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Abstract—The adoption of Advanced Driver Assistance Sys-

tems (ADAS) and autonomous driving systems poses great

challenges for vehicular communication and sensing architec-

tures. The joint design of vehicular communication and sensing

systems brings benefits both in performance, size, cost, and

power consumption, and it enables cooperative perception, in

which the local information from all vehicles is fused. We

propose using joint estimation of channel, range, and Doppler

frequency for Frequency Modulated Continuous Wave (FMCW)

radar. Based on Sparse Bayesian Learning (SBL), this enables

the use of prior knowledge (as local estimates from neighboring

vehicles) in the data processing. This provides more reliable

and accurate sensing than traditional radars, which only rely

on the detection of LOS objects for a single vehicle. Besides, SBL

increases the channel estimation accuracy, which constitutes a

basis for the optimization of the transceivers/sensing nodes and

reduces the probability of false alarm. Our represents an efficient

framework for cooperative sensing in ADAS applications and

contributes to the convergence of communication and sensing

applications for connected vehicles.

Index Terms—Wireless Channel, Automotive sensors, FMCW

radar, Sparse Bayesian Learning

I. INTRODUCTION

With the recent rise of Advanced Driver Assistance Sys-
tems (ADAS) and the incipient adoption of autonomous driv-
ing solutions, the requirements for both communications and
sensing solutions for vehicles have significantly increased.
On the one hand, efficient and timely communication among
vehicles and infrastructure elements, or between neighboring
vehicles, is essential to adapt to time-variant scenarios of
road environments, ensuring safe and efficient transporta-
tion. Cooperative Awareness Messages (CAM) can be ex-
changed among adjacent road users via Cooperative Vehicle-
to-Anything (C-V2X) connectivity [1]. At the same time,
sensing the environment is critical for collision avoidance
and to match the actual environment to pre-loaded mapping
information in autonomous driving.

Neither vehicular communications nor radar applications
for vehicles are novel, nevertheless, their use in real-time
autonomous driving applications presents several challenges.
On the one hand, due to the constraints of mass-production
vehicles, onboard radar systems are limited in size, computa-

tional power, and cost. At the same time, advanced applica-
tions require the resolution of the sensing environment to be
increased as much as possible, to deal with several close-range
scatterers in dense urban environments. On the other hand, a
set of different communication links may be required, such
as [2] vehicle-to-vehicle transmissions (to share attributes
with neighboring vehicles), vehicle-to-infrastructure (to facil-
itate intelligent road management), vehicle-to-pedestrian (for
warning or alarming purposes) and vehicle-to-network (for
general purpose data transmission). These communications
may have very different data traffic patterns and different
requirements on throughput, latency, and reliability.

Due to all this, the coexistence between radar and com-
munication systems using overlapping frequency bands has
experienced a surge of research interest in recent years [3].
What is more, with the upcoming of Integrated Communica-
tion and Sensing (ISAC), the joint design of communication
and sensing strategies can bring benefits not only in perfor-
mance but also gains in size, cost, and power consumption
optimization [2]. At the same time, connectivity between
neighboring vehicles enables cooperative sensing, in which
the local sensing information from all the vehicles is fused
[4].

Since for both communication and sensing, accurate chan-
nel estimation is fundamental for the optimization of the
transceivers/sensing nodes [5] and the discrimination of false
targets [6], we propose the joint estimation of channel, range
and Doppler frequency for Frequency Modulated Continuous
Wave (FMCW) radar. Based on Sparse Bayesian Learning
(SBL) [7], this enables using prior knowledge (e.g., local
estimates from neighboring vehicles) in the data processing.
This enables a richer sensing accuracy than that solely based
on the detection of objects in the LOS to a single vehicle, as
provided by traditional radar systems.

In [8], the target scene is estimated based on a sparse
representation in the range-Doppler domain and a robust
Bayesian algorithm mitigates the grid mismatch in both the
range and Doppler dimensions.

A probabilistic model is derived in [9] where a hierarchical
sparsity-promoting prior is imposed over the scatter coeffi-
cients. This leads to a sparse variational Bayesian approach



with modified automatic relevance determination.
Our contributions can be summarized as follows: (1) Ap-

plication of SBL to the beat frequency signal of a 76 GHz
FMCW radar for the detection of multiple radar targets,
and estimation of their ranges and Doppler shifts; (2) By
incorporating priors for range and Doppler into the SBL
framework, the detection of weak radar targets is enhanced (3)
CAM messages shared among adjacent road users provide the
prior information for SBL. Our work represents an efficient
framework for cooperative sensing in ADAS applications and
contributes to the convergence of communication and sensing
applications for connected vehicles.

The rest of the paper is organized as follows: Section II in-
troduces the basic concepts and signal model used. Section III
introduces the concept of SBL for radar. Section V introduces
the architecture used for the empirical evaluations, whereas
Section VI analyzes the obtained results. Finally, Section VII
introduces the concluding remarks of the work.

II. RADAR BEAT FREQUENCY SIGNAL MODEL

We consider a propagation channel with time-variant chan-
nel impulse response h(t, ⌧) between the transmitter and
receiver antennas [10],

h(t, ⌧) =
PX

p=1

�pe
j!Dpt�(⌧ � ⌧p). (1)

Here, the channel impulse response contains P radar targets,
each of which is parameterized by its propagation delay
⌧p, Doppler shift !Dp, and complex-valued radar target
coefficient �p. The transmitted signal x(t) is modeled by
L repetitions of the known Linearly Frequency Modulated
(LFM) waveform s(t),

x(t) =
LX

`=1

s(t� (`� 1)Ts), (2)

where Ts is the repetition period. The received signal is a
linearly filtered version of x(t) corrupted by additive noise
w(t). The equivalent complex baseband signal is

r(t) =

Z 1

�1
x(⌧)h(t, t� ⌧)d⌧ + w(t). (3)

Inserting the model (1) into (3) gives

r(t) =
PX

p=1

�pe
j!Dptx(t� ⌧p) + w(t), (4)

Next, we use (2), giving

r(t) =
LX

`=1

PX

p=1

�pe
j!Dpts(t� (`� 1)Ts � ⌧p) + w(t). (5)

The output from the radar module is the discrete-time radar
beat frequency signal, namely y[t], obtained from

y(t) =

Z 1

�1
r(⌧)x⇤(t+ ⌧) d⌧, (6)

In practice, Low Pass Filtering (LPF) and subsequent
A/D conversion (ADC) are used to obtain y[t]. The relevant
parameters regarding the ADC and the LPF are listed in
Table I. Due to the excellent cross-correlation properties of
the LFM waveform and the frontend analog signal processing,
the radar beat frequency signal y[t] contains sinusoidal signal
components, one for each radar target. The frequency of
an individual signal component is proportional to the radar
target’s range.

TABLE I
COMMON MEASUREMENT PARAMETER SETTING.

Name Symbol Value

Chirp start frequency f0 76GHz
FMCW bandwidth BW 700MHz
Number of chirps L 256
Chirp duration Tchirp 50µs
Samples per chirp snapshot N 625
Period of a chirp Ts 63.92µs
ADC resolution 14 bit
ADC sample frequency fs 50 MHz
ADC decimation factor D 4
Low pass filter BWLPF 17.3 MHz
Transmit power Ptx 14 dBm
Number of radar TX antenna 1
Number of radar RX antenna 1
TX and RX antenna gain 24 dBi

The data matrix is Y = [y1, . . . ,yL
] 2 CN⇥L with the

`th column vector y
`

being the `th chirp snapshot,

y
`
= [y1`, . . . , yN`]

T 2 CN . (7)

and elements

yn` = y[(n� 1)�⌧ + (`� 1)Ts], (8)

where n = 1, . . . , N is the range sample index, ` = 1, . . . , L
is the chirp index, and N�⌧ = Tchirp/D. Further, we
introduce the unknown complex-valued radar target vector
c` = [c1`, . . . , cM`]T 2 CM for the `th chirp, which is
assumed P -sparse, with P ⌧ M . Similarly, we define
the additive noise vector w` = [w1`, . . . , wN`]T 2 CN .
Finally, we formulate the mapping from the radar target
vector elements to the radar beat frequency signal as a sparse
regression model for all chirps (` = 1, . . . , L),

Y = AC +W , (9)

where A2CN⇥M is called the dictionary, with elements

Anm = ej2⇡(n�1)⌫m�⌧ . (10)

The beat frequency ⌫m is associated with the target range

⌫m =
1

�⌧

✓
m� 1

M � 1
� 1

2

◆
, for m = 1, . . . ,M. (11)

The mth column am of the dictionary A models the sinu-
soidal beat signal component by the Vandermonde vector

am = [1, ↵m, ↵2
m
, . . . ,↵N�1

m
]T , where ↵m = ej2⇡⌫mTs

(12)



The matrix of unknowns is C = [c1, . . . , cL] and W is zero-
mean iid noise. In the following, we estimate the unknown
normalized frequencies corresponding to P radar targets by
SBL [11].

III. SBL FOR RADAR TARGET COEFFICIENTS AND RANGE
ESTIMATION

We apply SBL to a single measurement vector y
`
. SBL is

derived under a joint complex multivariate Gaussian assump-
tion on c` and w` for each snapshot `, cf. [11, Table I]. SBL
provides radar target coefficient estimates based on the rank-1
sample covariance matrix

S` = y
`
yH
`
, (13)

where (·)H denotes Hermitian transposition. The sample
covariance matrix is a sufficient statistic under the joint
Gaussian assumption.

For applying robust and sparse M-estimation of range
and Doppler shift for individual radar targets, we assume
that the data distribution of the discrete-time radar beat
frequency signal vector y

`
for the `th snapshot follows a

Complex Elliptically Symmetric (CES) distribution with noise
variance �2 [12], [13]. Further, the prior distribution of the
radar target coefficient vector c` is assumed to be zero-
mean complex Gaussian with diagonal covariance matrix �`.
Based on Bayes’ rule, we estimate the posterior probability
density function for the unknown radar target coefficients
c`. Finally, the noise w` 2 CN is assumed independent
identically distributed (iid) across samples, zero-mean, with
finite variance �2.

If P � 1 radar targets are present, then c` is P -sparse.
The model (9) is underdetermined and P < N ⌧ M . The
covariance matrix of y

`
takes the form

⌃` = A�`A
H + �2IN , (14)

�` = diag(g
`
), (15)

where g
`
= [g1` . . . gM`]T is the P -sparse vector of unknown

radar target magnitudes which is to be estimated by the robust
SBL algorithm [13]. The active set M is defined as

M = {m 2 {1, . . . ,M}|gm` 6= 0}. (16)

If m 2 M then the mth range bin is active in the `th chirp
snapshot and the corresponding radar target is estimated to
be at a range proportional to the beat frequency ⌫m.

IV. SBL FOR DOPPLER ESTIMATION

Let AM 2 CN⇥P contain the P “active” Vandermonde
columns from A. For Doppler estimation, we first transform
the data matrix Y into the domain of active delay bins,

ZM = AH

MY 2 CP⇥L, (17)

which can be computed by a fast Fourier transform. We define

ZT

M = [z1, . . . , zP ] 2 CL⇥P (18)

Fig. 1. Traffic scenario with NLOS between the green car and a bicycle.

and apply the SBL algorithm to each transformed data vector

zp = Y TA⇤
Mep 2 CL⇥1, (19)

individually, where ep 2 CL⇥1 is the pth standard unit basis
vector (p = 1, . . . , P ). For Doppler estimation, we use the
dictionary B 2 CL⇥Q of Vandermonde vectors for Doppler
estimation with column vector

bq = [1,�q,�
2
q
, . . . ,�L�1

q
]T , where �q = ej⌦q (20)

and ⌦q = 2⇡(q � 1)/Q.

V. CONSIDERED ARCHITECTURE

The architecture consists of several vehicles each with
one FMCW automotive radar sensor in different road traffic
scenarios. The automotive radar sensors are operating at the
77 GHz band. The communication of the radar data among the
vehicles can be done with a 5G cellular network. The NLOS
scenarios are common in road traffic and are a limitation and a
challenge for radar sensor applications. Our proposed system
can make radar sensors applicable for non-LOS scenarios.
Further, automotive radars operate in a dense environment, in-
creasing the probability of radar-to-radar mutual interference
and other clutter appearances. Applying the SBL algorithm
increases the detection probability and robustness compared
to conventional FFT processing.

A. Traffic Scenario

The traffic scenario in this paper is depicted in Fig. 1, all
motorized vehicles are equipped with a front radar. The green
vehicle, called the “main vehicle”, detects 3 targets in LOS.
The bicycle in front of the truck is in NLOS to the main
vehicle and cannot be directly detected by its front radar.
This will lead to a dangerous situation during an overtaking
scenario.



Fig. 2. Radar measurement setup: FMCW radar module, RF transmission
tunnel, and RTS.

B. Data Model

The radar output signal y(t), as stored in the 2D matrix
Y , is the discrete-time radar beat frequency signal which
is obtained by analog correlation with the transmit wave-
form. Subsequently, there LPF and ADC are applied. The
rows in the matrix Y contain the range samples and the
columns contain the Doppler frequency samples. The number
of columns equals the number of the transmitted chirps.
We assume that a Fifth-Generation (5G) cellular network
is used for communication among vehicles on the road.
Each vehicle with radar sensor constantly provides the beat
frequency signal y[t] described in Eq. (6) of its measurement
and the dictionary A 2 CN⇥M to the neighboring vehicles.
Range dictionary size M = 2500 and Doppler dictionary size
Q = 2560 were chosen. We also assume that the receiving
vehicle radar data in LOS has accurate range, Doppler, and
angle to neighboring vehicles.

VI. EXPERIMENTAL DATA

As described in [4], the FFT-based OS-CFAR detector
can estimate range and Doppler shift of the targets. Angle
estimation is not feasible because the experimental setup lacks
multiple RX antennas. Figure 4shows the range estimation of
3 targets based on classical OS-CFAR processing in compar-
ison to the SBL algorithm. Figure 5 shows the corresponding
estimated Doppler shifts for each of the three radar targets
from which their relative velocities are inferred.

VII. CONCLUSION

We applied the SBL algorithm for the joint estimation
of channel, range, and Doppler frequency in the field of
FMCW radar. In particular, we applied SBL algorithm to
the beat frequency signal of an automotive FMCW radar
for range and Doppler estimation of multiple radar targets.
We discussed the limitation of FFT-based CFAR detection in
range resolution and the general radar limitation in NLOS

Fig. 3. Radar Measurement setup: FMCW radar module FE.

Fig. 4. Range estimates from experimental beat-frequency data for three
radar targets. Top FFT-based power spectral density estimate (blue), CFAR-
threshold (red), and SBL-based processing (yellow). The bottom plots zoom
in on the three radar targets.

scenarios. We have proved by measurement results, that the
SBL provides a higher SNR around the target peaks in the
beat frequency signal. This makes the detection more reliable
and decreases the probability of false alarm in a dense sensor
environment with clutter and radar-to-radar interference. Our
work lays the foundation for efficient cooperative sensing in
ADAS applications.
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[11] P. Gerstoft, C. Mecklenbräuker, A. Xenaki, and S. Nannuru, “Multi-
snapshot sparse Bayesian learning for DOA,” IEEE Signal Process.

Lett., vol. 23, no. 10, pp. 1469–1473, 2016.
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