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Abstract. Prediction of biochemical recurrence (BCR) after prostate
cancer radiotherapy is crucial for devising personalised treatments. BCR
has been traditionally predicted using clinical data or in vivo imaging
within AI frameworks such as radiomics approaches, but with limited
results and reduced interpretability. These analysis are additionally hin-
dered by the imbalanced and heterogeneous nature of data. In this paper,
we present a novel approach to predict BCR at 5 years, based not only
on clinical and image features, but also on a patient specific radiobiolog-
ical mechanistic in silico model simulating tumour growth and radiation
response. By combining all these data, we aim at i) improving the pre-
diction of BCR after prostate cancer radiotherapy (RT), and ii) bringing
interpretability to this prediction. A cohort of 254 patients was used.
Pre-treatment T2-w MRIs, ADC maps and 7 clinicopathological char-
acteristics were available. Patient specific digital twins of tumours were
created from MRIs. The prescribed treatment was simulated with the
mechanistic model yielding 414 features characterising the response of
the tumour to RT. A first univariate feature selection analysis was con-
ducted to select the most predictive features. Then, a machine learning
algorithm was trained using selected features and compared with a deep
learning (DL) approach based on clinicopathological characteristics and
MRIs. Our approach achieved an AUC of 0.74 by training a random for-
est classifier combining most predictive features. The DL model achieved
an AUC of 0.69. This methodology opens the road to interpretability of
the response to radiotherapy and tailored treatments for prostate cancer
patients.
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1 Introduction

Prostate cancer is the second most diagnosed cancer in men in the world and
the fifth leading cause of death [22]. External Beam Radiotherapy (RT) is the
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clinical standard treatment for localized prostate cancer [12], which allows to
control the tumour in the majority of cases. However, biochemical recurrence
(BCR), defined as 2 consecutive elevations of Prostate Specific Antigen (PSA)
≥ 0.2ng/mL (Phoenix criteria [1]), may occur in 0-10%, 10-20% and 30-40% of
patients with respectively low, intermediate and high-risk tumours (according
to the D’Amico Classification) within 5 years after the treatment [5]. Predicting
BCR prior to RT appears as crucial for assessing patient risk and personalising
treatment. Several models have been previously proposed to predict BCR. The
first tumour control probability models, [14, 4] were based on probability curves,
describing the dose-effect relationship on a given population. Nevertheless, these
models are limited as they only consider dose discarding the rich nature of the tu-
mour. Recently, radiomics approaches introduced image biomarkers by extract-
ing multiple tumour and organ features from available medical images [3, 16],
improving performances but facing several issues [9, 6]. These approaches require
a large amount of training data and they are known to be black-box methods
lacking interpretability and explainability. Furthermore, they are highly depen-
dent on the data (imbalance classes, image harmonisation, external validation,
etc). Deep learning (DL) models have emerged as an appealing tool to predict
BCR, yielding better results than radiomics [17],but sharing the same issues with
data. In contrast to these data-driven techniques, mechanistic in silico models
open new possibilities to predict tumour response by simulating the prescribed
irradiation treatment. These models are based on the integration of several bio-
logical mechanisms to better understand the response of patients to RT. Their
predictive capabilities have been explored in [18]. These models may offer better
interpretability and could allow to simulate different patient-specific treatments.

The objective of the present work was thus to propose a novel approach to
predict BCR after prostate cancer radiotherapy in a patient specific framework,
by combining Magnetic Resonance Imaging (MRI), clinicopathological data, and
a radiobiological mechanistic in silico model simulating tumour growth and radi-
ation response. The model, based on [20], integrates the most relevant radiobio-
logical mechanisms identified by a sensitivity analysis : oxygenation, tumour cells
division and irradiation response. It allows us to create digital twins of patient
tumours from MR images and simulate treatments and tissue response. This
novel approach was compared to radiomics and deep-learning-based predictions
from image and clinicopathological features.

2 Materials and methods

2.1 Population dataset

A cohort of 254 patients with localised prostate cancer having undergone RT
was used for this study (performed in line with the principles of the Declaration
of Helsinki). A detailed description of patient and tumour characteristics can
be found in Table 1. Before starting the treatment, 3T MRIs were acquired
as described in [9]. It included axial turbo spin echo T2-w and axial diffusion
using multiple b-values. N4-bias field correction has been done on T2w images,
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and apparent diffusion coefficient (ADC) maps were calculated. Prostate and tu-
mour were manually segmented by experts on T2-w sequences and contours were
propagated onto the co-registered ADC images (Step (0) in Fig.1). Patients were
followed up through clinical examination and PSA analysis every 6 months for
5 years after the end of irradiation. A total of 39 patients suffered BCR, defined
according to the Phoenix criteria [1]. More details about the clinicopathological
features available are shown in the Supplementary Materials.

Table 1. Patients description and tumour characteristics.

Patients description Tumour characteristics
(number of instances and their percentage in parenthesis)

Number of patients Pre-treatment PSA (ng/mL)
254 PSA ≤ 7 7 < PSA ≤ 11 11 < PSA ≤ 20 PSA > 20

Median age (years) 66 (26%) 63 (25%) 66 (26%) 59 (23%)
71 Clinical stage (T stage)

Recurrence T1 T2 T3 T4
Non BCR BCR 23 (9%) 108 (43%) 120 (47%) 3 (1%)

215 39 Gleason score
Total Dose (Gray) 6 7 8 9

74 - 80 38 (15%) 157 (62%) 30 (12%) 29 (11%)

2.2 Mechanisitic in silico model

A previously developed mechanistic in silico model simulating tumour growth
and response to RT was used [20]. It was implemented in C++, based on the
Multiformalism Modeling and Simulation Library (M2SL) [10], allowing the
integration of different mechanisms arising at different temporal and spatial
scales. It considered 2D digital twins of patient tumours in which each pixel
(20µm x 20µm) represented a cell corresponding to 6 types : healthy (fibrob-
lasts, macrophages, epithelial, muscle, etc), undamaged tumour, lethally dam-
aged tumour, pre-existing endothelial (vessel cells), neo-created endothelial and
dead cells. This mechanistic model integrated major radiobiological mechanisms,
occurring at various temporal and spatial dimensions. (a) Angiogenesis, the re-
cruitment, creation of new vessels from pre-existing endothelial cells, was based
on the diffusion of vascular endothelial growth factor (VEGF). The VEGF dis-
tribution was modelled using a reaction-diffusion equation. (b) Division of
healthy and (c) tumour cells based on the cell cycle, which consisted of
phases G1 (Gap 1), S (Synthesis), G2 (Gap 2) and M (Mitosis). It also included
a fifth phase G0 in which cells were quiescent. (d) Oxygenation modeled using
a reaction-diffusion equation. (e) Response to irradiation given by the linear-
quadratic model [8]. To identify the most important parameters and mecha-
nisms involved in tumour response, a sensitivity analysis based Morris screening
method was previously performed. Following this sensitivity analysis, a reduced
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model of 18 parameters was obtained, which included only (c) Division of tu-
mour cells, (d) Oxygenation and (e) Response to irradiation. This model
is interpretable in terms of tumour response as it involves understandable equa-
tions (differential and linear quadratic equations) and explainable outputs (tu-
mour volume, percentage of cells in the cycle, at each time step). In this paper,
we used this reduced mechanistic in silico model to simulate the patient specific
tumour growth and response to RT. All the equations and parameters details
used are fully described in [20].

2.3 Radiomics feature extraction

IBSI-compliant [25] features were extracted (Step (1) in Fig.1) from both modal-
ities within the tumour using the Pyradiomics library [24]. It included 18 first-
order statistics, 23 shape descriptors and 66 textural features. Prior to the feature
extraction, images were resampled to 1mm×1mm×1mm using BSpline interpo-
lation. This provided a total of 214 features (107 features from T2 modality and
107 from ADC modality). Details about radiomics features extracted are shown
in the Supplementary Materials.

2.4 Digital twin and patient-specific in silico simulation

A total of 254 2D digital tissues representing the 254 patients specific tumours
of the cohort were built (Step (2) in Fig.1). These digital twins were initialized
using different parameters (i.e. cell size, the tumour area, the tumour density
and the vascular density). Every 3D tumour volume was mapped to a disk and
considered as a perfect circle (ratio between each axis of the circle equals to 1).
The cell size is set to 20.0 reflecting the average size of a cell (i.e. 20.0 µm). The
initial area value was computed from the spherical tumour volume. The mean
density value was obtained from the average intensity value inside the Volume
of Interest (VOI) of the T2-w MR image through linear transformations [15].
These transformations provided 10 supplementary features (5 from T2 and 5
from ADC). An initial prostate-specific vascular density of 3.8% [19] was consid-
ered for every virtual tissue (simulating poorly-vascularized tumour core). Then,
the prescribed standard irradiation treatment (74-80 Gy administered in 2 Gray
fractions from Monday to Friday) was simulated through the 8 weeks of treat-
ment (Step (3) in Fig.1). The in silico simulations produced several outputs at
each time point from the beginning of the treatment simulation until 4 weeks
after the end of the treatment. Outputs of the mechanistic model were the tu-
mour volume and density, the volume of not damaged tumour cells, the hypoxic
cell density, the killed cells percentage, or the percentage of cells in each phase
of the cycle.

Exploratory computation of other features, based on in silico simulation out-
puts, was performed in order to produce features that might be good predictors
of BCR. Relevant time points were chosen : t = 0; 2; 4; 6; 8 (end of the treat-
ment); 10 and 12 weeks. Values of in silico simulation outputs were extracted at
each time point, as well as the difference values and the fraction values between
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Fig. 1. Workflow. Data preparation and tumour segmentation (0). Image feature ex-
traction (1). Tumour digital twins characterisation and construction (2). In silico sim-
ulations (3). Univariate feature selection (4). BCR prediction with different features
combination with AUC prediction scores (5). BCR prediction with deep learning (6).

each time points. The curve tendency between each time point was also com-
puted. A fitting of each output data was performed between t = 0 until t = 10
weeks (2 weeks after treatment end) using functions that best fit (for instance,
periodic functions for the phases of the cell cycle). Parameters of these fitted
curves were extracted and tested as features to predict BCR. Values and times
when the fitted function is equal to 5% of the initial output value were also
computed. This exploratory feature computation provided 414 features. Details
about these mechanistic features are shown in the Supplementary Materials.

2.5 Recurrence prediction

In total, 645 features (7 clinical, 224 radiomics-based, 414 mechanistic-based)
were extracted. A first univariate feature selection analsyis was performed on
all these features using a Random Forest Classifier (RFC) stratified 4-fold cross-
validation, 20 repetitions (Step (4) in Fig.1). Through this univariate analysis,
the 20 most predictive features were identified (3 clinicopathological, 7 radiomics
and 10 mechanistic features). A correlation analysis was performed in order to
remove very strongly correlated features (i.e. Spearman’s correlation coefficient
> 0.8 [2]). Seven very strongly correlated features were identified (1 clinico-
pathological, 3 radiomics and 3 mechanistic). This resulted in 13 features split
in the different prediction models according to the workflow in Fig.1. A RFC
(stratified 4-fold cross-validation, 100 repetitions) was used to predict BCR with
different combinations of features selected (Step (5) in Fig.1). Model 1 Only
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clinical variables were used. Model 2 Only radiomics features. Model 3 Model
2 + clinical variables. Model 4 Only mechanistic features. Model 5 Model 4
+ clinical variables (proposed approach). Performance evaluation was quantified
through different metrics : the area under the ROC curve (AUC), the classifica-
tion accuracy (ACC), the average precision score (APS), the F1 score (F1), the
precision (PREC) and the recall (REC).

2.6 Comparison with a Deep Learning approach

For comparison with other data-based approaches, we developed a DL neural
network fed with raw MR images and clinicopathological features to predict
binary BCR.

Model construction The DL model consisted of 3 parts : (i) A Convolu-
tional Neural Network (CNN) taking as input the cropped T2-w MR images.
(ii) A CNN taking as input the cropped ADC maps. The cropped images were
centered on the tumour. (iii) A Fully Connected Neural Network (FCNN) taking
as input the clinicopathological data. The CNNs (i and ii) used were built with 4
convolutional layers. MaxPooling layers were added to decrease the dimension-
ality. Flattening layers were inserted at the end of each CNN to produce two
vectors of features reflecting the inner images data. The FCNN (iii) used for the
clinicopathological data was built with 2 dense layers using L2 regularisation
(to prevent overfitting). The outputs of these 3 parts were concatenated as a
vector of features and put into another FCNN to predict the binary BCR status.
Dense layers were used as in the previous FCNN part. The Sigmoid activation
function was applied in the output layer, as the prediction was binary. The recti-
fied linear unit activation function was used in the other layers to overcome the
vanishing gradient problem. The dropout regularisation technique was used to
prevent overfitting [21]. Batch normalisation layers were added for further reg-
ularisation and to reduce the internal covariate shift [11]. The Adam optimiser
was used [13]. The number of parameters of this DL model was 25 566 721, re-
ducing model interpretation. Training and testing The dataset, consisting in
215 non BCR patients and 39 BCR patients was split with a 75:25% train/test
split. During the training, the binary cross-entropy loss was monitored and early
stopping was used. As the dataset was imbalanced class weights were applied,
defined as :

numberOfPatients

numberOfClasses ∗ numberOfInstancesOfEachClass

Stratified 4-fold cross-validation, 5 repetitions, was performed. Through the eval-
uation process, performance was assessed with the same metrics as the other
models (Step (6) in Fig.1).

3 Results and Discussion

The most predictive clinical feature found was the patient ISUP grade group
[7]. For the mechanistic-based features, most predictive identified were variables
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Fig. 2. AUC of prediction models trained with a random forest classifier. Same colour
code and model numbers as in Fig.1 are used. (1) Clinicopathological features; (2) Ra-
diomics features; (3) Radiomics and Clinicopathological features. (4) In silico features.
(5) In Silico and clinicopathological features. The stars correspond to the Wilcoxon
signed-rank test significance. **** : p-value ≤ 0.0001

underlying the percentage of tumour cells in phase M such as the curve tendency
between 4 and 6 weeks, or the percentage of phase M tumour cells 2 weeks after
the end of the treatment. These features are explainable as they have a biological
and clinical interpretation. They bring insights into tumour response during RT,
that are not visible from any clinical pre-treatment image and, to the best of our
knowledge, have never been considered in any predictive model. The most pre-
dictive radiomics features identified were the skewness and the texture feature
cluster prominence which are more complex to clinically interpret. Univariate
feature selection and correlation matrix details are shown in the Supplementary
Materials. Results of BCR prediction for each model trained with the RFC are
shown in Fig.2. Results of the model classification performances are shown in
Table 2. The proposed approach (Model 5), based on clinical and mechanistic
data achieved a mean AUC of 0.74 over the 100 repetitions, outperforming the
four other models trained with the other features combinations. It was signifi-
cantly better than these models (p-value ≤ 0.0001, given by a Wilcoxon signed-
rank test with Bonferroni correction). It was not significantly better than models
2 and 3 in term of precision. The DL model achieved a mean AUC of 0.69, not
outperforming the proposed approach in terms of AUC, accuracy and average
precision. However, in term of F1 score and recall, the proposed novel approach
was outperformed by the DL model and the radiomics ones.

This study presents several limitations to be explored in future work. First
of all, representing tumours via spherical mapping may seem simplistic, how-
ever this was also used by [19], and simulation results were in good agreement
with their in vivo observations in mice. Initialisation of digital twins of pa-
tient tumours could have included ADC maps, which may provide additional
information on cell density. The use of IntraVoxel Incoherent Motion DW-MRI
could also be explored to better initialise patient-specific digital twins. Secondly,



8 V. Septiers et al.

Table 2. BCR prediction performance. Bold denotes top or significantly close to top
results (Wilcoxon signed-rank test shows no significant difference)

Model ACC APS F1 PREC REC AUC
Random Forest Classifier
Model 1 (Clinical Data) 0.837 0.320 0.033 0.029 0.018 0.717
Model 2 (Radiomics Data) 0.840 0.376 0.237 0.491 0.174 0.667
Model 3 (Radiomics + Clinical) 0.839 0.389 0.233 0.451 0.167 0.710
Model 4 (Mechanistic Data) 0.830 0.325 0.064 0.194 0.004 0.718
Model 5 (Mechanistic + Clinical) 0.848 0.418 0.198 0.494 0.133 0.740
Deep Learning model 0.834 0.338 0.476 0.497 0.475 0.690
AUC: area under the ROC curve; ACC: classification accuracy;
APS: average precision score; F1: F1 score; PREC: precision; REC: recall

the mechanistic in silico model used has to be enriched with other biological
mechanisms, such as the immune response. The model can be validated with an-
imal experiments, as so far all the parameter values are set from the literature.
Other parameters, such as the vascular density (which was set to a constant
value), have to be calibrated properly from other image modalities. This could
be done by assessing the hypoxia in the tumour which is well-known as a critical
prognosis factor related to radio resistance and recurrence [23]. Furthermore,
the exploratory feature selection can be improved using other strategies, such
as dimensional reduction. The results presented in Table 2 may seem under-
whelming, in terms of F1 and recall, this is mainly due to the highly imbalanced
nature of the dataset. Artificial oversampling techniques, such as SMOTE, can
be included in this work. Finally, the approach has to be validated on an external
population.

4 Conclusion and Future work

We proposed a novel approach to predict BCR after prostate cancer RT. It was
based on the combination of clinical features and an in silico model of tumour
growth and radiation response, initialised with MRI-based digital twins of tu-
mours. This approach brings interpretability and explainability to the prediction,
outperforming models based on clinical data, radiomics or DL techniques. Hence,
this method enables to personalise treatments by stratifying patients with low
or high risk of recurrence, but also opens the possibility to simulate tailored
plannings.
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