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Abstract—This paper discusses channel estimation during uplink
transmission in Cell-Free (CF) Massive MIMO (MaMIMO) sys-
tems. We model the problem as a semi-blind estimation problem
with independent and identically distributed (i.i.d.) Gaussian
input.
Two hybrid Expectation Maximization (EM) and Expectation
Propagation (EP) algorithms are proposed to improve conver-
gence behavior. The first algorithm, EM-EP, adopts a vector-level
EP approach by treating the per-user channel coefficients and
data sequence as EP variables. To make the algorithm tractable,
we use the central limit theorem (CLT) to approximate the
interference terms and employ EM to construct a majorizer
function for the likelihood of the received data, leading to
majorization minimization.
To further enhance convergence behavior, we propose a matrix-
level loop-free EM-EP algorithm. In this algorithm, we treat
the channel coefficients and data sequences corresponding to
users using the same pilot as EP variables. This method is an
alternating minimization algorithm, ensuring convergence.
Our simulations verify the effectiveness of the two proposed
algorithms.

I. INTRODUCTION

A critical challenge in Cell-Free (CF) Massive MIMO
(MaMIMO) networks is pilot contamination, where the num-
ber of user terminals (UTs) in a given area exceeds the
length of the pilot sequence. To address this issue, semi-blind
approaches have been explored to mitigate the effects of pilot
contamination [1].
1) System Model: We examine an uplink semi-blind signal
model described as follows:

Y =
[
Yp Yd

]
= H

[
XT

p XT
]
+
[
Vp V

]
∈ CM×(P+T ),

where H represents the channel matrix, unknown and modeled
as an independent and identically distributed (i.i.d.) random
matrix of size M ×K. Each column follows the distribution
hk ∼ N (0,Ξhk

). The input signal is composed of a pilot part
Xp ∈ CP×K and a data part X ∈ CT×K . All data symbols in
X are assumed to be independently drawn from a Gaussian
distribution with power σ2

x.
We define Vp and V as the Additive White Gaussian Noise
(AWGN) at the access points (APs). Each element within these
noise matrices is assumed to be independently drawn from a
Gaussian distribution with power σ2

v .
2) Orthogonal Pilot: When orthogonal pilot is used, we can
correlate Yp with each pilot sequence x∗

p,g to obtain an
equivalent observation yg such that

yp,g = Ypx
∗
p,g = Pσ2

x

∑
k∈Gg

hk + vp,g, (1)

where vp,g = Vpx
∗
p,g ∼ N (vp,g|0, σ2

xσ
2
vP I) and Gg denotes

the group of users using the g-th pilot sequence. Since one
UT k can only send one pilot sequence, the user groups Gg ∩
Gg′ = ϕ if g ̸= g′. Due to orthogonal pilots, we also have
E[yp,gyp,g′ ] = 0 if g ̸= g′.

A. Prior Works
1) Expectation-propagation: Expectation Propagation (EP)
approximates a factored joint probability density function (pdf)
with complicated factors by transforming it into a new pdf
with simpler factors [2]. Specifically, EP aims to approximate
a joint pdf p(θ) with complex factors pα(θα) by another pdf
b(θ) with simpler factors qα(θα):

p(θ) =
∏
α

pα(θα) ≃ b(θ) =
∏
α

qα(θα). (2)

Each approximating factor is obtained by iteratively minimiz-
ing the Kullback-Leibler divergence (KLD)

arg min
qα∈Q

KLD
[
pα(θα)

∏
β ̸=α qβ(θβ)

Zpα

∥∥∥∥ qα(θα)
∏

β ̸=α qβ(θβ)

Zb

]
,

where Zb and Zpα
are normalization factors, and Q denotes

the family of simplified distributions, often assumed to be
an exponential family or Gaussian family. When using the
exponential family, minimizing the KLD is equivalent to
matching the moments of the left and right arguments.
In [3], the authors propose a simplified EP algorithm, the
Variable Level Expectation Propagation (VL-EP) algorithm,
using posterior as extrinsic information.
Given that the primary concern with EP is the uncertainty of
convergence, a more robust solution is studied, and a variation
of EP based on loop-free factorization was proposed in [4].
2) Expectation-maximization: Expectation-maximization can
be viewed as a special case of the Majorization-Minimization
(MM) algorithm. In [5], the authors compare two variants of
the EM approach within the context of semi-blind channel esti-
mation. This is essentially a comparison between Bayesian and
deterministic approaches. The authors of [6] proposed a space-
alternating generalized expectation maximization (SAGE) al-
gorithm to handle the lack of prior information. To tackle the
challenges posed by systems with a more generalized prior
distribution for input signals, [7] explored the combination of
EM-based on a Gaussian mixture prior.
B. Main Contribution
In this paper, we develop two EP-based methods for semi-
blind channel estimation. To make the algorithms tractable, we
adopt the idea of EM and construct a majorization function to
approximate the original negative log-likelihood, followed by
performing majorization minimization.
The first method we propose is EM-EP, where we factorize
the joint pdf of the system model at the vector level. Our
simulation results suggest that EM-EP converges faster than
VL-EP by using the correct extrinsic information.



To further improve convergence behavior, we propose a
matrix-level loop-free EM-EP (LF-EM-EP). LF-EM-EP can be
viewed as a Majorization-Minimization (MM) algorithm with
Central Limit Theorem (CLT) approximations. It guarantees
convergence because it can be shown to be an alternating
minimization algorithm.

II. EM-EP DERIVATION

In this section, we treat the channel coefficients of the k-th
user hk and the data sequence of the k-th user xk as EP
variables.
The joint probability of the underlying system model is

p(Yp,Yd,h{k},x{k}) = p(yp,{g},Yd,h{k},x{k})

= p(Yd|h{k},x{k})
∏
g

p(yp,g,Hg)
∏
k

p(xk), (3)

where {·} denotes iteration over all indices, and the first
equality holds due to the orthogonal pilot.
According to EP, we approximate the joint pdf (3) by b(H,X):

p(yp,{g},Yd,h{k},x{k}) ≃ b(H,X)

:∝ qH,X(h{k},x{k})
∏
g

qHg (h{k∈Gg})
∏
k

p(xk)

=
∏
k

µqH,X;hk
(hk)µqH,X;xk

(xk)µqH ;hk
(hk)p(xk), (4)

where we further assume that qH,X and qHg
can be factorized

at variable level hk, xk,

qH,X(H,X) =
∏
k

µqH,X;hk
(hk)µqH,X;xk

(xk)

qHg (Hg) =
∏

k∈Gg

µqH ;hk
(hk). (5)

In EP algorithm, we refine the approximated factors qH,X

and qHg
iteratively. Now, we examine the refinement for the

bilinear factor qH,X.
The KLD objective function for refining qH,X is

KLD[bqH,X
(H,X)∥b(H,X)], (6)

where

bqH,X
(H,X) ∝ p(Yd|H,X)

∏
g

qHg
(h{k∈Gg})

∏
k

p(xd,k)

is the belief with true factor p(Yd|H,X). Substituting
b(H,X) with (4) and ignoring the terms that are irrelevant
to qH,X, the KLD objective function becomes:

KLD[bqH,X
(H,X)∥b(H,X)] (7)

=−
∑
k

∫
bqH,X

(H,X) lnµqH,X;hk
(hk)µqH ;hk

(hk)dHdX

−
∑
k

∫
bqH,X

(H,X) lnµqH,X;xk
(xk)p(xk)dHdX+lnZbH,X

,

where ZbH,X
is the normalization factor corresponding to (4),

i.e., ZbH,X
= Zbhk

Zbxk
, with

Zbhk
=

∫
µqH,X;hk

(hk)µqH ;hk
(hk)dhk

Zbxk
=

∫
µqH,X;xk

(xk)p(xk)dxk.

(8)

At this point, we observe that all the variable-level factors
µqH,X;hk

(hk) and µqH,X;xk
(xk) of qH,X can be decoupled.

Therefore, refining the factor qH,X based on (7) is equivalent
to refining all the variable-level factors µqH,X;hk

(hk) and
µqH,X;xk

(xk) in parallel.
To refine µqH,X;hk

(hk), we omit the terms in (7) that do
not contain µqH,X;hk

(hk). The resulting objective function for
updating µqH,X;hk

(hk) is:

KLD[bqH,X
(H,X)∥b(H,X)]

= KLD

[
bqH,X

(hk)∥
µqH,X;hk

(hk)µqH ;hk
(hk)

Zbhk

]
+ c,

(9)

where marginalized belief is denoted as bqH,X
(hk) =∫

bqH,X
(H,X)dhkdX, with hk denoting all the channel

coefficients hi with i ̸= k. The marginal belief bqH,X
is

computed as

bqH,X
(hk) ∝

∫
µqH ;hi

(hi)p(xi)p(Yd|hkx
T
k +

∑
i̸=k

hix
T
i )

·
∏
i̸=k

µqH ;hi(hi)p(xi)dhkdX. (10)

Due to CLT, we can approximate the interference term∑
i̸=k hix

T
i as a zero-mean Gaussian, where the component

variables hi and xi follow hi ∼ µqH ;hi(hi) and xi ∼ p(xi).
We define a zero mean Gaussian random matrix Zk ≃∑

i̸=k hix
T
i and the vector zk = vec(Zk) to approximate the

interference:
zk ∼ N (zk|0, IT ⊗Czk

), (11)

where IT ⊗ Czk
is the covariance matrix of the vectorized

interference vec(
∑

i̸=k hix
T
i ), i.e.,

Czk
= σ2

x

∑
i̸=k

(CqH ;hi
+mqH ;hi

mH
qH ;hi

) (12)

With this CLT approximation, we define the noise plus in-
terference term ṽk = zk + vec(V) = N (ṽk|0, IT ⊗ Cṽk

),
where

Cṽk
= σ2

vI+ σ2
x

∑
i̸=k

(CqH ;hi
+mqH ;hi

mH
qH ;hi

).

We can then simplify (10) as

bqH,X
(hk) ≃

∫
µqH ;hk

(hk)p(xk)p(Yd|hkx
T
k ,Cṽk

)dxk

= µqH ;hk
(hk)p(Yd|hk,Cṽk

) (13)

where p(Yd|hkx
T
k ,Cṽk

) is defined as

p(Yd|hkx
T
k ,Czk

)=

∫
p(Yd|hkx

T
k+Zk)N (zk|0, IT ⊗Czk

)dzk

= N
(
yd|vec(hkx

T
k ), IT ⊗Cṽk

)
.

The likelihood p(Yd|hk,Cṽk
) is not tractable. To obtain the

posterior mean and covariance of bqH,X
, we consider an EM

approach and approximate bqH,X
with a majorization function.

The negated log-likelihood of p(Yd|hk,Cṽk
) is

lhk
(hk) = − ln p(Yd|hk,Cṽk

). (14)



Since we have p(xk) = N (xk|0, σ2
xI) and ṽk has a

block diagonal covariance matrix, the marginalized log-
likelihood function is circularly symmetric, i.e., ∀φ, lhk

(hk) =
lhk

(hke
jφ).

We construct a majorization function,

uhk
(hk|ĥk) (15)

=lhk
(ĥk)−Exk|Yd,ĥk,Cṽk

[
ln

(
p(Yd,xk|hk,Cṽk

)

p(Yd,xk|ĥk,Cṽk
)

)]
,

where ĥk equals the posterior estimate mĥk
from previ-

ous iteration. One can verify by Jensen’s inequality that
uhk

(hk|ĥk) ≥ lhk
(hk), where equality is reached at

hk = ĥk. This implies the following inequality for the
log-belief: − ln(bqH,X

) ≤ uhk
(hk|ĥk) − ln(µqH ;hk

(hk)).
To obtain a tractable algorithm, we approximate the belief
bqH,X

(hk) by the minorization function exp[−uhk
(hk|ĥk) +

ln(µqH ;hk
(hk))] which is proportional to a Gaussian.

By omitting constant terms in (15) that do not involve hk, we
derive an effective majorization function of lhk

(hk)

uhk
(hk|ĥk)=−Exk|Yd,ĥk,Cṽk

[ln (p(Yd|xk,hk,Cṽk
))]

=∥yd−(x̂k⊗IM )hk∥2(IT⊗Cṽk
)−1+ tr[Cx̂]∥hk∥2C−1

ṽk

,

where x̂k and Cx̂ are the mean and covariance matrix of the
posterior p(xk|Yk, ĥk,Czk

). These statistics can be obtained
via LMMSE as

τxk
=
(
ĥH
k C−1

ṽk
ĥk + σ−2

x

)−1

; (16)

x̂T
k = τxk

ĥH
k C−1

ṽk
Yd; Cx̂k

=τxk
IT .

By combining u(hk|ĥk) with the non-constant terms in
− ln(µqH ;hk

(hk)), we obtain an effective majorization func-
tion for − ln(bqH,X

(hk)),
− ln(bqH,X

(hk)) ≤ u(hk|ĥk)− ln(µqH ;hk
(hk)) + c

=∥yd−(x̂k⊗IM )hk∥2(IT⊗Cṽk
)−1+ tr[Cx̂]∥hk∥2C−1

ṽk

+ ∥hk −mqH ;hk
∥2
C−1

qH ;hk

+ c.

(17)

The exponential exp[−u(hk|ĥk) + ln(µqH ;hk
(hk))] can be

identified as Gaussian with mean and covariance
CbqH,X

;ĥk
=
[
(x̂H

k x̂k + Tτx̂k
)C−1

ṽk
+C−1

qH ;hk

]−1

mbqH,X
;ĥk

= CbqH,X
;ĥk

(
C−1

ṽk
Ydx̂

∗
k +C−1

qH ;hk
mqH ;hk

)
Optimizing the KLD (9) and substituting bqH,X(hk) =
N (hk|mbqH,X

;ĥk
,CbqH,X

;ĥk
), we obtain the update

µqH,X;hk
(hk) =

N (hk|mbqH,X
;ĥk

,C
bqH,X

;ĥk
)

µqH ;hk
(hk)

which is a
Gaussian with mean and covariance matrix given by

CqH,X;hk
=

Cṽk

x̂H
k x̂k + Tτx̂k

;

mqH,X;hk
=

Ydx̂
∗
k

x̂H
k x̂k + Tτx̂k

.

To refine the approximate qHg
(Hg) =

∏
k∈Gg

µqH ;hk
(hk),

we optimize the KLD objective function

argmin
qHg

KLD[bqHg
(H,X)∥b(H,X)], (18)

where the belief
bqHg

(H,X)=p(yp,g,Hg)qH,X(H,X)
∏
j ̸=g

qHj
(Hj)

∏
k

p(xk).

Substituting qH,X, qHj
with (5), we observe that optimizing

(18) is equivalent to updating the all the variable-level factors
∀k ∈ Gg, µqH ;hk

in parallel with the objective function:

KLD[bqHg
(H,X)∥b(H,X)] (19)

=
∑
k∈Gg

KLD

[
bqHg

(Hg)∥
µqH,X;hk

(hk)µqH ;hk
(hk)

Zbhk

]
+ c,

where bqHg
(Hg) denotes the marginalized belief bqHg

(H,X)
and is calculated by

bqHg
(Hg) ∝

∫
bqHg

(H,X)dXdHg

= p(yp,g|Hg)
∏

k∈Gg

p(hk)µqH,X;hk
(hk). (20)

Since the right argument of (19) contains the k-th channel
coefficient only, we further marginalize (20) to bqHg

(hk) =∫
bqHg

(Hg)dhk. According to the property of KLD, the
variable-level factor is finally updated by µqH ;hk

(hk) =
bqHg

(hk)

µqH,X;hk
(hk)

∝ N (hk|mqH ;hk
,CqH ;hk

), where

CqH ;hk
=


 ∑

i∈Gg/{k}

(C−1
qH,X;hi

+Ξ−1
hi

)−1+
σ2
v

σ2
xP

I

−1

+Ξ−1
hk


−1

mqH ;hk
= Ξhk

Ξhk
+

σ2
v

σ2
xP

I+
∑

i∈Gg/{k}

(C−1
qH,X;hi

+Ξ−1
hi

)−1

−1

·

 yp,g

Pσ2
x

−
∑

i∈Gg/{k}

Ξhi
(Ξhi

+CqH,X;hi
)−1mqH,X;hi

 . (21)

The approximated belief of hk is obtained by integrating (4):

b(hk) =

∫
b(H,X)dhkdX = µqH ;hk

(hk)µqH,X;hk
(hk)

= N (hk|mĥk
,Cĥk

),

where
Cĥk

= (C−1
qH ;hk

+C−1
qH,X

)−1

mĥk
= Cĥk

(C−1
qH ;hk

mqH ;hk
+C−1

qH,X
mqH,X

). (22)

Algorithm 1 proposes a suggested update order. The complex-
ity per iteration is O(KM3) dominated by the matrix inversion
in line 13 of Algorithm 1.

III. LF-EM-EP DERIVATION

The above-discussed method is derived from a loopy factor-
ization scheme. To improve the convergence behavior, we treat
matrices Hg and Xg as the EP variables, where the columns of
Hg and Xg are composed of hk∈Gg

and xk∈Gg
. The resulting

factorization is obtained by:



Algorithm 1 Hybrid EM-EP
Require: Yp, Yd, Xp, Ξhk

, σ2
x, σ2

v
1: Initialize: Cĥk

, mĥk
, CqH,X;hk

, mqH,X;hk

2: repeat
3: [Update based on Pilot Observation ∀k]
4: Compute mqH ;hk

and CqH ;hk
based on (21)

5: [Update based on Data Observation ∀k]
6: ĥk = mĥk

7: Cṽk
= σ2

vI+ σ2
x

∑
i̸=k(CqH ;hi

+mqH ;hi
mH

qH ;hi
)

8: τxk
=
(
ĥH
k C−1

ṽk
ĥk + σ−2

x

)−1

9: x̂T
k = τxk

ĥH
k C−1

ṽk
Yd

10: CqH,X;hk
=

Cṽk

x̂H
k x̂k+Tτx̂k

11: mqH,X;hk
=

Ydx̂
∗
k

x̂H
k x̂k+Tτx̂k

12: [Posterior Update ∀k]
13: Cĥk

= (C−1
qH ;hk

+C−1
qH,X

)−1

14: mĥk
= Cĥk

(C−1
qH ;hk

mqH ;hk
+C−1

qH,X
mqH,X

)
15: until Convergence

p(Yd,yp,g,H,X) = p(Yd|H,X)
∏
g

p(yp,g,Hg)p(Xg)

≃ q′H,X(H,X)
∏
g

p(yp,g,Hg)p(Xg),

where q′H,X(H,X) =
∏

g µqH,X;Hg
(Hg)µqH,X;Xg

(Xg).
We can rewrite (1) as:

yp,g = Pσ2
x(1

T
Kg

⊗ IM )hGg
+ vp,g, (23)

where Kg denotes the number of users using the g-th pi-
lot, 1Kg

denotes an all-one column vector with Kg entries,
and hGg = vec(Hg). For simplicity, we exploit the nota-
tions and define the block prior covariance matrix ΞGg =
diag(Ξhk1

, . . . ,XhkKg
), where k1, . . . , kKg

are the users us-
ing the g-th pilot sequence. We calculate the equivalent prior
p(yp,g,Hg) ∝ N (hGg

|mhGg
,ChGg

), where the mean and
covariance matrix are obtained by:

ChGg
= ΞhGg

−ΞhGg

1Kg
1T
Kg

⊗

σ2
vIM
σ2
xP

+
∑
k∈Gg

Ξhk

−1
ΞhGg

mhGg
= ChGg

(1Kg ⊗ IM )
yp,g

σ2
v

. (24)

We will use the equivalent prior p(yp,g,Hg) and p(Xg) to
derive an EM-EP algorithm for estimating H .
The observed data symbols can be represented as

Yd = HgX
T
g +

∑
j ̸=g

HjX
T
j +V. (25)

As in the vector EM-EP, we treat HjX
T
j as interfer-

ence. Due to CLT, we approximate the sum of interference∑
j ̸=g vec(HjX

T
j ) as Gaussian. We observe:∑

j ̸=g

vec(HjX
T
j ) =

∑
i/∈Gg

vec(hix
T
i ) =

∑
i/∈Gg

(xi ⊗ 1M )(1⊗ hi)

=
∑
i/∈Gg

(xi ⊗ hi). (26)

Define the approximated sum of interference as ZGg
≃∑

j ̸=g HgX
T
g and its vectorization zGg = vec(ZGg ). We

compute the mean and covariance of (26) and match the values
to the mean and covariance of Zg . Therefore, the approximated
interference follows zGg

∼ N (zGg
|0, IT ⊗CzGg

), where

CzGg
= σ2

x

∑
i/∈Gg

(Chi
+mhi

mH
hi
), (27)

with Chi = (1T
Kg

⊗IM )ChGg
(1Kg ⊗IM ) and mhi = (1T

Kg
⊗

IM )mhGg
. We combine the noise and interference ṼGg

=

V + ZGg
. Its vectorization ṽGg

= vec(ṼGg
) can be verified

to be a Gaussian ṽGg
∼ N (ṽGg

|0, IT ⊗CṽGg
), where

CṽGg
= σ2

x

∑
i/∈Gg

(Chi +mhim
H
hi
) + σ2

vIM . (28)

Following the same steps from (14) to (17) we have

− ln[p(Yd,yp,g,Hg|CṽGg
)] ≤ uHg

(Hg|Ĥg)

− ln[p(yp,g,Hg)] + c,
(29)

where Ĥg equals to the posterior mean of Hg from
the previous iteration, and the approximate marginalized
pdf p(Yd,yp,g,Hg|CṽGg

) ≃
∫
p(Yd,yp,g,H,X)dXdHg

is exact when the CLT approximation ZGg
is exact, i.e.,

when K → +∞. The term uHg
(Hg|Ĥg) is the ef-

fective majorization function of the negative log-likelihood
− ln[p(Yd|Hg,CṽGg

)], and is defined as

uHg
(Hg|Ĥg)=−E

Xg|Yd,Ĥg,CṽGg

[ln(p(Yd|Xg,Hg,CṽGg
))]

= ∥yd − (X̂g ⊗ IM )hGg
∥2
IT⊗C−1

ṽGg

+ ∥hGg
∥TCx̂Gg

⊗C−1
ṽGg

.

where x̂Gg
and Cx̂Gg

are the LMMSE results from the model:

yd = (IT ⊗ Ĥg)xGg + ṽGg , (30)

with xGg
= vec(XT

g ) such that p(Xg|Yd, Ĥg,CṽGg
) =

N (xGg |x̂Gg , IT ⊗Cx̂Gg
),

Cx̂Gg
= (ĤH

g C−1
ṽGg

Ĥg + σ−2
x IKg

)−1

x̂Gg=[IT ⊗(Cx̂Gg
ĤH

g C
−1
ṽGg

)]yd⇔X̂T
g = Cx̂Gg

ĤH
g C−1

ṽGg
Yd

The matrix mean X̂g is obtained by vec−1
Kg×T (x̂Gg )

T , where
the vec−1

A×B(θ) operator maps a vector θ to a matrix Θ ∈
CA×B such that vec(Θ) = θ.
The majorization function of the negative log-joint pdf (29)
can be expanded as:

− ln[p(Yd,yp,g,Hg|CṽGg
)] ≤ c+ ∥hGg

−mhGg
∥2
C−1

hGg

+ ∥yd − (X̂g ⊗ IM )hGg∥2IT⊗C−1
ṽGg

+ ∥hGg∥TC∗
x̂Gg

⊗C−1
ṽGg

.

Optimizing the majorization function, we obtain the posterior
mean and covariance matrix

CĥGg
=
[
(X̂H

g X̂g + TC∗
x̂Gg

)⊗C−1
ṽGg

+C−1
hGg

]−1

mĥGg
= CĥGg

[
(X̂H

g ⊗C−1
ṽGg

)yd +C−1
hGg

mhGg

]
. (31)



Algorithm 2 Loop-Free EM-EP
Require: Yp, Yd, Xp, Ξhk

, σ2
x, σ2

v
1: Initialize: mĥGg

2: [Update based on Pilot Observation ∀g]
3: Compute mhGg

and ChGg
based on (24)

4: repeat
5: [Update based on Data Observation ∀g]
6: Ĥg = vec−1

M,Kg
(mĥGg

)

7: CṽGg
= σ2

x

∑
i/∈Gg

(Chi
+mhi

mH
hi
) + σ2

vIM

8: Cx̂Gg
= (ĤH

g C−1
ṽGg

Ĥg + σ−2
x IKg )

−1

9: X̂T
g = Cx̂Gg

ĤH
g C−1

ṽGg
Yd

10: CĥGg
=
[
(X̂H

g X̂g + TC∗
x̂Gg

)⊗C−1
ṽGg

+C−1
hGg

]−1

11: mĥGg
=CĥGg

[
(X̂H

g ⊗C−1
ṽGg

)yd +C−1
hGg

mhGg

]
12: until Convergence
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Fig. 1. Convergence speed and NMSE comparison, top and mid graph: fixed
data length T = 40, bottom graph: fixed SNR 20dB

We propose a possible update order in Algorithm 2. This
method can be viewed as an MM algorithm with CLT approxi-
mations. Therefore, it will always converge. The complexity of
LF-EM-EP is O[P (KgmaxM)3] due to the matrix inversion in
line 10 of Algorithm 2. If we assume the ratio between K and
P to be fixed, LF-EM-EP has the same order of complexity
as EM-EP.

IV. SIMULATION RESULTS

In this section, we will verify the algorithm using numerical
simulations. We consider a 400 m × 400 m area with M = 16
APs and K = 8 UTs. The APs are located at the coordinates
( 4003 i, 400

3 j), where i, j ∈ {0, . . . , 3}. The UTs are uniformly
randomly distributed over this area. We use the same expres-
sion for the large-scale fading model as in [8],

σ2
Hik

(dB) = −30.5− 36.7 log10(dik), (32)

where dik is the distance between AP i and UT k. We
set the pilot sequence length as P = 6 to induce pilot
contamination. The 6 distinct pilot sequences are designed to
be mutually orthogonal. The noise power is set to be −96
dBm. The transmission power for all the UTs is identical, σ2

x.
We modify the transmission power σ2

x to tune the SNR =
E tr[HXdX

H
d HH ]

E tr[VdVH
d ]

=
σ2
x

∑
k tr[Ξhk

]

Mσ2
v

from 10 dB to 31 dB.
For each SNR level, we maintain consistent positions for
all APs and UTs and conduct simulations across 50 unique
scenarios with varying H , Vd, Vp and X. One metric
for evaluating performance is the normalized mean squared
error (NMSE) of the channel estimation. It is calculated as∑ tr(H̃H̃H)∑ tr(HHH)

, where H̃ represents the estimation error, and the
summation extends over all 50 distinct realizations. Another
performance metric is the average number of iterations to
converge, where we observe the average number of iterations
until the NMSE difference between two consecutive iterations
is smaller than a threshold 10−5.
The simulation results are concluded in Fig. 1. For comparison,
we also plot the results of the VL-EP algorithm [3]. The
simulation results show that Channel NMSE performances of
the three algorithms are similar. However, the convergence
speed of LF-EM-EP is much faster than the other two methods.

V. CONCLUSIONS

This paper focuses on the semi-blind channel estimation in
uplink transmission of CF MaMIMO systems. We propose
two EP-based algorithms. The first algorithm, EM-EP, can
be viewed as a variation of VL-EP with correct extrinsic
information. Simulation results show that EM-EP converges
faster than VL-EP. To further improve convergence behavior,
we propose LF-EM-EP, an alternating minimization algorithm.
The simulation results demonstrate that LF-EM-EP converges
even faster than EM-EP.
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