) = N (hlk|mhlk|Yd
,Chlk|Yd

)

∝ p(hlk)µhlk;Ψ3,lg
(hlk),

(22)

where
Chlk|Yd

= (Ξ−1
hlk

+C−1
hlk;Ψ3,lg

)−1

mhlk|Yd
= Chlk|Yd

C−1
hlk;Ψ3,lg

mhlk;Ψ3,lg

(23)

The message from factor node Ψ3,lg to hlk can be derived as

µΨ3,lg ;hlk
(hlk) ∝

∫
bΨ3,lg

(hlg)dhlk

µhlk;Ψ3,lg
(hlk)

∝ p(hlk)

∫
p(yp,lg,hlg)

∏
k∈Gg

qhlk|Yd
(hlk)dhlk

qhlk|Yd
(hlk)

(24)

The fraction operation in the second line of (24) can be in-
terpreted as component-wise conditionally-unbiased LMMSE
estimation [11]. Therefore, the message from Ψ3,lg to hlk is

µΨ3,lg ;hlk
(hlk) = CN (hlk|mΨ3,lg ;hlk

,CΨ3,lg ;hlk
), (25)

where

CΨ3,lg ;hlk
=

Ξ−1
hlk

+

 σ2
v

σ2
xP

I+
∑

k′∈Gg/{k}

Chlk′ |Yd

−1

−1

mΨ3,lg ;hlk
=Ξhlk

 σ2
v

σ2
xP

I+
∑

k′∈Gg/{k}

Chlk′ |Yd
+Ξhlk

−1

·

 1

σ2
xP

yp,lg −
∑

k′∈Gg/{k}

mhlk′ |Yd

 . (26)

V. ASYMPTOTIC BEHAVIORS IN LARGE SYSTEMS

For scalable systems, L
K = const. while L → ∞, we assume

the channel coefficients ∀l, n, k,E[|hlnk|2] = O( 1
L ), and data

constellation symbols ∀s ∈ S, s = O(1), 1/s = O(1) to
ensure that the received signal does not tend to infinity as the
system scale tends to infinity. The symbol length is assumed
to be finite, i.e., T = O(1). Furthermore, we assume the noise
power scales as σ2

v = O(1), σ−2
v = O(1). For simplicity, we

define big-O-notations with matrix parameters to represent the
element-wise asymptotic behavior, i.e., for matrices A, B of
the same size, we have A = O(B) ⇔ ∀i, j, [A]ij = O([B]ij).

Lemma 1. If all the entries in a diagonal matrix D scales
as O(1), and all the entries in a vector m have the scale
O(1/

√
L), then (D + mmH)−1 = D−1 + B, where all the

elements in B scales as O(1/L).

Proof. This result can be immediately obtained by applying
matrix inversion lemma to (D+mmH)−1.

Property 1. For invertible matrices A,B, we have (A−1 +
B−1)−1 = A(A+B)−1B = B(A+B)−1A.

Lemma 2. With proper initialization, in each iteration, the
updates satisfy mz,lkt = O(1), Czlkt

= O(I) + O(1·1
H

L ),



mĥlk|xkt
(x) = O( 1√

L
), Cĥlk|xkt

(x) = O( I
L ) + O(1·1

H

L3 ),
mΨ2,lt;hlk

= O(1), CΨ2,lt;hlk
= O(I), mΨ3,lg ;hlk

= O( 1√
L
),

CΨ3,lg ;hlk
= O( I

L ), mhlk;Ψ2,lt
= O( 1√

L
), Chlk;Ψ2,lt

=

O( I
L ). Furthermore, C−1

Ψ2,lt;hlk
= O(I).

Proof. We prove this lemma by mathematical induction.
Due to a proper initialization, we can assume the messages
mhlk;Ψ2,lt

, Chlk;Ψ2,lt
, mΨ2,lt;hlk

, CΨ2,lt;hlk
, mΨ3,lg ;hlk

,
CΨ3,lg ;hlk

are initialized with the above-mentioned scales.
Then, we assume the lemma holds for the previous iterations
and investigate the updates in the next iteration.
We first look at the update of mz,lkt, Czlkt

, which are
updated according to (11). Similar to [12], we assume
that ∀i,mxit;Ψ2,lt

are weakly independent of mhli;Ψ2,lt
.

Since the elements in the constellation set scale with O(1),
we know mxit;Ψ2,lt

= O(1). According to induction as-
sumptions, the extrinsic mean mhli;Ψ2,lt

= O( 1√
L
). Since

E[mhli;Ψ2,lt
] = 0, we use the results from [12] to obtain

mzlkt
=
∑

i̸=k mxit;Ψ2,lt
mhli;Ψ2,lt

= O(1). The covariance
matrix Czlkt

= L·O( I
L )+O(1·1

H

L )+O( I
L ) = O(I)+O(1·1

H

L ).
For simplicity, we denote the diagonal terms of Czlkt

in (11)
as Dzlkt

=
∑

i̸=k τxit;Ψ2,lt
Chli;Ψ2,lt

+ |mxit;Ψ2,lt
|2Chli;Ψ2,lt

,
and denote bzlkt

=
√
τxit;Ψ2,lt

mhit;Ψ2,lt
. Thus, with these

notations, Czlkt
= Dzlkt

+ bzlkt
bH
zlkt

.
Now we investigate the update of mĥlk|xkt

(x), Cĥlk|xkt
(x) in

(17). By matrix inversion lemma,

Cĥlk|xkt
(x) = Chlk;Ψ2,lt

−Chlk;Ψ2,lt

[
1

|x|2
bzlkt

bHzlkt

+Chlk;Ψ2,lt
+

1

|x|2
(Cv +Dzlkt

)

]−1

Chlk;Ψ2,lt
.

By Lemma 1, the diagonal elements eHn Cĥlk|xkt
(x)en =

O( 1
L ) while the off-diagonal elements scale as

eHn Cĥlk|xkt
(x)ei = O( 1

L3 ) with n ̸= i. By using Property
1, we find the update of mĥlk|xkt

in (17) is dominated by
the first term. By neglecting higher order infinitesimal terms,
we have mĥlk|xkt

≃ Cĥlk|xkt
(x)C−1

hlk;Ψ2,lt
mhlk;Ψ2,lt

≃
mhlk;Ψ2,lt

= O( 1√
L
).

To study the messages mΨ2,lt;hlk
, CΨ2,lt;hlk

, we first investi-
gate the approximated (projected) belief of hlk at Ψ2,lt. From
the previous discussion, C′

ĥ2
lk

≃ EbΨ2,lt;xkt
[Cĥlk|xkt

(xkt)],
and thus,

C′
ĥ2

lk

≃ Chlk;Ψ2,lt
−Chlk;Ψ2,lt

· F ·Chlk;Ψ2,lt
, (27)

where F =
∑

x∈S bΨ2,lt;xkt
(x)
[

1
|x|2 bzlkt

bHzlkt
+Chlk;Ψ2,lt

+ 1
|x|2 (Cv +Dzlkt

)
]−1

. Thanks to the projection in EP, we
are only interested in the diagonal elements of C′

ĥ2
lk

. The n-th
diagonal term reads
[C′

ĥ2
lk

]nn = [Cĥ2
lk
]nn ≃ τhlnk;Ψ2,lt

− τ2hlnk;Ψ2,lt
[F ]nn

= τhlnk;Ψ2,lt
−τ2hlnk;Ψ2,lt

([F ]−1
nn − τhlnk;Ψ2,lt

+ τhlnk;Ψ2,lt
)−1

= [([F ]−1
nn − τhlnk;Ψ2,lt

)−1 + τ−1
hlnk;Ψ2,lt

]−1 (28)

Since Dzlkt
contains only non-negative numbers, and due to

the existence of constant diagonal matrix Cv in F , we have
[F ]nn = O(1) and [F ]−1

nn = O(1). Substitute (28) into (19),
and we obtain [CΨ2,lt;hlk

]nn ≃ [F ]−1
nn − τhlnk;Ψ2,lt

. Thus,

CΨ2,lt;hlk
= O(I) and C−1

Ψ2,lt;hlk
= O(I). Since mĥlk|xkt

≃
mhlk;Ψ2,lt

, it is straightforward to see mΨ2,lt;hlk
= O( 1√

L
) =

O(1).
The message covariance matrices CΨ3,lg ;hlk

and Chlk;Ψ2,lt
are

both diagonal matrices. Due to the finite transmission length
assumption T = O(1), one can show CΨ3,lg ;hlk

= O( I
L )

according to (23)-(26), Chlk;Ψ2,lt
= O( I

L ) according to (7).
Analog to the analysis of the covariance matrices, we see
mΨ3,lg ;hlk

= O( 1L ) = O( 1√
L
) according to (23)-(26) and

mhlk;Ψ2,lt
= O( 1√

L
) according to (7).

VI. SIMPLICATION OF THE MESSAGES

We define beliefs at the variable nodes as

bxkt
(xkt) ∝ p(xkt)

∏
l

µΨ2,lt;xkt
(xkt)

bhlk
(hlk) ∝ µΨ3,lg ;hlk

(hlk)
∏
t

µΨ2,lt;hlk
(hlk). (29)

Compared to the extrinsic messages in (7), the beliefs in
(29) only differ by one factor. Since Loopy BP is used for
estimating xkt, it has been shown in [8] that we can assume
bxkt

(xkt) ≃ µxkt;Ψ2,lt
(xkt).

This work estimates the channel coefficients hlk using EP.
Therefore, a separate analysis from [8] is needed. We in-
vestigate the mean and covariance matrix difference between
bhlk

(hlk) and µhlk;Ψ2,lt
based on the Lemma 2.

Substitute (7) into (29), and we obtain the belief at hlk as
bhlk

(hlk) ∝ µhlk;Ψ2,lt
(hlk)µΨ2,lt;hlk

(hlk). (30)

Denote mĥlk
and Cĥlk

as the mean and covariance matrix of
bhlk

(hlk). From Lemma 2, we have

Chlk;Ψ2,lt
−Cĥlk

=C2
hlk;Ψ2,lt

(Chlk;Ψ2,lt
+CΨ2,lt;hlk

)−1

mhlk;Ψ2,lt
−mĥlk

= Chlk;Ψ2,lt
(Chlk;Ψ2,lt

+CΨ2,lt;hlk
)−1

· (mhlk;Ψ2,lt
−mΨ2,lt;hlk

). (31)

It has been shown in the proof of Lemma 2 that the difference
mhlk;Ψ2,lt

−mΨ2,lt;hlk
is a higher order infinitesimal relative

to mhlk;Ψ2,lt
. Thus, the quotients (Chlk;Ψ2,lt

−Cĥlk
)C−1

hlk;Ψ2,lt

and (mhlk;Ψ2,lt
−mĥlk

)./mhlk;Ψ2,lt
tend to zero as the system

grows larger. Therefore, the difference in (31) are higher order
infinitesimals relative to Chlk;Ψ2,lt

and mhlk;Ψ2,lt
, respec-

tively. Therefore, we have bhlk
(hlk) ≃ µhlk;Ψ2,lt

(hlk). Based
on the above discussion, we propose to replace the extrinsic
(7) at Ψ2,lt by (32) and (33) to reduce complexity further,

µ′
hlk;Ψ2,lt

(hlk) = bhlk
(hlk); (32)

µ′
xkt;Ψ2,lt

(xkt) = bxkt
(xkt). (33)

VII. DECENTRALIZED METHOD

To obtain the belief of xkt, we need to combine the message
from all the AP. We consider the case where all the L AP
are connected, and the AP network has a tree structure. A de-
centralized message-passing method can be used based on the
consensus propagation framework [7]. Define the normalized
message from AP l to AP l′:

νl→l′(xkt) ∝ µΨ2,lt;xkt
(xkt)

∏
l′∈N(l)/{l′}

νl′→l(xkt),



Algorithm 1 One Iteration of Decentralized EP
Require: Ξhlk

, yp,lg , ylt, p(xkt), σ2
x, σ2

v , Gg

1: Initialize µΨ3,lg ;hlk
, µΨ2,lt;xkt

, µΨ2,lt;hlk
, νl→l′(xkt)

2: At all the APs, ∀k, t, update bxkt
according to (34)

3: for l=1:L do
4: ∀k, update µhlk;Ψ3,lg

based on (20)
5: ∀k, t, update µ′

hlk;Ψ2,lt
based on (29) and (33)

6: ∀k, t, update µ′
xkt;Ψ2,lt

based on (32)
7: ∀k, update µΨ3,lg ;hlk

based on (25)-(26)
8: ∀k, t, update µΨ2,lt;xkt

based on (11)-(13)
9: ∀k, t, update µΨ2,lt;hlk

based on (17)-(19)
10: ∀l′ ∈ N(l), k, t, update νl→l′(xkt) based on (35)
11: end for

where N(l) denotes the set of connected neighbors of AP l.
At convergence, the belief in (29) can be obtained by any AP
l as

b′xkt
(xkt) ∝ p(xkt)µΨ2,lt;xkt

(xkt)
∏

l′∈N(l)

νl′→l(xkt). (34)

Therefore, for a decentralized algorithm, we can replace the
update of belief bxkt

in (29) by b′xkt
in (34). After updating

the message µΨ2,lt;xkt
, we update the shared message by

νnewl→l′(xkt) ∝ µnew
Ψ2,lt;xkt

(xkt)
∏

l′∈N(l)/{l′}

νold
l′→l

(xkt), (35)

where we use new and old to distinguish the message of
different iterations. One possible ordering method is suggested
in Algorithm 1.

VIII. SIMULATION RESULTS

Our study simulates an environment within a 400 × 400
square meter area, equipped with 16 APs and 8 User Ter-
minals (UTs). Each AP features N = 2 antennas and is
positioned at coordinates ( 4003 i, 400

3 j), i, j ∈ {0, 1, 2, 3}.
The UTs are uniformly distributed throughout the area. We
denote the distance between each UT k and AP l as dlk.
Channel covariances for each user k at AP l are modeled
using N ×N diagonal matrices, represented as σ2

hlk
I, where

10 log10(σ
2
hlk

) = −30− 36.7 log10(dlk).
All the neighboring APs within 400

3 meters are connected
and can exchange information of the estimated data symbols.
Furthermore, as illustrated in Algorithm 1, a synchronized
message-exchanging scheme is used.
The length of the orthogonal pilot sequences is set to P = 6
to introduce pilot contamination.
We employ a 4QAM constellation of length T = 10 for
signal transmission and assume a noise power of −96 dBm.
The signal-to-noise ratio (SNR) is adjusted by varying the
transmitted power. We base our results on 100 different realiza-
tions, which are illustrated in Figure 2. The normalized mean
squared error (NMSE) of the channel estimates is defined as
NMSE = tr[|(Ĥ−H)|2]

tr[|H|2] , where Ĥ are synthesized from the
mean of bhlk

(hlk) defined in (29) and the operation | · |2 is
defined as |H|2 = HHH .
In the VL-EP scenario, we generate data symbols drawn from
i.i.d. Gaussian distribution and apply the VL-EP algorithm
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Fig. 2. NMSE vs SNR

[4] for channel estimation. In the Genie-Aided scenario, we
implement the proposed algorithm as if the data symbols are
known. In the MMSE Genie-Aided scenario, we not only
assume that the transmitted symbols are known, but also that
all the APs jointly estimate the channel coefficients using the
MMSE estimator.

IX. CONCLUSIONS

This paper introduces a simplified, decentralized EP-based
algorithm for bilinear joint estimation. To simplify the fac-
torization scheme, we leverage orthogonal pilots and the CLT.
Through asymptotic analysis, we further refine the message
update scheme within the algorithm. Although originally de-
veloped for an acyclic network of APs, our simulation results
confirm the algorithm’s effectiveness even when the APs are
interconnected in a cyclic network.
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