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Abstract—The work here studies the communication cost for
a multi-server, multi-task distributed computation framework,
and does so for a broad class of functions and data statistics.
Considering the framework where a user seeks the computation
of multiple complex (conceivably non-linear) tasks from a set
of distributed servers, we establish communication cost upper
bounds for a variety of data statistics, function classes and data
placements across the servers. To do so, we proceed to apply,
for the first time here, Körner’s characteristic graph approach
— which is known to capture the structural properties of data
and functions — to the promising framework of multi-server
multi-task distributed computing. Going beyond the general
expressions, and in order to offer clearer insight, we also consider
the well-known scenario of cyclic dataset placement and linearly
separable functions over the binary field, in which case our
approach exhibits considerable gains over the state of the art.
Similar gains are identified for multi-linear functions.

Index Terms—Distributed computation; linearly separable
functions; nonlinear functions; functional compression; charac-
teristic graph entropy; skewed statistics; and data correlations.

I. INTRODUCTION

As computing requirements become increasingly challeng-
ing, distributed computing models have also evolved to be
increasingly complex. One such recent model is the multi-
server multi-function distributed computing model that con-
sists of a master node, a set of distributed servers, and a
user demanding the computation of multiple functions. The
master contains the set of all datasets and allocates them to
the servers which are then responsible for computing a set
of specific subfunctions of datasets. This setting was recently
studied by Wan et al. in [1] for the class of linearly separable
functions, which nicely captures a wide range of real-world
tasks [2] such as convolution, the discrete Fourier transform,
and a variety of other cases as well. This same work bounded
the communication cost, employing linear encoding and linear
decoding that leverage the structure of requests.

At the same time though there is a growing need to
consider more general classes of functions, including nonlinear
functions such as is often the case with subfunctions that
produce intermediate values in MapReduce operations [2], or
that relate to quantization, classification, and optimization [3].
Intense interest can also be identified in the aforementioned
problem of distributed matrix multiplication, which has been
explored in a plethora of works including [4]–[7]. In addition
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to matrix multiplication, other important non-linear function
classes include sparse polynomial multiplication [8], as well
as permutation invariant [9] and nomographic functions [10].

In this paper, leveraging fundamental principles from func-
tional compression, we study a general multi-server multi-
function distributed computing framework composed of a
single user requesting a set of functions, computed with the
assistance of distributed servers that have partial access to
datasets. To achieve our goal, we will draw from the pow-
erful literature, see e.g., [11]–[15], on Characteristic graphs,
introduced by Körner for source coding [16], in our distributed
framework, and establish upper bounds on the achievable sum-
rates reflecting the setting’s communication requirements.

By extending, for the first time here, Körner’s characteristic
graph framework [16] to the new multi-server multi-function
setting, we are able to reflect the nature of the functions
and data statistics, in order to allow each server to build a
codebook of encoding functions that determine the transmitted
information. Each server, using its own codebook, can transmit
a set of functions of the subfunctions of the data available in
its storage, and to then provide the user with sufficient infor-
mation for evaluating the demanded functions. The codebooks
allow for a substantial reduction in the communication load.

The employed approach allows us to account for general
dataset statistics, correlations, dataset placement, and function
classes (see Theorem 2), thus yielding gains over the state of
art [1], [17], as showcased for the case of linearly separable
functions (see Proposition 1 — the celebrated result of Wan
et al. [1]) in the presence of statistically skewed data, with
correlations (e.g., see our extended work in [18, Proposition 2]
for Boolean functions), as well as for the case of multilinear
functions where the gains are particularly prominent, again
under statistically skewed data. For this last case of multi-
linear functions, we provide an upper bound on the achievable
sum-rate (see Proposition 2, exploiting characteristic graphs),
under a cyclic placement of data that reside in the binary field.
We also provide a generalization of some elements in existing
works on linearly separable functions [1], [19].

II. TECHNICAL PRELIMINARY

In this section, we detail the notion of characteristic graphs
devised by Körner [16] in the context of source compression,
and the fundamental limits of functional compression, as
demonstrated in by Alon and Orlitsky [12], Orlitsky and Roche
[13], Feizi and Médard [20], and our prior work [14], [15].

A. Achievable compression rate for computation
Consider the canonical scenario with two servers storing X1

and X2. The user requests a bivariate function F (X1, X2),



which may be nonlinear. Let GX1
= (VGX1

, EGX1
) be the

characteristic graph for server one (similarly for GX2 ). Below,
we explain how to construct GX1 , where VGX1

and EGX1
are

the set of vertices and edges, respectively. This concept ex-
tends to multivariate functions F (XΩ) for |Ω| = N > 2 [20].
A valid coloring of GX1

, denoted by cGX1
(X1), assigns colors

to vertices, where adjacent vertices have different colors.

Definition 1. (Characteristic graph entropy [12], [16].) Given
a random variable X1 with characteristic graph GX1

=
(VX1

, EX1
) and a distribution on its vertices VGX1

= X1,
the entropy of the characteristic graph is expressed as

HGX1
(X1) = min

X1∈U1∈S(GX1
)
I(X1;U1) , (1)

where S(GX1
) is the set of all maximal independent sets

(MISs) of GX1 , where an MIS is not a subset of any other
independent set, and an independent set is formed by a subset
{xl

1 ∈ X1} in which no two vertices are adjacent [12]. Nota-
tion X1 ∈ U1 ∈ S(GX1

) means that the minimization is over
all distributions PU1,X1

(u1, x1) such that PU1,X1
(u1, x1) > 0

implies x1 ∈ u1, where U1 is an MIS of Gx1 .
Orlitsky and Roche extended Körner’s graph entropy to the

conditional graph entropy for computing F (X1, X2) [13]:

HGX1
(X1 |X2) = min

X1∈U1∈S(GX1
)

U1−X1−X2

I(X1;U1 |X2) , (2)

where U1−X1−X2 indicates a Markov chain, and (x1
1, x

2
1) ∈

EGX1
if ∃ an x1

2 ∈ X2, such that i) PX1,X2
(x1

1, x
1
2) ·

PX1,X2
(x2

1, x
1
2) > 0, and ii) F (x1

1, x
1
2) ̸= F (x2

1, x
1
2) [21].

Definition 2. (Chromatic entropy [12].) The chromatic entropy
of a graph GX1

is defined as

Hχ
GX1

(X1) = min
cGX1

H(cGX1
(X1)) . (3)

Let Gn
X1

= (V n
X1

, En
X1

) be the n-th OR power of a graph
GX1 for the source sequence X1 to compress F (X1, X2). In
this OR power graph, V n

X1
= Xn

1 and (x1
1,x

2
1) ∈ En

X1
, where

x1
1 = (x1

11, x
1
12, . . . , x

1
1n) and similarly for x2

1, when there ex-
ists at least one coordinate l ∈ [n] such that (x1

1l, x
2
1l) ∈ EX1

.
A valid coloring of Gn

X1
for computing F (X1, X2) is denoted

by cGn
X1

(X1). The encoding function at server one maps X1

to cGn
X1

(X1), specifying color classes of X1 where each class
forms an independent set inducing the same function outcome.
Using Definion 2, the chromatic entropy of Gn

X1
satisfies

Hχ
Gn

X1

(X1) = min
cGn

X1

H(cGn
X1

(X1)) . (4)

In [16], Körner has shown the relation between the chro-
matic and graph entropies, which we detail next.

Theorem 1. The characteristic graph entropy and the chro-
matic entropy of Gn

X1
satisfy the following relation [16]:

HGX1
(X1) = lim

n→∞

1

n
Hχ

Gn
X1

(X1) . (5)

Similarly, from (4) and (5), the conditional graph entropy

of X1 given X2 optimizing over {cGn
Xi
}i∈{1,2} is given as

HGX1
(X1 |X2) = lim

n→∞
min

{cGn
Xi

}

1

n
H(cGn

X1
(X1) | cGn

X2
(X2)) .

B. An encoding framework for multi-function computing

The user demands a set of functions {Fj(XΩ)}j∈[Kc] ∈
RKc that are possibly nonlinear in the subfunctions. In the
case of Kc > 1 functions, let GXi,j = (VXi , EXi,j) be the
characteristic graph that server i ∈ Ω builds for computing
function j ∈ [Kc]. The graphs {GXi,j}j∈[Kc] are on the same
vertex set. Note that GXi,j for function j ∈ [Kc] is devised
independently from GXi,j′ for any j′ ̸= j. Hence, we can
devise a multi-functional characteristic graph, which is indeed
a union of individual graphs to simultaneously compute a set
of functions, as defined in [20, Definition 45]. To that end,
server i ∈ Ω creates a union of graphs on the same set of
vertices VXi

with a set of edges E∪
Xi

, which satisfy

G∪
Xi

=
⋃

j∈[Kc]

GXi,j=(VXi
, E∪

Xi
) , E∪

Xi
=

⋃
j∈[Kc]

EXi,j . (6)

In other words, we need to distinguish x1
i and x2

i of server
Xi if there exists at least one function Fj(xΩ), j ∈ [Kc] out
of Kc functions such that Fj(x

1
i , x

1
Ω\i

) ̸= Fj(x
2
i , x

1
Ω\i

), for
some PXΩ

(x1
i , x

1
Ω\i

) ·PXΩ
(x2

i , x
1
Ω\i

) > 0 given x1
Ω\i

∈ XΩ\i.
The server then compresses the union G∪

Xi
by exploiting (4)

and (5). Hence, exploiting G∪
Xi

, we can attain the achievable
rate of distributed lossless functional compression.

III. SYSTEM MODEL

In the multi-server, multi-function distributed computation
framework, the master has access to the set of all datasets, and
distributes the datasets across the servers. The total number of
servers is N , and each has a capacity of M . Communication
from the master to the servers is allowed, whereas the servers
are distributed and cannot collaborate. The user requests Kc

functions that could be nonlinear. Given the dataset assignment
to the servers, any subset of Nr servers is sufficient to compute
the functions requested. We denote by T (N,K,Kc,M,Nr)
the topology for the described multi-server multi-function dis-
tributed computing setting, which we detail in the following.

1) Datasets, subfunctions, and placement: There are K
datasets in total, each denoted by Dk, k ∈ K, where K = |K|.
Each distributed server i ∈ Ω = [N ] with a capacity of M is
assigned a subset of datasets with indices Zi ⊆ K such that
|Zi| = M , where the assignments possibly overlap.

Each server i ∈ Ω computes a set of subfunctions {Wk =
hk(Dk), k ∈ Zi ⊆ K}. Datasets {Dk}k∈K could be depen-
dent across K, so could {Wk}k∈K. By exploiting the temporal
and spatial variation or data dependence, it is possible to
decrease the communication cost. We denote the number of
symbols in each Wk by L, which equals the blocklength n. Let
Xi = {Wk}k∈Zi = WZi = {hk(Dk)}k∈Zi ∈ F|Zi|×1

q denote
the set of subfunctions of i-th server, where Fq is a finite
field of characteristic q, Xi be the alphabet of Xi, and XΩ =
(X1, X2, . . . , XN ) be the set of subfunctions of all servers.



We denote by boldface letters Wk = Wk1,Wk2, . . . ,Wkn and
Xi = Xi1, Xi2, . . . , Xin ∈ F|Zi|×n

q , the length n sequences
of Wk, and of Xi = WZi assigned to server i ∈ Ω.

2) Cyclic dataset placement model, computation capac-
ity, and recovery threshold: We assume that the total number
of datasets K is divisible by the number of servers N , i.e.,
K
N

.
= ∆ ∈ Z+. The dataset placement on N distributed

servers is conducted in a circular or cyclic manner, in the
amount of ∆ circular shifts between two consecutive servers,
where the shifts are to the right and the final entries are
moved to the first positions, if necessary. As a result of cyclic
placement, any subset of Nr servers covers the set of all
datasets to compute the requested functions from the user.
Given Nr ∈ [N ], each server has a storage size or computation
cost of |Zi| = M = ∆(N−Nr+1), and the amount of dataset
overlap between the consecutive servers is ∆(N−Nr). Hence,
the set of indices assigned to server i ∈ Ω is given as follows:

Zi =

∆−1⋃
r=0

{ mod {i,N}+ rN, mod {i+ 1, N}+ rN,

. . . , mod {i+N −Nr, N}+ rN } , (7)

where Xi = WZi
, i ∈ Ω. As a result of (7), the cardinality of

the datasets assigned to each server meets the storage capacity
constraint M with equality, i.e., |Zi| = M , for all i ∈ Ω.

3) User demands and structure of the computation: We
address the problem of distributed lossless compression of a
set general multi-variable functions Fj(XΩ) : X1 × X2 · · · ×
XN → Fq , j ∈ [Kc], requested by the user from the set of
servers, where Kc ≥ 1, and the functions are known by the
servers and the user. More specifically, the user, from a subset
of distributed servers, aims to compute in a lossless manner
the following length n sequence as n tends to infinity:

Fj(XΩ) = {Fj(X1l, X2l, . . . , XNl)}nl=1 , j ∈ [Kc] , (8)

where Fj(X1l, X2l, . . . , XNl) is the function outcome for the
l-th realization l ∈ [n], given the length n sequence. The
representation in (8) is the most general form of a (conceivably
non-linear) multi-variate function, which encompasses the
special cases of separable and linearly separable functions.

The user seeks to compute functions that are separable to
each dataset. Each demanded function fj(·) ∈ R, j ∈ [Kc] is a
function of subfunctions {Wk}k∈K such that Wk = hk(Dk) ∈
Fq , where hk is a general (could be linear or nonlinear) func-
tion of dataset Dk. Hence, using Xi = WZi = {hk(Dk)}k∈Zi ,
each demanded function j ∈ [Kc] can be written as

fj(WK) = fj(h1(D1), . . . , hK(DK))

= Fj({hk(Dk)}k∈Z1 , . . . , {hk(Dk)}k∈ZN
) = Fj(XΩ) .

In the special case of linearly separable functions [1], the
demanded functions take the form:

{Fj(XΩ)}j∈[Kc] =
[
F1 F2 . . . FKc

]⊺
= ΓW , (9)

where W =
[
W1 W2 . . . WK

]⊺ ∈ FK×1
q is the subfunc-

tion vector, and the coefficient matrix Γ = {γjk} ∈ FKc×K
q

is known to the master node, servers, and the user. In other
words, {Fj(XΩ)}j∈[Kc] is a set of linear maps from the
subfunctions {Wk}k, where Fj(XΩ) =

∑
k∈K γjk · Wk.

Demanded functions are not restricted to be linearly separable,
i.e., it may hold that {Fj(XΩ)}j∈[Kc] ̸= ΓW.

4) Communication cost for computing: To compute
{Fj(XΩ)}j∈[Kc], each server i ∈ Ω constructs a characteristic
graph, denoted by GXi

, for compressing Xi. More specifi-
cally, for asymptotic lossless computation of the demanded
functions, the server builds the n-th OR power Gn

Xi
of GXi for

compressing Xi to determine the transmitted information. The
minimal possible code rate achievable to distinguish the edges
of Gn

Xi
as n → ∞, is given the Characteristic graph entropy,

HGXi
(Xi). In this work, we solely focus on characterizing

the total communication cost from all servers to the user, i.e.,
the achievable sum-rate, excluding the costs of master-server
communication and computations at the servers/user.

Each i ∈ Ω builds a mapping from Xi to a valid coloring of
Gn

Xi
, denoted by cGn

Xi
(Xi). The coloring cGn

Xi
(Xi) specifies

the color classes of Xi that form independent sets to distin-
guish the demanded function outcomes. Given an encoding
function gi that models the transmission of server i ∈ Ω for
computing {Fj(XΩ)}j∈[Kc], we denote by Zi = gi(Xi) =
eXi

(cGn
Xi
(Xi)) the color encoding performed by server i ∈ Ω

for Xi. Hence, the communication rate of server i ∈ Ω, for
a sufficiently large blocklength n, where Ti is the length for
the color encoding performed at i ∈ Ω, is

Ri =
Ti

L
=

H(eXi
(cGn

Xi
(Xi)))

n
≥ HGXi

(Xi) , i ∈ Ω , (10)

where the inequality follows from exploiting the achievability
of HGXi

(Xi) = lim
n→∞

1
nH

χ
Gn

Xi

(Xi), where Hχ
Gn

Xi

(Xi) is the
chromatic entropy of the graph Gn

Xi
[12], [16].

Using the characteristic graph-based bound in (10), an
achievable sum-rate for asymptotic lossless computation is

Rach =
∑
i∈Ω

Ri ≤
∑
i∈Ω

HGXi
(Xi) .

We next provide our main results in Section IV.

IV. MAIN RESULTS

We now analyze the multi-server multi-function distributed
computing framework using the characteristic graph-based
approach from [16]. Unlike previous research, our method is
general and accounts for (i) general input statistics or dataset
distributions, including skewed data, (ii) correlations across
datasets, (iii) any dataset placement model across servers,
beyond the cyclic [1] or the Maddah-Ali and Niesen [22]
placements, and (iv) general function classes requested by the
user, beyond particular functions (see e.g., [1], [23]).

We next present Theorem 2, which addresses the achievable
communication cost for the multi-server, multi-function topol-
ogy. Theorem 2 applies to all input statistics, any dataset cor-
relation model, and for distributed computing of all function
classes requested by the user, regardless of data assignment



in server caches. The key element is Körner’s characteristic
graph [16].

Theorem 2. (Achievable sum-rate via characteristic graphs
for general functions and distributions.) For a given
T (N,K,Kc,M,Nr), under general placement of datasets,
general functions {fj(WK)}j∈[Kc] requested by the user, and
general jointly distributed dataset models, including non-
uniform inputs and allowing correlations across datasets, the
achievable communication rate is upper bounded as follows:

Rach ≤
Nr∑
i=1

min
Zi=gi(Xi) : gi∈Ci

HG∪
Xi
(Xi) , (11)

• G∪
Xi

=
⋃

j∈[Kc]
GXi,j is the union characteristic graph

that server i ∈ Ω builds for computing {fj(WK)}j∈[Kc],
• Ci ∋ gi denotes a codebook of functions of that server

i ∈ Ω uses for computing {fj(WK)}j∈[Kc],
• each Wk, k ∈ K is defined over a q-ary field Fq such

that the characteristic is at least 2, and
• Zi = gi(Xi) s.t., gi denotes the transmitted information.

Proof. Consider the general topology, T (N,K,Kc,M,Nr),
under general placement of datasets, and for a set of Kc

general functions {fj(WK)}j∈[Kc] requested by the user, and
under general jointly distributed dataset models, including
non-uniform inputs and allowing correlations across datasets.

We note that server i ∈ Ω builds a union characteristic
graph for distributed lossless computing {fj(WK)}j∈[Kc],
which we denote by G∪

Xi
= (VXi

, EXi
) =

⋃
j∈[Kc]

GXi,j ,
and is detailed in [20]. In the description of G∪

Xi
, the set VXi

is the support set of Xi, i.e., VXi
= Xi, and EXi

is the union
of edges, i.e., EXi

=
⋃

j∈[Kc]
EXi,j , where EXi,j denotes the

set of edges in the characteristic graph GXi,j that the server
builds for distributed lossless computing fj(WK), j ∈ [Kc].

To compute the set of demanded functions {fj(WK)}j∈[Kc],
we assume that server i ∈ Ω can use a codebook of functions
denoted by Ci such that Ci ∋ gi, where the user can compute its
demanded functions using the set of transmitted information
{gi(Xi)}i∈S provided from any set of |S| = Nr servers.
More specifically, server i ∈ Ω chooses a function gi ∈ Ci
to encode Xi. Note that gi represents the mapping from Xi

to a valid coloring cGXi
(Xi). We denote by Zi = gi(Xi) =

eXi(cGn
Xi
(Xi)) the color encoding performed by server i ∈ Ω

for the length n realization Xi. For convenience, as a result
of this encoding, we denote the transmitted information from
the server by Zi = gi(Xi), i ∈ Ω. Combining the notions of
the union graph defined in (6) and the transmission Zi from
i ∈ Ω, the rate Ri needed from server i for meeting the user
demand is upper bounded by the cost of the best encoding that
minimizes the transmission rate of information from server i:

Ri ≥ min
Zi=gi(Xi) : gi∈Ci

HG∪
Xi
(Xi) , (12)

where equality is achievable in (12) adapting the relation
HGXi

(Xi) = lim
n→∞

1
nH

χ
Gn

Xi

(Xi) to union graphs. Because the
user can recover the desired functions using any Nr servers,

the achievable sum-rate is upper bounded by (11).

Theorem 2 provides a general upper bound on the sum-
rate for computing functions for general dataset statistics and
correlations, and the placement model, and allows any function
type, over a field of characteristic q ≥ 2. In (11), the codebook
Ci determines the structure of the union characteristic graph
G∪

Xi
, which, in turn, determines the distribution of Zi. There-

fore, the tightness of the rate upper bound relies essentially on
the codebook selection. Since (11) is not analytically tractable,
we will focus on specific instances of Theorem 2, to gain
insights into how input statistics, dataset correlations, and
special function classes affect the total communication cost.

We next show that the achievable sum rate for the dis-
tributed linearly separable computation framework given in [1,
Theorem 2] is embedded by our characterization in Theorem 2.

Proposition 1. (Achievable sum-rate for linearly separable
functions and i.i.d. subfunctions over Fq .) For a given
T (N,K,Kc,M,Nr), under the cyclic placement of datasets,
where K

N = ∆ ∈ Z+, and for a set of Kc linearly separable
functions, given as in (9), requested by the user, and given
i.i.d. uniformly distributed subfunctions over Fq where q ≥ 2,
the achievable communication rate satisfies

Rach ≤

{
min{Kc,∆}Nr , 1 ≤ Kc ≤ ∆Nr ,

min{Kc,K} , ∆Nr < Kc .
(13)

Proof. We here restrict the demand to be linearly separable in
WK, given as in (9). Given Nr, it holds that

Rach ≤
Nr∑
i=1

min
Zi : gi∈Ci

min
Xi∈Ui∈S(G∪

Xi
)
I(Xi;Ui) (14)

=

Nr∑
i=1

[
H(W

(i−1)∆+M
(i−1)∆+1 )−H

(
W

(i−1)∆+M
(i−1)∆+1

∣∣∣Zi

)]
(15)

=

Nr∑
i=1

[
M −

(
M −H(Zi)

)]
=

Nr∑
i=1

H(Zi) , (16)

where (14) follows from (11) and using HG∪
Xi
(Xi) =

min
Xi∈Ui∈S(G∪

Xi
)
I(Xi;Ui) [13]. Furthermore, if the codebook Ci

is restricted to linear combinations of WK, we then have

Zi = gi(Xi) =
{ (i−1)∆+M∑

k=(i−1)∆+1

α
(l)
k Wk , l ∈ [Kc]

}
. (17)

Server i builds a union graph G∪
Xi

for {fj(WK), j ∈ [Kc]}.
Each independent set Ui ∈ S(G∪

Xi
) of G∪

Xi
, with S(G∪

Xi
)

denoting the set of MISs of Xi, is captured by linear functions
of {Wk}k∈[(i−1)∆+1:(i−1)∆+M ], determined by (17). Hence,
the user can recover the Kc functions by linearly combining
the transmissions of the Nr servers:

fj(WK) =

Nr∑
i=1

βjiZi =

K∑
k=1

γjkWk , j ∈ [Kc] . (18)



In (15), we use I(Xi;Ui) = H(Xi)−H(Xi |Ui), where given
i ∈ [Nr] and ∆ = K

N , it holds under cyclic placement that

Xi = W
(i−1)∆+M
(i−1)∆+1 = W(i−1)∆+1, . . . ,W(i−1)∆+M ,

and α
(l)
k are the coefficients for computing function l ∈ [Kc].

In (16), we used that Wk is uniform over Fq and i.i.d. across
k ∈ K, to rewrite the conditional entropy expression as

H
(
W

(i−1)∆+M
(i−1)∆+1

∣∣∣Zi

)
(a)
= H

(
W

(i−1)∆+M
(i−1)∆+1

)
−H(Zi) ,

where (a) follows from that Zi is a function of W (i−1)∆+M
(i−1)∆+1 .

For a given l ∈ [Kc], the relation
∑(i−1)∆+M

k=(i−1)∆+1 α
(l)
k Wk

ensures that GXi
has q independent sets where each such set

Ui contains qM−1 different values of Xi. Exploiting that Wk

is i.i.d. and uniform over Fq , each element of Zi is uniform
over Fq . Hence, the achievable sum-rate is upper bounded by

Nr∑
i=1

min
Zi : gi∈Ci

HG∪
Xi
(Xi) ≤ KcNr . (19)

Exploiting the cyclic placement model, we can tighten the
bound in (19). Note that server i = 1 can help recover M
subfunctions, and each of servers i ∈ [2 : Nr] can help recover
an additional ∆ subfunctions (at most, i.e., ∆ transmissions
needed to recover ∆ subfunctions). Hence, the set of servers
[Nr] suffices to provide M + (Nr − 1)∆ = N∆ = K
subfunctions and reconstruct any desired function of WK. Due
to cyclic placement, each Wk is stored in exactly N −Nr +1
servers. Consider the following four scenarios:

(i) When 1 ≤ Kc < ∆, each server transmits Kc linearly
independent combinations of their subfunctions. This leads to
resolving KcNr linear combinations of K subfunctions from
Nr servers that are sufficient to derive the demanded Kc linear
functions. Because KcNr < ∆Nr, there are K − KcNr >
∆(N−Nr) = M−∆ unresolved linear combinations of WK.

(ii) When ∆ ≤ Kc ≤ ∆Nr, it is sufficient for each server to
transmit at most ∆ linearly independent combinations of their
subfunctions. This leads to resolving ∆Nr linear combinations
of K subfunctions and ∆(N−Nr) = M−∆ unresolved linear
combinations of K subfunctions.

(iii) When ∆Nr < Kc ≤ K, each server needs to
transmit at a rate Kc

Nr
where Kc

Nr
> ∆ and Kc

Nr
≤ K

Nr
=

∆
(
Nr+N−Nr

Nr

)
= ∆ + ∆

(
N−Nr

Nr

)
, which gives the number

of linearly independent combinations needed to meet the
demand. This yields a sum-rate of Kc. The subset of servers
may need to provide up to an additional ∆(N − Nr) linear
combinations, and ∆

(
N−Nr

Nr

)
is the maximum number of

additional linear combinations per server, i.e., the required
number of combinations when Kc = K.

(iv) When K < Kc, it is easy to note that any K linearly
independent transmission, given as in (18), suffices to recover
WK. Hence, the sum-rate K is achievable.

From (i)-(iv), we obtain the upper bound on the achievable
sum-rate, given by (13), which matches the communication
cost in [1, Theorem 2]. The i.i.d. distribution assumption for

Wk, ensures that this result holds for any q ≥ 2.

Theorem 2 leads to Proposition 1 when three conditions
hold: (i) the dataset placement across servers is cyclic fol-
lowing the rule in (7), (ii) the subfunctions WK are i.i.d. and
uniform over Fq , and (iii) the codebook Ci is restricted to linear
combinations of WK, which yields that the independent sets
of G∪

Xi
satisfy a set of linear constraints in {Wk}k∈Zi

. The
linear encoding and decoding approach for computing linearly
separable functions, proposed by Wan et al. in [1, Theorem 2],
is valid over a finite field of characteristic q > 3. However, our
Proposition 1, through a graph-based approach and allowing
for q ≥ 2, generalizes [1, Theorem 2] to larger input alphabets.

To highlight the merits of the characteristic graph-based
compression in capturing dataset correlations within the dis-
tributed computation framework, in the extended manuscript
[18], we consider a special case of Theorem 2, where the
user requests Kc arbitrary Boolean functions regardless of the
data assignment. As shown in [18, Proposition 2], leveraging
dataset skew, correlations within and across servers, and the
structural properties of functions can substantially reduce
the overall communication cost compared to the scenario in
Proposition 1 for i.i.d. and uniformly distributed subfunctions
(see also our Section V).

Despite the existing efforts, see e.g., [11]–[13], [24], to
the best of our knowledge, for the given multi-server, multi-
function distributed computing scenario, there is still no
general encoding framework for computing general nonlinear
functions. To that end, we exploit Theorem 2 to determine an
upper bound on the achievable sum-rate Rach for distributed
computing of a multilinear function in the form of

f(WK) =
∏
k∈K

Wk , (20)

which finds applications in distributed machine learning, sen-
sor networks, and distributed optimization [25].

Drawing on the utility of characteristic graphs in capturing
the structures of data and functions, input statistics and corre-
lations, and the general result in Theorem 2, our next result,
Proposition 2, exhibits a new upper bound on the achievable
sum-rate for distributed computing of multilinear functions.

Proposition 2. (Achievable sum-rate for multilinear func-
tions and i.i.d. subfunctions over F2.) For a given
T (N,K,Kc,M,Nr), under the cyclic placement of datasets,
where K

N = ∆ ∈ Z+, and for computing the multilinear
function (Kc = 1), given as in (20), requested by the user, and
given i.i.d. distributed subfunctions Wk ∼ Bern(ϵ), k ∈ K, for
some ϵ ∈ (0, 1), the achievable communication rate is upper
bounded as follows:

Rach ≤ 1−(ϵM )N
∗

1−ϵM
h(ϵM ) + (ϵM )N

∗
h
(
ϵξN

)
· 1∆N>0 , (21)

where
• ϵM = ϵM is the probability that the product of M sub-

functions, with Wk ∼ Bern(ϵ) being i.i.d. across k ∈ K,
taking the value one, i.e., P

(∏
k∈S : |S|=M Wk

)
= ϵM ,



• N∗ =
⌊

N
N−Nr+1

⌋
denotes the minimum number of

servers needed to compute f(WK) in (20), where each
one computes a disjoint product of M subfunctions, and

• ∆N = N−N∗ · (N−Nr+1) represents if an additional
server is needed, and if ∆N ≥ 1, then ξN denotes the
number of subfunctions to be computed by the additional
server, and similarly, P

(∏
k∈S : |S|=ξN

Wk

)
= ϵξN .

Proof. Recall that Wk ∼ Bern(ϵ) are i.i.d. across k ∈ K,
and each server has a capacity M = ∆(N − Nr + 1). This
means that given the number of datasets K, each server can
compute the product of ∆(N−Nr+1) subfunctions and hence,
the minimum number of servers to evaluate the multilinear
function f(WK) =

∏
k∈K Wk is N∗ =

⌊
N

N−Nr+1

⌋
such that

given its capacity M = |Zi|, each server can compute the
product of a disjoint set of M subfunctions, i.e.,

∏
k∈Zi

Wk,
which operates at a rate of Ri ≥ h(ϵM ), i ∈ Ω. Exploiting the
characteristic graph approach, we build GX1

= (VX1
, EX1

)
for X1, with respect to XΩ\X1 = X2, . . . , XN and f(WK),
and similarly for other servers, to characterize the sum-rate
for the computation by evaluating the entropy of each graph.

To evaluate the first term in (21), we choose a total of
N∗ servers with a disjoint set of subfunctions. We denote
the selected set of servers by N ∗ ⊆ Ω, and the collective
computation rate of these N∗ servers, as a function of the
conditional graph entropies of these servers, becomes∑

i∈N∗

Ri

(a)

≤ HGXi1
(Xi1) +HGXi2

(Xi2 |Zi1) + . . .

+HGXiN∗
(XiN∗ |Zi1 , Zi2 , . . . , ZiN∗−1

)

(b)
= h(ϵM ) + ϵMh(ϵM ) + (ϵM )2h(ϵM ) + . . .

+ (ϵM )N
∗−1h(ϵM )

(c)
= 1−(ϵM )N

∗

1−ϵM
h(ϵM ) , (22)

where (a) follows from assuming S = {i1, i2, · · · , iN∗} with
no loss of generality, and (b) from that the rate of server il ∈ S
is positive only when

∏
i∈[il−1]

∏
k∈Zi

Wk = 1, which is true
with probability (ϵM )l−1. Finally, (c) follows from employing
the geometric series, i.e.,

∑N∗−1
l=0 (ϵM )l = 1−(ϵM )N

∗

1−ϵM
.

In the case of ∆N = N − N∗ · (N − Nr + 1) > 0,
the product of K subfunctions cannot be determined by N∗

servers and we need an additional (N∗ + 1)-th server i∗ ∈ Ω
to aid the computation and determine the outcome of f(WK)
by computing the product of the remaining ξN subfunctions.
In other words, if ∆N > 0 and

∏
i∈S

∏
k∈Zi

Wk = 1,
the (N∗ + 1)-th server determines the outcome of f(WK)
by computing the product of subfunctions Wk ∼ Bern(ϵ),
k ∈

[
N−ξN+1 : N

]
, that cannot be captured by the previous

N∗ servers. Hence, the additional rate, given by the second
term in (21), is given by the product of the term

(ϵM )N
∗
= P

(∏
i∈S

∏
k∈Zi

Wk = 1
)
,

with 1∆N>0, and h
(
ϵξN

)
. Combining this rate term with (22),

we prove the statement of the proposition.

We next detail several numerical examples to showcase the
achievable gains in the total communication cost.

V. NUMERICAL EVALUATIONS

To gain insight into our analytical results and demonstrate
the savings in the total communication cost, we next provide
numerical examples for computing linearly separable functions
(Sections V-A-V-B), and multilinear functions (Section V-C).

To that end, ηlin denotes the gain of the sum-rate for the
graph entropy approach in [18, Eq. (9)] over the sum-rate de-
rived by Wan et al. in [1], and rederived in (13). Furthermore,
ηSW is the gain of the sum-rate for the graph entropy approach
in (21) over the sum-rate of Slepian-Wolf [17]. To capture
general statistics, i.e., dataset skewness and correlations, and
make a fair comparison, we adapt the transmission model in
[1] via modifying the i.i.d. dataset assumption.

In the following two subsections, we devise scenarios for
distributed computing of a class of linearly separable functions
given in (9) for general topologies, with general N , K ≥ 2,
M , Nr, Kc, over F2, where each demanded function takes
the form fj(WK) =

∑
k∈K γjkWk mod 2, j ∈ [Kc], under

a specific correlation model across subfunctions, with the
correlation coefficient denoted by ρ. Furthermore, we assume
for Kc > 1 that Γ = {γjk} ∈ FKc×K

2 is full rank. We assume
an identical skew parameter ϵ ∈ [0, 1] for each subfunction,
where Wk ∼Bern(ϵ), k ∈ K, use cyclic placement as in (7),
and incorporate the correlation between the subfunctions.

In [18], we provided an example for Kc = 1 for different
topologies by capturing the correlations across the subfunc-
tions and the servers as well as the structure of the linearly
separable function while compressing, using the characteristic
graph approach. We observed that the gain, ηlin, as a function
of N , K, and Nr, grows faster compared to models not
capturing correlations and the function structure, until ηlin
reaches the maximum level attributed to full correlation.

A. For Kc = 2 (uncorrelated or correlated subfunctions).

To gain insights into the behavior of ηlin, we consider a
simplified distributed computation model with K = N = 3,
Nr = 2, where the subfunctions W1, W2, W3 are stored in
X1, X2 and X3 in a cyclic manner, with h(Wk) = ϵ, k ∈ [3],
and Kc = 2 with f1(WK) = W2, and f2(WK) = W2 +W3.

For Nr = 2, using the characteristic graph approach for
individual servers, the achievable sum-rate Rach(G) is the
minimum total communication cost over transmission order-
ings. This involves compressing GXi

by server i without side
information and the conditional entropy of GXj

for j ∈ Ω\i,
using Zi from server i as side information.

Rach(G) = min{HGX1
(X1) +HGX2

(X2 |Z1),

HGX2
(X2) +HGX1

(X1 |Z2)} . (23)

In (23), the first term captures GX1
= (VX1

, EX1
) where

VX1 = {0, 1}2 is built based on using the support of W1

and W2, and the edges EX1 are built based on distinguishing
different W2 values, hence requiring 2 colors. Similarly, server
two constructs GX2

= (VX2
, EX2

) given Z1, where VX2
=
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Fig. 1: ηlin versus ϵ for Kc = 2, Nr = 2, using the PMF in (25).

{0, 1}2 using the support of W2 and W3, and Z1 determines
f1, and hence, to compute f2, the set EX2

contains the pairs
of VX2

with different W3 values, requiring 2 distinct colors.
As a result, the first term yields a sum-rate of h(ϵ) + h(ϵ) =
2h(ϵ). Similarly, the second term of (23) captures GX2 =
(VX2 , EX2), where server two builds GX2 using the support
of W2, and W3, and is a complete graph, requiring 4 different
colors. Given Z2, both f1 and f2 are deterministic. Hence,
given Z2, GX1

has no edges, i.e., HGX1
(X1 |Z2) = 0. As

a result, the second term of (23) yields the same sum-rate
of 2h(ϵ) + 0 = 2h(ϵ). Hence, the minimum required rate is
Rach(G) = 2h(ϵ), with the second term achieving a lower
recovery threshold of Nr = 1 versus the first term (Nr = 2).

Alternatively, in the linearly separable approach [1], Nr

servers transmit the requested function of the datasets stored
in their caches. For distributed computing of f1 and f2,
servers one and two transmit at rates H(W2) = h(ϵ), which
suffices for computing f1, and H(W2 +W3), for function f2,
respectively. As a result, the achievable communication cost
is given by Rach(lin) = h(ϵ) + h(W2 +W3).

Under this setting, for ρ = 0, we present below the gain for
computing f1 and f2 as a function of ϵ ∈ [0, 1]:

ηlin(ϵ) =
h(ϵ) + h(2ϵ(1− e))

2h(ϵ)

{
= 1, ϵ = 1

2 ,

> 1, ϵ ̸= 1
2 ,

(24)

where h(2ϵ(1 − ϵ)) ≥ h(ϵ) due to the concavity of h(·), and
ηlin approaches 1.5 as ϵ → {0, 1}.

We incorporate the correlation model from [26] for each
Wk, identically distributed as Wk ∼ Bern(ϵ), with correlation
ρ across any two subfunctions, yielding the following proba-
bility mass function (PMF) for f(WK):

P(f(WK) = y) =

(
K

y

)
ϵy(1− ϵ)K−y(1− ρ) · 1y∈A1

+ ϵ
y
K (1− ϵ)

K−y
K ρ · 1y∈A2

, y ∈ {0, · · · ,K} , (25)

where 1y∈A1
and 1y∈A2

are indicator functions, where A1 =
{0, 1, · · · ,K} and A2 = {0,K}.

We next use the joint PMF in (25), where we observe that
f2 ∼ ((1−ϵ)2(1−ρ)+(1−ϵ)ρ, 2ϵ(1−ϵ)(1−ρ), ϵ2(1−ρ)+ϵρ).
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Fig. 2: 10 log10(ηlin) versus ϵ under ρ = 0, for Kc > 2.

This PMF results in

ηlin =
h(ϵ) +H(f2)

h(ϵ) + (1− ϵ)h(ζ1) + ϵh(ζ2)
, (26)

where ζ1 = (1− ϵ)(1− ρ) + ρ, and ζ2 = (1− ϵ)(1− ρ). For
this model, we illustrate ηlin versus ϵ in Figure 1, for different
ρ values. Evaluating (26), the peak achievable gain is attained
when ρ = 1 at f2 ∼ ((1− ϵ), 0, ϵ), yielding H(W2 +W3) =
h(ϵ) and H(W3 |W2) = (1 − ϵ)h(ρ) = 0, and hence, ηlin =
Nr = 2, as shown by the purple (solid) curve. On the other
hand, for ρ = 0, we observe that f2 ∼ ((1−ϵ)2, 2ϵ(1−ϵ), ϵ2),
yielding H(W2+W3) = h((1−ϵ)2, 2ϵ(1−ϵ), ϵ2) = h(2ϵ(1−
ϵ)) + ((1 − ϵ)2 + ϵ2)h

(
ϵ2

ϵ2+(1−ϵ)2

)
and H(W3 |W2) = (1 −

ϵ)h(ϵ) + ϵh(ϵ) = h(ϵ), and it can be shown that ηlin ≥ 1.25.

B. For Kc ∈ [Nr], where the subfunctions are uncorrelated.

Here, we generalize the example in Section V-A assuming
that K = N , and ρ = 0. For the linearly separable model in
(9), exploiting [18, Proposition 2], which is an application
of Theorem 2 to subfunctions over F2, the sum-rate for
distributed lossless computing of f(WK) is derived as∑

i∈Ω

Ri ≤ N∗ · h(ϵM ) + 1∆N>0 · h(ϵξN ) . (27)

The communication cost for general Kc is expressed as:

Rach(lin) = Nr · h(ϵM ), (28)

which as ϵ → {0, 1} yields that h(ϵM ) → 0. Subsequently,
the achievable communication cost for the characteristic graph
model is calculated as

Rach(G) = Kc ·N∗ · h(ϵ) . (29)

To understand the behavior of ηlin = Nr

KcN∗ · h(ϵM )
h(ϵ) , for

a given value of Nr

KcN∗ , we need to examine the dynamic
component h(ϵM )

h(ϵ) . Exploiting Schur concavity of the binary
entropy function, i.e., h(E[X]) ≥ E[h(X)], we can establish
an upper bound on this component, in the following manner,
as ϵ → {0, 1}, where the inequality between the left and right-
hand sides becomes loose as M increases:

lim
ϵ→{0, 1}

h(ϵM )
h(ϵ) ≤ M , M ∈ Z+ , (30)
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Fig. 3: Gain 10 log10(ηSW ) versus ϵ for Kc = 1, ρ = 0, Nr = N−1,
for computing (20) in Section V-C.

and as ϵ → {0, 1}, ηlin approximates the product of Nr

Kc·N∗

and M . We illustrate the upper bound on ηlin in Figure 2, and
demonstrate the ηlin behavior for various K = N , M , and Kc

and for ρ = 0 across various topologies for ϵ ≤ 1/2. Due to
the symmetry of ηlin inherited from the entropy function, we
only plot for ϵ ≤ 1/2. The multiplicative coefficient Nr

KcN∗ of
ηlin determines the growth, which is depicted by the curves.

For a given topology, for ρ = 0, using (30), ηlin expo-
nentially grows with decreasing ϵ ∈ [0, 1/2] (or increasing
ϵ ∈ [1/2, 1] observing that the upper bound for ηlin is
symmetric around ϵ = 1/2), and a 100× reduction in the
total communication cost is possible as ϵ approaches {0, 1} as
shown in Figure 2 by the blue (solid) curve. The gain over [1,
Theorem 2], ηlin, for a given topology, changes proportionally
to Nr

KcN∗ . The gain over [17], ηSW , for ρ = 0 linearly scales
with K

KcN∗ . For instance, the gain for the blue (solid) curve
in Figure 2 is ηSW = 10. In general, other functions in
F2, such as bitwise AND and the multilinear function (see
e.g., Proposition 2), are more skewed than linearly separable
functions. Therefore, the cost in (29) can serve as an upper
bound for the communication costs of those functions.

C. Distributed Computing of K-Multi-Linear Functions

Proposition 2 illustrates how the characteristic graph ap-
proach helps decrease the communication cost for distributed
computing of multilinear functions, given as in (20), compared
to recovering the local computations

∏
k∈S : |S|=M Wk using

[17]. We next showcase the achievable gains ηSW of Propo-
sition 2 (where the functions are over F2).

We study the behaviors of ηSW versus the skewness pa-
rameter ϵ for computing the multilinear function given in (20)
for i.i.d. uniform Wk ∼ Bern(ϵ), ϵ ∈ [0, 1/2] across k ∈ K,
and for a given T (N,K,Kc,M,Nr) with parameters N , K,
M = ∆(N − Nr + 1), such that Nr = N − 1, Kc = 1,
ρ = 0, and the number of replicates per dataset is MN

K = 2.
We use Proposition 2 to determine the sum-rate upper bound,
and illustrate the gains 10 log10(ηSW ) versus ϵ in Figure 3.
From Figure 3, we observe that the sum-rate gain of the graph
entropy-based approach versus the fully distributed approach
of [17], ηSW , could reach up to more than 10-fold gain in
compression rate for uniform and up to 106-fold for skewed
data. The results on ηSW showcase that our proposed scheme

can guarantee an exponential rate reduction over [17] as a
function of decreasing ϵ. Furthermore, the sum-rate gains scale
linearly with the cache size M , which scales with K given
Nr = N − 1. Note that ηSW diminishes with increasing N
when M and ∆ are kept fixed. For additional multi-linear
function requests when M ≪ K, a fixed total cache size MN
and, consequently, a fixed K are discussed in [18].
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