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Abstract—In this work, we investigate the uplink communi-
cation in cell-free (CF) massive multiple-input multiple-output
(MaMIMO) systems. One of the major problems in CF MaMIMO
systems is pilot contamination, i.e., the number of users is larger
than the length of the pilot sequences. Researchers have proposed
a semi-blind approach to overcome this problem. The semi-blind
joint estimation of the channel and the data leads to a bilinear
problem. We propose a vector-level Expectation Propagation (EP)
method to avoid the high-dimensional intractable integrals of
Bayesian posterior distributions and estimate both the multi-
user data sequences and channels. We exploit the property
of orthogonal pilots to decompose the pilot measurement into
multiple smaller, mutually independent equivalent measurements.
We also assume the data sequences to be randomly chosen from a
codebook (possibly with structure) of finite alphabet codewords.

I. INTRODUCTION

One of the unique features of Cell-Free (CF) Massive MIMO
(MaMIMO) networks is that all the user terminals (UTs) are
served by all the access points (APs) in a given area. This
leads to the problem of pilot contamination, where the number
of UTs exceeds the length of pilot sequences. To address
this issue, Semi-Blind approaches have been explored as a
viable solution to mitigate the effects of pilot contamination,
as detailed in the work of Gholami et al. [1].
In the context of Bayesian inference, the Semi-Blind approach
is modeled as a bilinear inference problem, where the APs
must concurrently estimate both the channel state information
(CSI) and the user signals. [2] have demonstrated that transi-
tioning from the deterministic domain to the Bayesian domain
results in significant gains. The challenge in addressing the
bilinear inference problem primarily arises from obtaining the
closed-form solution of the marginal likelihood of the observed
data given the channel coefficient.

A. Prior Works

Message-passing algorithms play a critical role in the infer-
ence problems. Notably, one of the most potent message-
passing algorithms is Expectation Propagation (EP), proposed
by Minka [3]. It transforms the global inference problem into
local inference problems and approximates complicated factors
with simple factors (e.g., Gaussian distributions) to make high-
dimensional integrals tractable. Belief Propagation (BP) can be
viewed as a special case of EP without factor approximation.
The close relation between EP and Bethe Free Energy (BFE)
was studied in [4], which shows that they share the same
fixed points. Given that the primary concern with EP is the
uncertainty of convergence, a more robust solution can be
achieved by directly analyzing the optimization of the BFE.
A loop-free EP was proposed in [5] based on approximate

BFE optimization. In [6], the authors proposed a Bilinear EP
algorithm for non-coherent channel detection based on the
codebook.
B. Main Contributions
In this paper, we consider a semi-blind system with orthogonal
pilot sequences (though the same sequence may be reused by
several users, leading to pilot contamination). We assume a
structured prior distribution for the data that can encompass
various channel coding approaches or simply exploit finite
alphabet symbols. To estimate the channel and data jointly in
this semi-blind system, we propose a vector-level EP where
we treat the channel coefficients and data (sub-) sequences for
each user as atomic variables. Since orthogonal pilots are used,
we first combine the received pilot signals with the channel
priors to form augmented channel priors, thereby reducing the
number of factors. If the data prior corresponds to the use
of codebooks with a certain structure, it can be exploited to
reduce the computational load of the proposed method.

II. SYSTEM MODEL

We examine the uplink semi-blind signal model

Y=
[
Yp Yd

]
=H

[
XT

p XT
]
+
[
Vp Vd

]
∈ CM×(P+L),

where H represents the uplink channel matrix from UTs to
APs, which is unknown and modeled as an independent and
identically distributed (i.i.d.) random matrix of size M ×K.
Each column follows the distribution hk ∼ CN (0,Ξhk

). The
input signal is composed of a pilot part Xp ∈ CP×K and a
data part X ∈ CL×K . Each column of Xp or X represents the
pilot sequence xp,k or data sequence xk transmitted by user
k. It’s assumed that orthogonal pilot sequences are used, and
each pilot sequence has power σ2

xP .
We define Vp and Vd as the Additive White Gaussian Noise
(AWGN) present at the APs. Each element within these
noise matrices is assumed to be independently drawn from
a Gaussian distribution, specifically CN (0, σ2

v).
A. Benefit of using Orthogonal Pilots

We correlate the received signal Yp with the g-th pilot
sequence

Ypx
∗
p,g = yp,g = σ2

xPHg1Kg
+vg = σ2

xPAH
p,ghg+vg, (1)

where x∗
p,g denotes the conjugated g-th pilot sequence, and

each column of Hg denotes the channel coefficients from a
user using the g-th pilot sequence. We use set Gg to denote
the group of users using the g-th pilot. We use Kg to represent



the size of Gg . The equivalent noise vg = Vpx
∗
p,g is still i.i.d.

zero mean Gaussian noise with covariance Cvg
= σ2

xPσ2
vI.

The last equal sign in (1) is obtained by vectorizing Hg , where
Ap,g = 1Kg ⊗ IM and hg = vec(Hg). Since orthogonal
pilots are used, we know E[yp,gy

H
p,g′ ] = 0 if g ̸= g′. The

corresponding equivalent likelihood model for the received
pilot is

p(Yp|H)=
∏
g

p(yp,g|hg)=
∏
g

CN (yp,g|σ2
xPAH

p,ghg,Cvg
).

B. Structured User Data Prior Distribution

We assume that the symbols in the data sequences are discrete
and that data sequences are independent between the users.
However, the symbols in the data sequence of one user are not
independent. We assume that for all users, the code structure
is identically modeled as

p(xk) ∝
∏
α

fα(xk,α). (2)

We partition the vector xk into subvectors xk,β such that:
1) : For all β, α, either xk,β ⊆ xk,α or xk,β ∩ xk,α = ϕ.
2) : For all β, β′, xk,β ∩ xk,β′ = ϕ.
3) : ∪βxk,β = xk.
In the above three statements, we abuse the notations and
use xk,β , xk,β′ , xk,α, and xk to denote the sets of entries
contained by those vectors respectively. We note that α denotes
a factor level partition while β denotes a variable level partition
in the symbol time domain. For example, the probabilis-
tic model p(xβ1

,xβ2
,xβ3

) = p(xβ3
|xβ1

,xβ2
)p(xβ1

,xβ2
),

where xα1
= [xβ1

xβ2
xβ3

]T , xα2
= [xβ1

xβ2
]T , can be used

to describe codes with the parity-check component xβ3
.

C. Probablistic Model and Factorization

To handle the bilinear mixing, we introduce an auxiliary
variable Zk,β = hkx

T
k,β and consequently its vectorization

zk,β = (xk,β ⊗ IM )hk where zk,β := vec(Zk,β). The
joint probabilistic model of the uplink transmission can be
factorized as follows:

p(x{k},h{k}, z{k,β},Y)∝
∏
β

p(yd,β |z{k},β)
∏
g

p(hg|yp,g)∏
k

∏
β

p(zk,β |hk,xk,β) ·
∏
k

∏
α

fα(xk,α),

where we denote yd = vec(Yd), and p(hg|yp,g) ∝
p(yp,g|hg)

∏
k∈Gg

p(hk). The partitioned Yd,β is composed
of the columns in Yd corresponding to the same symbol
time intervals as xk,β , and we denote its vectorization as
yd,β = vec(Yd,β).
For simplicity, we denote the factors as:

Ψ0,g := p(hg|yp,g); Ψ1,k,β := p(zk,β |hk,xk,β)

Ψ2,β := p(yd,β |
∑
k

zk,β); Ψ3,k,α := p(xk,α)

We conclude the factorization in factor graph fig. 1.

Fig. 1. Part of the factor graph, showing users k, k′ and partition variables
β, β′ ∈ α (the data prior is shown only for user k).

III. EXPECTATION PROPAGATION

Expectation Propagation is a method to approximate the fac-
tored pdf p(θ) by another pdf b(θ) with factors of the desired
family [6],

p(θ) ∝
∏
a

Ψa(θa) ≃ b(θ) ∝
∏
a

qa(θa),

where we assume all the factors qa are fully factorized
[7], i.e., qa can be factored at variable level qa(θa) ∝∏

θi⊆θa
mΨa;θi

(θi). Here, θi denotes a variable-level partition
of the whole θ, i.e., for all variable-level partitions indices i, j
and factor index a, if i ̸= j, we have θi ∩ θj = ϕ, and
the intersection θi ∩ θa is either θi or ϕ. With the fully-
factorizable assumption, EP can be interpreted as message
passing by iteratively updating the factor to variable message
mΨa;θi

and variable to factor message mθi;Ψa
: [8]

mθi;Ψa
(θi) =

∏
a′∈N(i)/{a}

mΨa′ ;θi
(θi),

mΨa;θi
(θi) =

proj(bΨa
(θi))

mθi;Ψa(θi)
,

(3)

where N(i) denotes the direct neighbor of the variable θi,
and the operation proj(·) projects a distribution to a family
F by optimizing a Kullback-Leibler divergence proj(p) =
argminq∈F KLD(p∥q). Here, bΨa

(θi) is the marginalization
of the belief (approximated posterior) bΨa(θa) at Ψa:

bΨa(θi)=

∫
bΨa(θa)dθi=

∫
Ψa(θa)

∏
i′∈N(a)

mθi′ ;Ψa(θi′)dθi,

where we use θi to denote all elements in θa except the ones
contained in θi and N(a) to denote the variables neighboring
factor a. The messages appearing in this paper are all normal-
ized to 1.
BP can be interpreted as a special case of EP by omitting the
projection step in (3).
In the following, if a message distribution mθi;Ψa

(θi) (or
mΨa;θi

(θi)) is Gaussian, we denote its mean and covariance
matrix as µθi;Ψa and Cθi;Ψa (or µΨa;θi and CΨa;θi ) respec-
tively.



IV. MESSAGE FROM BILINEAR FACTOR NODE Ψ1,k,β

We first look at the bilinear factor node Ψ1,k,β . It is connected
to three variable nodes. The extrinsic distributions to this node
are calculated via line 10-12 in Algorithm 1. Following the
EP rule, we need to compute the belief of each variable,
approximate it to a certain desired distribution family, and
compute the feedback message to each of the connected
variable nodes. Rewrite the factor

Ψ1,k,β = δ(Zk,β − hkx
T
k,β) = δ(zk,β −Ak,βhk),

where Ak,β = xk,β ⊗ IM . We denote the joint belief
(normalized distribution) at factor node Ψ1,k as

bΨ1,k,β
(zk,β ,hk,xk,β) ∝ δ(zk,β −Ak,βhk)

·mzk,β ;Ψ1,k,β
(zk,β)mhk;Ψ1,k,β

(hk)mxk,β ;Ψ1,k,β
(xk,β),

(4)

which can be interpreted as the joint posterior distribution.
Since the channel coefficients follow a continuous distribu-
tion while the data symbols follow a discrete distribution,
the marginalization of the channel coefficients results in an
integral operation. In contrast, the marginalization of the
data symbols involves only a summation over finite support.
Therefore, in the following, we use EP for hk and zk,β but
BP for xk,β .

A. Message from Ψ1,k,β to hk

The normalized marginal belief of hk at factor Ψ1,k,β can be
obtained via

bΨ1,k,β
(hk) =

∑
xk,β

∫
bΨ1,k,β

(zk,β ,hk,xk,β)dzk,β

=
∑
xk,β

CN (hk|µĥk|xk,β
,Cĥk|xk,β

)ω(xk,β),
(5)

where
Cĥk|xk,β

=
(
AH

k,βC
−1
zk,β ;Ψ1,k,β

Ak,β +C−1
hk;Ψ1,k,β

)−1

;

µĥk|xk,β
= Cĥk|xk,β

·
(
AH

k,βC
−1
zk,β ;Ψ1,k,β

µzk,β ;Ψ1,k,β
+C−1

hk;Ψ1,k,β
µhk;Ψ1,k,β

)
ω(xk,β) =

1

Zb
mxk,β ;Ψ1,k,β

(xk,β)ν(xk,β)

Zb =
∑
xk,β

mxk,β ;Ψ1,k,β
(xk,β)ν(xk,β)

ν(xk,β) = CN (0|µzk,β ;Ψ1,k,β
−Ak,βµhk;Ψ1,k,β

,

Czk,β ;Ψ1,k,β
+Ak,βChk;Ψ1,k,β

AH
k,β).

(6)
The result in (5)-(6) can be derived by noticing the matrix
identity

D(A+BCD)−1 = C−1(DA−1B+C−1)−1DA−1.

From the derivation, it is worth noticing that the ratio differ-
ence between the LHS and RHS of (4) is Zb. The mean and
covariance matrix of the marginal posterior bΨ1,k,β

(hk) are
given by
µĥk

=
∑
xk,β

µĥk|xk,β
ω(xk,β); (7)

Cĥk
=
∑
xk,β

(Cĥk|xk,β
+ µĥk|xk,β

µH
ĥk|xk,β

)ω(xk,β)− µĥk
µH

ĥk
.

From this point, it is clear that the marginalized belief in (5) is
a Gaussian mixture model, whose mean and covariance matrix
are calculated by (7). The approximated marginal belief can be
derived by projecting the marginal belief (5) into a Gaussian
with mean and covariance obtained in (7). Consequently, the
message from Ψ1,k,β to hk is updated by

mΨ1,k,β ;hk
(hk) = CN (hk|µΨ1,k,β ;hk

,CΨ1,k,β ;hk
), (8)

where

CΨ1,k,β ;hk
= (C−1

ĥk
−C−1

hk;Ψ1,k,β
)−1

µΨ1,k,β ;hk
= CΨ1,k,β ;hk

(C−1

ĥk
µĥk

−C−1
hk;Ψ1,k,β

µhk;Ψ1,k,β
).

B. Message from Ψ1,k,β to zk,β

The message from Ψ1,k,β to zk,β entails from the marginal
belief bΨ1,k,β

(zk,β). This marginal belief can be obtained by

bΨ1,k,β
(zk,β) =

∑
xk,β

∫
bΨ1,k,β

(zk,β ,hk,xk,β)dhk

=
∑
xk,β

CN (zk,β |µẑk,β |xk,β
,Cẑk,β |xk,β

)ω(xk,β),
(9)

where
Cẑk,β |xk,β

= Ak,βCĥk|xk,β
AH

k,β

µẑk,β |xk,β
= Ak,βµĥk|xk,β

.

This belief (9) is also a Gaussian mixture model. The mean
and covariance of the belief (approximated marginal posterior)
bΨ1,k,β

(hk) can be obtained as the moments of xk,β ,

µẑk,β
=

∑
xk,β

µẑk,β |xk,β
ω(xk,β);

Cẑk,β
=

∑
xk,β

(Cẑk,β |xk,β
+µẑk,β |xk,β

µH
ẑk,β |xk,β

)ω(xk,β)

− µẑk,β
µH

ẑk,β

The message from Ψ1,k,β to zk,β is computed as the quotient
between the approximated belief CN (zk,β |µẑk,β

,Cẑk,β
) and

mzk,β ;Ψ1,k,β
(zk,β). Thus, we write this message as

mΨ1,k,β ;zk,β
(zk,β) = CN (zk,β |µΨ1,k,β ;zk,β

,CΨ1,k,β ;zk,β
),
(10)

where
CΨ1,k,β ;zk,β

= Czk,β ;Ψ1,k,β
(Czk,β ;Ψ1,k,β

−Cẑk,β
)−1Cẑk,β

µΨ1,k,β ;zk,β
= Czk,β ;Ψ1,k,β

(Czk,β ;Ψ1,k,β
−Cẑk,β

)−1µẑk,β

−Cẑk,β
(Czk,β ;Ψ1,k,β

−Cẑk,β
)−1µzk,β ;Ψ1,k,β

.

C. Message from Ψ1,k,β to xk,β

The marginal belief of xk,β can be directly obtained by

bΨ1,k,β
(xk,β)=

∫∫
bΨ1,k,β

(zk,β ,hk,xk,β)dzk,βdhk=ω(xk,β).

Since we use BP for estimating xk,β , there is no need to
calculate the approximated belief. Thus, the message from
Ψ1,k,β to xk,β is

mΨ1,k,β ;xk,β
(xk,β) ∝

ω(xk,β)

mxk,β ;Ψ1,k,β
(xk,β)

= ν(xk,β), (11)

where ν(xk,β) is defined in (6).



V. MESSAGE FROM THE PILOTS AND PRIOR OF H

The combination of pilot measurement and channel prior is
captured by p(hg|yp,g), which is denoted as Ψ0,g and can be
viewed as the equivalent prior of channels ∀k ∈ Gg,hk. The
extrinsic to this factor is computed as in line 4 in Algorithm
1. The belief of hg at the Ψ0,g is

bΨ0,g
(hg) ∝ p(yp,g|hg)

∏
k∈Gg

p(hk)mhk;Ψ0,g
(hk). (12)

All the factors appearing in (12) are Gaussian pdfs. This means
that bΨ0,g

(hg) is always Gaussian. The marginalization of a
Gaussian will also produce a Gaussian. Therefore, a Gaussian
projection of bΨ0,g (hk) has no effect and results in the same
bΨ0,g

(hk). The message from Ψ0,g to hk is

mΨ0,g ;hk
(hk) ∝

∫
bΨ0,g

(hg)dhk

mhk;Ψ0,g (hk)

= p(hk)

∫
bΨ0,g

(hg)dhk

p(hk)mhk;Ψ0,g (hk)
. (13)

It has been shown in [9] that the quotient appearing in
(13) can be interpreted as a Component-Wise-Conditionally-
Unbiased (CWCU) LMMSE estimate for hg with hypothetical
prior

∏
k∈Gg

p(hk)mhk;Ψ0,g
(hk) and likelihood p(yp,g|hg).

For simplicity, we denote the hypothetical prior as

qhk|yd
(hk)= CN (hk|µhk|yd

,Chk|yd
)∝p(hk)mhk;Ψ0,g

(hk)

= CN (hk|0,Ξhk
)CN (hk|µhk;Ψ0,g

,Chk;Ψ0,g
),

where

Chk|yd
= (Ξ−1

hk
+C−1

hk;Ψ0,g
)−1

µhk|yd
= Chk|yd

(C−1
hk;Ψ0,g

µhk;Ψ0,g ).

The vector-level CWCU LMMSE result is given by∫
p(yp,g|hg)

∏
k′qhk′ |yd

(hk′)dhk

qhk|yd
(hk)

=CN (hk|µhk,CL,Chk,CL),

(14)
where the subscript CL stands for CWCU LMMSE. The mean
and covariance matrix are computed as

µhk,CL =
1

σ2
xP

yp,g −
∑

k′∈Gg/{k}

µhk′ |yd

Chk,CL =
σ2
v

σ2
xP

I+
∑

k′∈Gg/{k}

Chk′ |yd
.

(15)

Finally, by using Gaussian reproduction lemma [8], we obtain
the message from Ψ0,g to hk,

mΨ0,g ;hk
(hk) := CN (hk|µΨ0,g ;hk

,CΨ0,g ;hk
)

∝ p(hk)CN (hk|µhk,CL,Chk,CL),
(16)

where

CΨ0,g ;hk
=

Ξ−1
hk

+

 σ2
v

σ2
xP

I+
∑

k′∈Gg/{k}

Chk′ |yd

−1

−1

µΨ0,g ;hk
= Ξhk

 σ2
v

σ2
xP

I+
∑
k′ ̸=k

Chk′ |yd
+Ξhk

−1

·

 1

σ2
xP

yp,g −
∑

k′∈Gg/{k}

µhk′ |yd

 .

(17)

VI. MESSAGE FROM THE DATA OBSERVATION Yd

The node Ψ2,β represents the likelihood p(yd,β |
∑

k zk,β). The
extrinsic to this factor node can be computed by line 8 in
Algorithm 1. Thus, the belief at Ψ2,β is

bΨ2,β
(z1,β , . . . , zK,β)=p(yd,β |

∑
k

zk,β)
∏
k

mzk,β ;Ψ2,β
(zk,β).

Since all the factors in bΨ2,β
(z1,β , . . . , zK,β) are Gaussian, the

belief bΨ2,β
is also Gaussian. Therefore, Gaussian projection

will once again leave this belief unchanged. We can write the
message from Ψ2,β to zk,β as

mΨ2,β ;zk,β
(zk,β) ∝

∫
bΨ2,β

(z1,β , . . . , zK,β)dzk,β
mzk,β ;Ψ2,β

(zk,β)
. (18)

We can identify (18) as a CWCU LMMSE estimate of zk,β
with hypothetical prior mzk,β ;Ψ2,β

(zk,β) and measurement
p(yd,β |

∑
k zk,β). Thus, we write the feedback message as

mΨ2,β ;zk,β
(zk,β) = CN (zk,β |µΨ2,β ;zk,β

,CΨ2,β ;zk,β
), (19)

where

µΨ2,β ;zk,β
= yd,β −

∑
k′ ̸=k

µzk′,β ;Ψ2,β

CΨ2,β ;zk,β
= σ2

vI+
∑
k′ ̸=k

Czk′,β ;Ψ2,β
.

VII. MESSAGE FROM THE DATA PRIOR

Finally, we look at the factor node Ψ3,k,α which represents the
data prior p(xk,α). The extrinsic to this factor is computed as
in line 6 in Algorithm 1. Denote the belief at this factor node
as

bΨ3,k,α
(xk,α) = fα(xk,α)

∏
β∈N(α)

mxk,β ;Ψ3,k,α
(xk,β), (20)

where N(α) denotes the set of variable nodes neighboring
the factor node Ψ3,k,α. Since BP is used, there is no need for
approximation. The feedback message can be obtained directly
as

mΨ3,k,α;xk,β
(xk,β)=

∑
xk,β

fα(xx,α)
∏

β′∈N(α)/{β}

mxk,β′ ;Ψ3,k,α
(xk,β′).

(21)
We conclude the algorithm in Algorithm 1.



Algorithm 1 Proposed Method in one iteration
Require: yp,g , yd, p(xk), p(hk), p(yd,β |z{k},β)

1: Initialize: mΨ1,k,β ;hk
(hk), mΨ1,k,β ;xk,β

(xk,β),
2: mΨ1,k,β ;zk,β

(zk,β), mΨ3,k,α;xk,β
(xk,β)

3: repeat for all α, β, k = 1 : K, g = 1 : P
4: mhk;Ψ0,g

(hk) =
∏

β mΨ1,k,β ;hk
(hk)

5: compute mΨ0,g ;hk
(hk) according to (16)

6: mxk,β ;Ψ3,k,α
(xk,β)

= mΨ1,k,β ;xk,β
(xk,β)

∏
α′∈N(β)/{α} mΨ3,k,α′ ;xk,β

(xk,β)
7: compute mΨ3,k,α;xk,β

(xk,β) according to (21)
8: mzk,β ;Ψ2,β

(zk,β) = mΨ1,k,β ;zk,β
(zk,β)

9: compute mΨ2,β ;zk,β
(zk,β) according to (19)

10: mhk;Ψ1,k,β
(hk)=mΨ0,g ;hk

(hk)
∏

β′ ̸=βmΨ1,k,β′ ;hk
(hk)

11: mxk,β ;Ψ1,k,β
(xk,β) =

∏
α∈N(β) mΨ3,k,α;xk,β

(xk,β)
12: mzk,β ;Ψ1,k,β

(zk,β) = mΨ2,β ;zk,β
(zk,β)

13: compute mΨ1,k,β ;zk,β
(zk,β) according to (10).

14: compute mΨ1,k,β ;hk
(hk) according to (8)

15: compute mΨ1,k,β ;xk,β
(xk,β) according to (11)

16: until Convergence

VIII. SIMULATION RESULTS

In this section, we will verify the algorithm using numerical
simulations. We consider a 400m× 400m area with M = 16
APs and K = 8 UTs. The APs are located at the coordinates
( 4003 i, 400

3 j), where i, j ∈ {0, . . . , 3}. The UTs are uniformly
randomly distributed over this area. We use the same expres-
sion for the large-scale fading model as in [10], σ2

Hmk
[dB] =

−30.5− 36.7 log10(dmk), where dmk is the distance between
AP m and UT k. To induce pilot contamination, the default
pilot sequence length is P = 6. The transmitted data sequence
spans a length of L = 10. We consider an extreme case where
the factorization of the data prior contains only one factor
p(xk). Namely, we assume the data of each user is drawn
uniformly from a codebook containing 20 randomly generated
codes (i.e. p(xk) is discrete, uniform, with support of size 20).
The six distinct pilot sequences are designed to be mutually
orthogonal. Transmission power is set at σ2

x = 14(dBm) for
each UT, while the noise is set to −96(dBm).
We maintain consistent positions for all APs and UTs for
different realizations and conduct simulations across 50 unique
scenarios with varying H, V, and data signals. During the
simulation, whenever the covariance matrices of (8) and (10)
contain negative eigenvalue, we reset that eigenvalue to some
large value to indicate that the Gaussian approximation for the
Gaussian mixture model during that iteration is not correct.
Since EP (and BP) have the same fixed point as the BFE,
resetting the eigenvalue won’t change the fixed point. The
metric for evaluating performance is the normalized mean
squared error (NMSE) of the channel estimation. It is calcu-
lated as

∑ tr(H̃H̃H)∑ tr(HHH)
, where H̃ represents the estimation error.

The simulation results are concluded in fig. 2. For comparison,
we also plot the results of the variable level EP (VL-EP)
algorithm [11], which assumes Gaussian inputs. In the Genie-
Aided scenario, we assume the data to be known.
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Fig. 2. NMSE [dB] versus Iteration

IX. CONCLUSIONS

This paper focuses on the joint estimation of the channel and
data during uplink transmission in CF MaMIMO systems. By
right multiplying the conjugated pilot sequence to Yp, we
decompose the pilot measurements into P equivalent pilot ob-
servations. Due to the orthogonality, any two equivalent pilot
observations contain different sets of hk, and the equivalent
noise is also uncorrelated. This indicates that the P equivalent
pilot observations are mutually independent. After that, we
apply an EP algorithm to estimate the bilinear channel and
data. By assuming that there is a structure in the codes, we
treat the data (sub-) sequences as atomic variables and derive a
vector-based EP. The simulation results verify the effectiveness
of our proposed method.
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