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Abstract—This paper studies the efficiency of training a
statistical model among an edge server and multiple clients via
Federated Learning (FL) – a machine learning method that
preserves data privacy in the training process – over wireless
networks. Due to unreliable wireless channels and constrained
communication resources, the server can only choose a handful
of clients for parameter updates during each communication
round. To address this issue, analytical expressions are derived
to characterize the FL convergence rate, accounting for key
features from both communication and algorithmic aspects,
including transmission reliability, scheduling policies, and mo-
mentum method. First, the analysis reveals that either delicately
designed user scheduling policies or expanding higher bandwidth
to accommodate more clients in each communication round can
expedite model training in networks with reliable connections.
However, these methods become ineffective when the connection
is erratic. Second, it has been verified that incorporating the
momentum method into the model training algorithm accelerates
the rate of convergence and provides greater resilience against
transmission failures. Last, extensive empirical simulations are
provided to verify these theoretical discoveries and enhancements
in performance.

Index Terms—Federated learning, transmission failure,
scheduling policy, momentum method, convergence analysis.

I. INTRODUCTION

A de facto paradigm shift in machine learning models is
being brought about by the surge in the processing capacity
of terminal devices and the growing concern about data
privacy. Complex computations previously exclusive to the
cloud center are now shifting to the periphery of networks. The
Federated Learning (FL) scheme is the result of the fusion of
edge computing systems and artificial intelligence. It enables
a swarm of terminal devices, i.e., the clients, and a global
computing unit, i.e., the edge server, to collaboratively train a
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statistical model using datasets that are stored on the clients’
devices while maintaining data privacy [2]–[8].

A. Related Works

FL brings the statistical models directly to the clients for
local computing, in contrast to conventional machine learning
approaches that aggregate all the data to a computing center
for training. Here, only the obtained parameters are uploaded
to the server for improvements to the global model, and the
updated global model is fed back to the clients for another
round of local training [2]. Such interactions between the
server and clients will repeat for a sufficient number of rounds,
after which the global model converges, and all the entities
that participated in the training process can benefit from a
better machine learning result. In light of this, FL highlights
its trials of offering greater levels of privacy while signifi-
cantly lowering communication overheads; this is especially
pertinent to next-generation mobile networks [9]. Therefore,
since the advent of this algorithm, it has attracted considerable
attention from academia and industry alike. Nonetheless, the
ultimate implementation of the FL system necessitates ad-
dressing novel problems that fundamentally diverge from the
usual approaches developed for traditional machine learning
environments [10]–[15].

Specifically, within the framework of FL, clients typi-
cally possess highly customized datasets, leading to a non-
independent and identically distributed (i.i.d.) distribution of
statistical data across the devices. System heterogeneity is also
a result of the fact that various customers inside the network
may differ significantly in terms of system attributes, such as
processing power and/or connection quality. Heterogeneity is
a feature that causes sluggish and even unstable convergence,
and in order to solve this problem, new training techniques are
required. Following this line, it is demonstrated that adding a
proximal term to the global objective function can significantly
improve the stability, as well as the overall accuracy, of the FL
system [16]. Moreover, by means of variance reduction, a vari-
ate control scheme was proposed to rectify the drift in the local
updates of clients so as to align the global gradient towards the
optimal point and achieve faster convergence of the FL training
[17]. Recognizing that historical parameters also contain useful
information, it is suggested to either directly reuse the outdated
gradients from clients in the global aggregation process [18] or
leverage them to construct momentum terms [19], [20] so as
to reduce the communication rounds in the process of model
training. Aside from (stochastic) gradient descent, which is a
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first-order training method, second-order-like training schemes
such as the Newton method are also introduced to boost the
convergence rate [21]. These works, while bringing about
remarkable gains, have chiefly focused on the algorithmic
perspective with little attention to the impacts of the com-
munication aspects.

As wireless networks are expected to be the main FL
deployment scenario, effective communication is also one of
the main drivers of the system’s implementation. In contrast
to reliable connections offered by wired cables in a data
center, the spectrum is an unstable medium where commu-
nication quality fluctuates over time. consequently, not every
client can connect to the server with reliability after every
global parameter aggregation. Furthermore, because spectral
resources are typically scarce, the server can only choose a
subset of clients to upload parameters for each communication
round [22]. Joint optimization client scheduling and resource
allocation has been studied as an enhancement of hierarchical
federated edge learning [23]. Additionally, communications
across the spectrum are frequently orders of magnitude slower
than those using a chip. A series of recent research have been
carried out [24]–[29] to address the communication bottleneck
in the FL training. In particular, [24] examined the effects of
three traditional client scheduling policies on the convergence
property of FL systems and developed a theoretical framework
to account for the communication conditions—quantified by
the transmission success probability—in the convergence rate.

Acknowledging that the probability of transmission success
differs for various clients and that the current scheduling
techniques may result in a biased trained model, [25] pro-
posed a scheduling policy that optimizes convergence rate
by striking a balance between statistical bias and channel
quality. Moreover, it is demonstrated that scheduling policy
and resource allocation may be jointly designed to accelerate
the training process, depending on the staleness [28], [29] or
the importance [26], [27] of the customers’ parameters. While
these studies have alleviated the communication problems in
FL, further research is needed to understand how channel
quality, scheduling policies, and algorithmic improvements
interact. Moreover, many previous works concentrated on
strongly convex loss functions, which is inappropriate for the
context of many popular machine learning models such as
neural networks.

To study the convergence rate with partial client participa-
tion and non-i.i.d. datasets, [30] showed that linear speedup
for convergence of FL is achievable and revealed that a large
number of local training epochs can accelerate the conver-
gence. To eliminate the bias caused by partial participants,
[31] and [32] modified the model aggregation rule in FL to
avoid waiting for straggling clients, where the server would
re-use the memorized latest updates as the surrogate of the
non-participating clients during each communication round.
[33] derived convergence upper bounds for a wide range of
non-stochastic and stochastic participation patterns, including
regularized, ergodic, stationary, and strongly mixing (e.g.,
Markov process) and independent patterns. In contrast to the
above-mentioned FL models, where the server and the clients
are tightly coupled, [34] proposed a new paradigm in FL

called Anarchic Federated Learning (AFL), where flexible
client participation is allowed with cross-device and cross-silo
settings. The author also provided convergence analysis and
proved that the highly desirable linear speedup effect could be
attained. The authors in [35] leveraged the concept of variance
reduction from stochastic optimization. They proposed a novel
bilayer FL algorithm to achieve a fast convergence rate in
the setting where each client has an arbitrary probability of
participating in each iteration.

B. Research Objectives and Contributions

In this paper, we aim to develop an analytical framework to
study the impacts of different parameters, including both com-
munication and algorithmic aspects, on the FL convergence
rate. Specifically, we consider a network that consists of one
server and multiple clients, connected to the server via wireless
links. The task for the server and clients is to collaboratively
learn a statistical model from the datasets residing on the
clients’ devices while preserving their data privacy, which is
accomplished by means of federated computing. The server
sends the objective function along with the model parameters
to the clients, makes them train for a certain amount of
time using their local datasets, and uploads only the resultant
parameters, with which the server can improve the global
model and feed it back to the clients for another round of
local training.

During this process, owing to the time-varying nature of
wireless channels, only a subset of the clients can establish
reliable connections to the server upon each global aggregation
round. Moreover, due to the scarcity of spectral resources, the
server can only select a handful of clients in each communi-
cation round to participate in the FL training. In this respect,
we investigate the efficacy of two scheduling policies, namely
Random Scheduling (RS) and Age-Based Scheduling (ABS),
in selecting the clients. To further accelerate the model training
process, we adopt the momentum method in conjunction with
the global aggregation on the server side. By invoking the tools
from optimization theory, we derive analytical expressions
to characterize the FL convergence rate in a general setting
that accounts for the effects of channel quality, scheduling
policies, and momentum method. The analysis allows us to
grasp crisp insights into the impacts of different network
parameters on the convergence performance of FL and obtain
useful design guidelines. The results are expected to propel our
understanding of FL and guide researchers in further research
pursuits.

In our previous work [1], we investigated the convergence
rate of partial client participation under the RS scheme in
unreliable transmission networks. In this work, we extend our
analysis to the ABS scheme by deriving the convergence anal-
ysis under FL and FML and conducting extensive experiments
in both i.i.d. and non-i.i.d. datasets. The main contributions of
this paper are summarized below.

• We develop a theoretical framework for understanding
the convergence performance of FL algorithms run on
wireless networks. Particularly, we derive analytical ex-
pressions for the convergence rates of FL under different
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Fig. 1. An illustration of the FL process: (A) clients conduct local training
based on their own dataset, (B) the server aggregates the received updates
to improve the global model, (C) the new model is sent back to a subset of
clients, and the process is repeated.

settings that encompass key features such as channel
quality, spectral resources, scheduling policies, and in-
tegration with momentum methods, delivering a more
comprehensive analysis. Different from [24]–[27], we
do not assume convexity of the empirical loss function,
making the results applicable to more general machine
learning models.

• Based on the analysis, we find that when communication
channels are reliable, the FL convergence rate can be
boosted by (1) expanding the communication bandwidth
to engage more clients in each communication round and
(2) adopting a scheduling policy that reduces parameter
staleness such as the ABS. On the other hand, when the
communication channels are highly unreliable, the afore-
mentioned approaches are not instrumental to enhancing
the FL training efficiency.

• We also confirm, via analysis and simulation, that inte-
grating momentum with the global aggregation speeds
up the FL convergence rate and enhances its resilience
against communication failures. It also implies that reli-
able communications shall be devised to keep pace with
the growth of edge learning.

• We examine the convergence performance of the depicted
FL system via extensive simulation experiments based on
MNIST and CIFAR-10 datasets with different machine
learning models such as Multi-Layer Perceptron (MLP)
and Convolutional Neural Network (CNN). We also
perform experimental comparisons between the FL and
Federated Momentum Learning (FML). The simulation
results validate the convergence of FML as well as its
effectiveness in accelerating the convergence rate.

The remainder of this paper is organized as follows. We
introduce the system model in Section II. In Section III,
we analyze the convergence rate of FL training in wireless
networks under both RS and ABS policies. We also present
the convergence rate of running FL in tandem with momen-
tum. Then, we show the simulation results in Section IV to
compare the FL convergence performance amongst different
circumstances and obtain the subsequent design insights. We
conclude the paper in Section V.

Algorithm 1 Federated Learning Algorithm
1: Parameters: H = number of local steps per computation round,

η = step size for stochastic gradient descent.
2: Initialize: w0 ∈ Rd

3: for t = 0, 1, 2, ..., T − 1 do
4: The server selects a set St of at most N clients and broadcasts

the global parameter wt to them
5: for each client k ∈ St in parallel do
6: Initialize w

(k)
t,0 = wt

7: for s = 0 to H − 1 do
8: Sample ξk,s ∈ Dk uniformly at random, and update the

local parameter w(k)
t as follows:

w
(k)
t,s+1 = w

(k)
t,s − η∇fk(w

(k)
t,s ; ξk,s) (4)

in which ∇ represents the gradient operation
9: end for

10: Send the locally aggregated stochastic gradients∑H−1
s=0 ∇fk(w

(k)
t,s ; ξk,s) to the server

11: end for
12: The server collects all the gradient parameters from the

selected clients and assigns g
(i)
t =

∑H−1
s=0 ∇fi(w

(i)
t,s; ξk,s)

for i ∈ St. Moreover, the server sets g
(j)
t = g

(j)
t−1 for j ̸= St,

and then updates the global parameter wt+1 as follows:

wt+1 = wt − η

K∑
k=1

pkg
(k)
t (5)

13: end for
14: Output: wT

II. SYSTEM MODEL

Let us consider the FL system depicted in Fig. 1, consisting
of one server and K clients, where K is a large number. Each
client k has a local dataset Dk = {xi ∈ Rd, yi ∈ R}nk

i=1 of
size |Dk| = nk. We assume the local datasets are statistically
independent across the clients. The goal of the server is to
learn a statistical model over the datasets residing on all the
clients without sacrificing their privacy. More precisely, the
server needs to fit a vector w ∈ Rd, commonly known as
the model parameter, to minimize the following loss function
without the explicit knowledge of D = ∪K

k=1Dk:

min
w∈Rd

f(w) =
1

n

n∑
i=1

ℓ(w;xi, yi) =

K∑
k=1

pkfk(w) (1)

where n =
∑K

k=1 nk, ℓ(·) is the loss function defined under
some particular task, pk = nk/n, and fk(w) denotes the local
empirical loss function of client k, given by

fk(w) =
1

nk

nk∑
j=1

ℓ(w;xj , yj). (2)

We further define the optimal solution to (1) as

w∗ = argmin
w

f(w). (3)

Since the server cannot access the individual client’s
datasets, the model training needs to be carried out by the
server and the clients in an FL fashion [18]. The training
procedure is detailed in Algorithm 1.

We consider the communications between the server and
the clients to be conducted over a resource-limited spectrum
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with time-varying channel gains. Specifically, we consider the
maximum number of available channels for the parameter
transmissions to be N ≪ K. We assume that every client
is able to establish a reliable connection to the server with
probability p upon each global aggregation,1 and that these
connections vary independently across the communication
rounds. We further assume that the server can obtain the
information about the reliability of the clients’ communication
links at the beginning of each global aggregation, namely, the
server has full knowledge about whether a typical client is
connected to it or not before the global aggregation starts. The
server, therefore, needs to select a subset St out of the available
clients to participate in the FL training, where |St| ≤ N ≪ K.
In this work, we consider two types of scheduling policies:

A. Random Scheduling (RS)

Under this policy, the server randomly samples a subset St

out of the clients with reliable channels. Because the maximum
number of available sub-channels is N , the scheduling of
clients can encounter two different situations: (a) if the number
of clients that have reliable channels is less than N , all of them
will be selected for parameter update; and (b) when the number
of clients with reliable sub-channels is larger than N , only N
out of them will be selected (uniformly at random).

B. Age-Based Scheduling (ABS)

This approach aims to reduce the staleness in the clients’
parameters during the training process. In order to quantify the
staleness of each update, we leverage the information freshness
and define a metric termed Age-of-Update (AoU) [28]. For a
generic client k, its AoU evolves as follows:

Ak[t+ 1] = (Ak[t] + 1)(1− Sk[t]), Sk[t] ∈ {0, 1} (6)

where Ak[0] = 0, and Sk[t] takes the value 1 if client k is
selected by the server for update during communication round
t and 0 otherwise.2 By leveraging this metric, the scheduling
policy is given by: (a) if the number of clients that have
reliable channels is less than N , all of them will be selected
for parameter update; and (b) otherwise, select the N clients
with the highest AoU values, namely

S∗[t] = arg max
S⊂{1,2,...,K}

{A1[t], A2[t], ..., AK [t]} (7)

where S = (S1, · · · , SN ) is a length-N vector and S∗ =
(S∗

1 , · · · , S∗
N ) represents the indices of the selected clients.

The appeal of this method is in (a) it does not require
additional information and is as low-complexity as the RS,
and (b) it has a potential to reduce the parameter staleness.

1We simplify this probability as a constant to represent a general case
of clients checking in when ready to participate in training. It resembles the
scenario in which each client uploads its local parameters based on the channel
inversion scheme but has a certain probability of encountering a deep fade
and suspending the current transmission. Note that following a similar vein as
[24], [25], [36], one can adopt the notion of transmission success probability
to account for effects from physical layer factors such as the fading, path loss,
and interference.

2The AoU measures the time elapsed since the latest update is received by
the server, and hence larger the AoU indicates there are higher degrees of
staleness associated with the update.

Remark 1: These two policies resemble the random
scheduling and group round-robin in networks with unre-
liable connectivity, and they are unbiased client sampling
approaches.

Remark 2: Different from the settings in [24], where
the selected clients can experience transmission failures, the
selection of clients in this work is performed on those with
reliable connections and hence does not waste communication
resources.

III. ANALYSIS

This section constitutes the main technical part of this paper,
in which we derive analytical expressions for the convergence
rate of FL over wireless networks.

A. Preliminaries

1) Parameter Staleness: Since only a subset of the clients
can be selected to participate in the FL training during each
round of communication, the parameters of the unselected
clients become stale. To formally characterize this effect, we
denote a random variable τk as the staleness associated with
the global parameter possessed by the k-th client. Then, in
accordance with (4) and (5), after the t-th communication
round, the update of global parameters at the server side can
be rewritten as follows:

wt+1 = wt − η

K∑
k=1

pk

H−1∑
s=0

∇fk(wt−τk,s; ξk,s) (8)

in which ξk,s denotes an element sampled uniformly at random
from the data set of the k-th client during the s-th local
computing step. Note that the distribution of τk is dependent
on the client selection criteria. In the sequel, we will leverage
(8) to derive the convergence rate of FL under the RS and
ABS policies, respectively, and obtain several insights based
on the analyses.

2) Assumptions: To facilitate the analysis, we assume the
following conditions.

Assumption 1: The gradient of each function fk : Rd → R
is Lipschitz continuous with a constant L > 0, namely, for any
w,v ∈ Rd the following is satisfied:

∥∇fk(w)−∇fk(v)∥ ≤ L∥w − v∥, k ∈ {1, 2, ...,K}. (9)

Assumption 2: The gradients of fk are upper bounded by
a constant C, i.e., for any w ∈ Rd the following is satisfied:

∥∇fk(w)∥ ≤ C, k ∈ {1, 2, ...,K}. (10)

It is worthwhile to stress that Assumption 2 holds in our
setting because transmitting an arbitrarily large value over the
wireless channel is not practical. Indeed, the excessively large
gradients are usually clipped before being sent out [37].

Following the above assumptions, we have

∥∇f(w)−∇f(v)∥ ≤
K∑

k=1

pk∥∇fk(w)−∇fk(v)∥

≤
K∑

k=1

pkL∥w − v∥ = L∥w − v∥, (11)
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β =

{(
K − 1

N

)
pN (1− p)K−1−N N

N + 1
+

(
K − 1

N + 1

)
pN+1(1− p)K−2−N N

N + 2
+ · · ·+

(
K − 1

K − 1

)
pK−1N

K

+

(
K − 1

N − 1

)
pN−1(1− p)K−N + · · ·+

(
K − 1

0

)
(1− p)K−1

}
× p (13)

and

∥∇f(w)∥ ≤
K∑

k=1

pk∥∇fk(w)∥ ≤ C. (12)

Notably, we do not assume convexity of the objective function
and hence the result is more general and applicable to the
context of, e.g., (deep) neural networks.

B. Convergence Analysis

We now focus on the FL convergence analysis. We will first
analyze the FL convergence rate under the RS policy. Then,
we explore the performance under the ABS policy.

1) FL under RS Policy: In a typical global iteration t,
a generic client needs to satisfy two conditions to be able
to partake in the FL training process: (i) there is a reliable
connection between the client and the server, and (ii) the
client is selected by the server. Therefore, the FL participation
state of a typical client is a binary random variable, where the
probability can be derived as follows.

Lemma 1: In a typical communication round, under the RS
policy, the probability, β, that a generic client can participate
in the FL training is given by (13).

Proof: Please refer to Appendix A.
Since the client selections are conducted in an i.i.d. manner

across communication rounds, the parameter staleness of a
typical client follows a geometric distribution, i.e.,

P(τR = l) = β(1− β)l, l = 0, 1, 2, ... (14)

Using (14), we can derive the convergence rate under the RS
policy, presented in the next theorem.

Theorem 1: Under the RS policy, if the step size is chosen
as η = 1/H

√
T , then after T rounds of communications,

Algorithm 1 converges as follows:

min
0≤t≤T−1

E
[
∥∇f(wt)∥2

]
≤

f(w0)− f(w∗) + LC2

H

(
E[τR] + 3

2H
)

β
√
T

+
C2

βT
. (15)

Proof: Please refer to Appendix B.
From (15), it is clear that the client participation probability,

β, plays a critical role in the FL convergence rate. Moreover,
using (13), we can bound β as follows:

pN/K ≤ β ≤ p, (16)

where the lower bound follows by replacing the terms N
i , i ∈

{N + 1, . . . ,K} in (13) by N
K , together with the fact that

N
K is a fraction. The above inequality allows us to obtain
better insights into the convergence rate of FL over unreliable

networks. Specifically, let us resort to the following two
extremes:

a) When p → 1, we have β ≈ N/K. In this case, providing
more communication channels monotonically increases
the probability of participation at each client, which, in
turn, bolsters faster convergence of the FL algorithm.

b) When p → 0, we have β ≈ p. In this case, increasing the
number of communication channels cannot contribute to
boosting up client participation probability and hence is
not instrumental in speeding up the FL convergence.

2) FL under ABS Policy: Next, we study the convergence
rate of FL under the ABS policy. Similar to the above,
we commence with deriving the distribution of parameter
staleness, denoted by τA in this case.

To do this, we rearrange the clients according to the
ascending order of their AoU in each communication round.
Such an operation results in client 1 having the lowest AoU
and client K with the highest AoU. Then, as the FL training
progresses, the position of a generic client i varies due to
the dynamics of AoU of all the clients in the network. As
depicted by Fig. 2, the probability that the client transits to
other positions is dependent on its particular location. We
detail the analysis in the sequel.

When i < K −N + 1, there are more than N clients that
have AoU larger than client i. And the transition of client
i’s position can be summarized in Fig. 2 (a). We start with
analyzing the event that client i is selected by the server, after
which its AoU reduces to zero and it moves to position 1. This
happens if (a) the client has a reliable channel to the server
and (b) at most N −1 clients ahead of it can establish reliable
connections. The corresponding probability is given by

Pi,1 = p

N−1∑
m=0

(
K − i

m

)
pm(1− p)K−i−m. (17)

Next, we investigate the event that client i stays at its current
position after a round of global iteration. This happens if all
the clients in front of i, as well as client i itself, cannot connect
to the server during the current communication round, which
results in the following probability

Pi,i = (1− p)K−i+1. (18)

The client may move forward from position i to i+ l, whereas
1 ≤ l ≤ N − 1, given it is not connected to the server while
there are l clients in front who have reliable channels for
communications. As such, the probability can be written as

Pi,i+l = (1− p)

(
K − i

l

)
pl(1− p)K−i−l, 1 ≤ l ≤ N − 1.

(19)
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Fig. 2. An illustration of the position transition of a generic client i under the ABS policy.

Finally, we note that client i can also move to position i+N
if more than N clients ahead of it have reliable channels and
hence are selected for parameter updating. This event happens
with the following probability:

Pi,i+N =

K−i∑
m=N

(
K − i

m

)
pm(1− p)K−i−m. (20)

On the other hand, when i ≥ K −N + 1, as illustrated in
Fig. 2 (b), there are less than N clients standing before client
i. In other words, client i is among the N candidates that have
the highest AoU in the network. As such, it will be selected
by the server as long as there is a reliable channel between
them, which yields

Pi,1 = p. (21)

The client will stay at its current position if, from position i
onward, none of the clients is able to connect to the server
reliably; this gives the following probability

Pi,i = (1− p)K−i+1. (22)

Moreover, if client i cannot connect to the server in the present
communication round but meanwhile, l clients in front of it
are able to establish reliable connections, the client will transit
to position i+ l. It shall also be stressed that l is in the range
of [1,K− i] because client i cannot go beyond the end of the
line, i.e., position K. Therefore, we have

Pi,i+l = (1− p)

(
K − i

l

)
pl(1− p)K−i−l, 1 ≤ l ≤ K − i.

(23)

To this end, we can model the positions of the clients as
the states of a Markov chain, where the transition matrix is
given as P = [Pi,j ]1≤i,j≤K . This Markov chain is recurrent
and irreducible and hence has a steady-state distribution. Let
π = (π1, π2, ..., πK) be the steady state probability vector;
then we can solve for the value of each entry via the following
fixed-point equation:

π = πP. (24)

As a result, we can characterize τA via the following.
Lemma 2: The distribution of parameter staleness under

the ABS policy is given by

P(τA = l) =

K∑
i=1

πi

(
Pl

(1)P
)
i,1

, l = 0, 1, 2, ... (25)

where P(1) is a matrix obtained by replacing the first column
of P with all zeros, and (X)i,j denotes the entry (i, j) of
matrix X.

Proof: At communication round t, if the parameter stal-
eness of a typical client is τA = l, it implies that beginning at
t − l − 1 (without loss of generality, we consider l < t), the
client is not selected by the server for l consecutive global
iterations and scheduled at the last communication round.
Equivalently, this can be regarded as the client starting at state
i and reaching state 1 for the first time after l+1 steps, which
occurs with the following probability

P ( Client reaches position 1 in l steps from position i )

=
(
Pl

(1)P
)
i,1

. (26)

Because the probability of a typical client being in state i is
given by πi, the proof is complete by invoking the law of total
probability.

Following similar lines in Theorem 1, we can leverage
(25) to derive the FL convergence rate under ABS policy.
Nonetheless, the results may be too involved to offer useful
insights. In that respect, we resort to the two extremes of
communication conditions for better intuition. Particularly,
when the communication channels are reliable, i.e., p ≈ 1, the
distribution of staleness τA can be approximated as follows:

P(τA = l) ≈ 1

G
, l = 0, 1, ..., G− 1. (27)

Armed with this result, we can derive the convergence rate
of FL under ABS policy.

Theorem 2: Under the ABS policy, when p ≈ 1, if the
step size is chosen as η = 1/H

√
T , then after T rounds of

communications, Algorithm 1 converges as follows:

min
0≤t≤T−1

E
[
∥∇f(wt)∥2

]
≤

f(w0)− f(w∗) + LC2

H

(
E[τA] + 3

2H
)

√
T

+
(G− 1)C2

T
.

(28)

Proof: Please refer to Appendix C.
Putting together (15) and (28), we can see that for non-

convex objective functions, the FL algorithm converges to
stationary points in the order of O

(
1/
√
T
)

, while scheduling
policies affect the multiplicative factor. Moreover, using (27),
we have E[τA] = 1

2 (G − 1) = 1
2 (K/N − 1); and we have

E[τR] = 1
β by (14), which indicates that E[τR] ≈ K/N >

E[τA], for p ≈ 1. Thus, we can conclude that when the
communications are reliable, i.e., p is relatively large, using
the ABS policy in the FL can achieve faster convergence than
that achieved by using the RS policy. Intuitively, the gain is



7

Algorithm 2 Federated Momentum Learning Algorithm
1: Parameters: H = number of local steps per computation round,

η = step size for stochastic gradient descent.
2: Initialize: w0 ∈ Rd

3: for t = 0, 1, 2, ..., T − 1 do
4: The server selects a set St of at most N clients and broadcasts

the global parameter wt to them
5: for each client k ∈ St in parallel do
6: Initialize w

(k)
t,0 = wt

7: for s = 0 to H − 1 do
8: Sample ξk,s ∈ Dk uniformly at random, and update the

local parameter w(k)
t as follows:

w
(k)
t,s+1 = w

(k)
t,s − η∇fk(w

(k)
t,s ; ξk,s) (29)

in which ∇ represents the gradient operation
9: end for

10: Send the locally aggregated stochastic gradients∑H−1
s=0 ∇fk(w

(k)
t,s ; ξk,s) to the server

11: end for
12: The server collects all the gradient parameters from the

selected clients and assigns g
(i)
t =

∑H−1
s=0 ∇fi(w

(i)
t,s; ξk,s)

for i ∈ St. Moreover, the server sets g
(j)
t = g

(j)
t−1 for j /∈ St,

and then updates the global parameter wt+1 as follows:

vt = vt−1 + γ

K∑
k=1

pkg
(k)
t (30)

wt+1 = wt − η vt (31)

where γ ∈ [0, 1) is the control parameter
13: end for
14: Output: wT

mainly attributed to the fact that ABS accounts for the fairness
in the channel access and leads to smaller parameter staleness.

On the other hand, when the clients are situated under poor
communication environments in which the wireless connec-
tions are highly unreliable, namely, p ≪ 1, we have τR ≈ τA
in distribution. And this results in the following conclusion.

Corollary 1: In networks with unreliable communication
channels, i.e., p ≪ 1, Algorithm 1 attains a similar conver-
gence rate under both RS and ABS policies.

Corollary 1 indicates that in the absence of reliable connec-
tions, neither providing more bandwidth nor leveraging better
scheduling policies can enhance the FL convergence rate.

C. Federated Momentum Learning in Unreliable Networks

In this subsection, we detail the approach, and the efficacy,
of adopting the momentum algorithm [38] in the training of
(1), aiming to improve the performance. We term this method
the Federated Momentum Learning (FML) and summarize the
implementations in Algorithm 2. Particularly, the momentum
term is introduced in the gradient updating step (30). It can be
regarded as a “heavy ball” added in the update of parameters
such that the values stay close to the current one.

The intuition behind this operation is that the update direc-
tion of SGD, while always along gradient descent, could cause
an oscillating update path. Utilizing the momentum term can
deviate the direction of the parameter update to the optimal
decline and mitigate the possible oscillations caused by SGD.

Since the clients in a wireless network are usually resource-
constrained, algorithms that accelerate the convergence rate
can attain higher resource utilization efficiency. The conver-
gence rate of FML can be derived accordingly.

Theorem 3: Under the RS policy, if the step size is chosen
as η = 1/H

√
T , then after T rounds of communications, the

Algorithm 2 converges as follows:

min
0≤t≤T−1

E
[
∥∇f(wt)∥2

]
≤

(1− γ)
[
f(w0)−f(w∗)

]
β
√
T

+
C2

β2T

+
LC2

β
√
T

(E[τR]
H

+
1

2(1− γ)
+

γ2

(1− γ)2

)
.

(32)

Proof: Please refer to Appendix D.
By comparing (15) and (32), we can see that regardless of

connection quality, by carefully choosing the control param-
eter, γ, in the FML, faster convergence can be attained. In
that respect, it is confirmed that improving the FL from an
algorithmic perspective is beneficial.

In a similar vein, we can derive the convergence rate of
FML under the ABS policy.

Theorem 4: Under the ABS policy, when p ≈ 1, if the
step size is chosen as η = 1/H

√
T , then after T rounds of

communications, Algorithm 2 converges as follows:

min
0≤t≤T−1

E
[
∥∇f(wt)∥2

]
≤

(1− γ)
[
f(w0)−f(w∗)

]
√
T

+
E[τA]C2

T
+

LC2

√
T

(E[τA]
H

+
1

2(1− γ)
+

γ2

(1− γ)2

)
.

(33)

Proof: The proof is similar to that of Theorem 2 and 3
and hence omitted here.

As in the case without momentum, we also have the
following result for FML.

Corollary 2: In networks with unreliable communication
channels, i.e., p ≪ 1, Algorithm 2 has similar convergence
rate under both RS and ABS policies.

From the above, we can see that faster convergence of
FL can be achieved by introducing the momentum term and
carefully choosing the corresponding parameters.

IV. SIMULATION RESULTS

In this section, we conduct simulations to verify the anal-
yses that have been developed. Specifically, we examine the
efficiency of training FL on two different settings of machine
learning models. One experiment is to train an MLP over the
MNIST dataset. The MLP consists of 2 hidden layers, each
having 64 units, and adopts the ReLU activations. The dataset
contains 10,000 handwritten images of the numbers 0 to 9,
where each digit has 1000 images. We take 9,000 data samples
from the MNIST dataset for the training and allocate 1,000
samples for testing. The other experiment is to train a CNN
on the CIFAR-10 dataset. This dataset consists of 60,000 color
images in 10 classes, with 6000 images per class. The CNN
has two convolutional layers with a max pooling, followed by
two fully connected layers, and then a softmax output layer.
We take 50,000 data samples from the CIFAR-10 dataset for



8

0 20 40 60 80 100 120

Staleness of update

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Random Scheduling

ABS

(a) p=0.8

0 20 40 60 80 100 120 140

Staleness of update

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Random Scheduling

ABS

(b) p=0.1

Fig. 3. Staleness under ABS and RS. In Fig. (a), the staleness of the parameter when the channels are reliable, i.e., p = 0.8. In Fig. (b), the staleness of
parameters when the channels are unreliable, i.e., p = 0.1.
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Fig. 4. Convergence rate of training MLP on the MNIST dataset under various communication conditions and scheduling policies. Fig. (a), the transmission
success probability is p = 0.1; the dataset is assigned to the clients in an i.i.d. manner. Fig. (b), number of communication channels is N = 30, the dataset
is assigned to the clients in a non-i.i.d. manner.

training and assign 10,000 samples for testing. We partition the
training dataset into 100 non-overlapped portions and assign
them to K = 100 clients. In our experiments, we consider both
i.i.d. and non-i.i.d. settings. For the i.i.d. local data partition,
the whole dataset is uniformly distributed among all clients
at random. For the non-i.i.d. data partition, we adopt a sort-
and-partition scheme, where we sort all the data according to
the labels and divide the data into 200 shards. Each client is
assigned two shards. We choose the learning rate as η = 0.01
and the momentum weight as γ = 0.9. The wireless channels
are considered reliable when p ≥ 0.8 and unreliable when
p ≤ 0.1. All the experiments are implemented with Pytorch
and averaged over three trials.

Fig. 3 plots the Cumulative Distribution Function (CDF)
of the parameters’ staleness, τ , under different configurations
of the wireless channel and scheduling policy. We can see
that when each client has a relatively high probability of
establishing a reliable channel to the server, ABS attains
a smaller value of parameter staleness than RS, while the
staleness of parameters under the two schemes are similar
when the communication channels become unreliable. This
observation confirms that scheduling policy can influence the

staleness of parameters in the FL training.
Fig. 4 depicts the test accuracy of FL training on the

MNIST dataset as a function of communication rounds under
different scheduling policies as well as the reliability of the
wireless channels. From Fig. 4 (a), we can see that when the
channels are unreliable, i.e., p = 0.1, the convergence rate of
FL remains unchanged regardless of the employed scheduling
policy or number of available communication channels. This
is mainly due to the fact that when channels are unreliable,
only a few clients – the total number of them may be even less
than the number of channels available for communications –
can establish connections to the server in each communication
round. Since only these clients can be selected for param-
eter updating, neither scheduling policy nor communication
bandwidth can be instrumental in enhancing the performance.
On the other hand, Fig. 4 (b) demonstrates that when the
communication channels become reliable, ABS can attain a
faster convergence rate than RS, as it asserts a higher level
of fairness amongst the clients. Additionally, we observe that
the curve of convergence rate under ABS is smoother than
that under RS, as the model parameters of the clients are
more aligned under ABS. Finally, we notice that compared
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Fig. 5. Convergence rate of training CNN on the CIFAR-10 dataset under various communication conditions and scheduling policies.

to the unreliable channel case, running FL in networks that
have reliable connectivity guarantees faster convergence of the
model training. Therefore, it is of paramount importance to
maintain a reliable communication infrastructure for the FL
system.

We can observe similar phenomena from the convergence
rate of training a more complicated ML model, i.e., the CNN,
on the CIFAR-10 dataset, as illustrated in Fig. 5. Particularly,
Fig. 5 (a) shows that the convergence rate under RS and ABS
almost coincide with each other when the communication
channels are unreliable, i.e., p = 0.1. In contrast, there is
a marked speedup in the convergence rate of ABS over RS
if the network has good communication channels (in this
case, p = 0.8). Moreover, Fig. 5 (b) confirms that when the
communication channels are reliable, a faster convergence rate
can be achieved by providing more communication channels.
Fig. 5 (c) and Fig. 5 (d) show the superiority of our proposed
ABS scheduling when the dataset is distributed to the clients
in a non-i.i.d. manner with varying value of transmission
success probability and number of submission channels. These
observations corroborate the conclusions we have drawn in
Section III.

We now turn our attention to the convergence performance
of FML. We concentrate on the task of training a CNN
on the CIFAR-10 dataset. The experiments are conducted
under the aforementioned settings, except that Algorithm 2 is

adopted for the FL model training. The numerical results are
summarized in Figures 6 and 7, which respectively illustrate
the convergence rates under RS and ABS policies.

Particularly, Fig. 6 compares the FML convergence rate
under different connectivity conditions of the network. We
can see from Fig. 6 (a) that even when the wireless links are
highly unreliable, i.e., p = 0.1, running FL in tandem with
momentum results in a faster convergence rate for both i.i.d.
and non-i.i.d. local datasets. Additionally, Fig. 6 (b) and Fig. 6
(d) show that the benefits conferred by momentum are more
pronounced when communications are reliable. By comparing
the convergence curve of FML with 10 channels against that
under FL with 30 channels, we find that in order to speed up
the model training, using the momentum method can be as
effective as expanding the communication bandwidth.

We can draw similar conclusions in the context of running
FML with ABS policy for both i.i.d. and non-i.i.d. user
training data cases, as shown in Fig. 7. Notably, this figure
demonstrates that FML with 10 communication channels can
bring along faster convergence rate than FL with 30 channels,
which discloses the importance of algorithm design in the FL
training.

V. CONCLUSION

In this paper, we carried out an analytical study toward
understanding the efficiency of training FL models over a
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Fig. 6. Convergence rate of training CNN on the CIFAR-10 dataset under FML by using RS policy. In Fig. (a) and Fig. (c): p = 0.1. In Fig. (b) and Fig. (d):
p = 0.8. The dataset is distributed to the clients in an i.i.d. manner in Fig. (a) and Fig. (c), and in a non-i.i.d. manner in Fig. (b) and Fig. (d).

wireless network. We established the FL convergence rate
by taking into account key system parameters such as the
probability of reliable transmissions, staleness of parameters,
and scheduling method. Our analysis confirmed the importance
of communication quality in the FL model training process.
Specifically, if the clients can establish reliable connections
to the server in each round of communication, then the model
training can be accelerated by either adopting better scheduling
policies or providing more communication bandwidth. But
these methods become ineffectual when the connections are
unreliable. We also demonstrated that the FL can be run in
tandem with momentum, which can improve the convergence
rate by appropriately tuning the momentum weight. These
results advanced the understanding of the FL system and can
be useful for researchers in their further research pursuit.

APPENDIX

A. Proof of Lemma 1

In a typical communication round, we use a binary variable
Rk ∈ {0, 1} to indicate that client k has a reliable channel to
the server (in this case, Rk = 1) or not (in this case, Rk = 0).
Moreover, we denote Ñ as the number of reliable channels

except for client k. As such, the probability β that the client
attains successful parameter update can be written as

β = P (Sk[t] = 1|Rk = 1)× P (Rk = 1)

= p×

(
P
(
Sk[t] = 1, Ñ ≥ N |Rk = 1

)
︸ ︷︷ ︸

Q1

+ P
(
Sk[t] = 1, Ñ < N |Rk = 1

)
︸ ︷︷ ︸

Q2

)
. (34)

Under the RS policy, when Ñ ≥ N , only N clients will be
uniformly selected out at random. Therefore, upon noting that
Ñ are Rk are independent, Q1 can be calculated as

Q1 = P(Sk[t] = 1|Ñ = N,Rk = 1)× P(Ñ = N)

+ P(Sk[t] = 1|Ñ = N + 1, Rk = 1)× P(Ñ = N + 1)

+ · · ·+ P(Sk[t] = 1|Ñ = K,Rk = 1)× P(Ñ = K)

=
N

N + 1
×
(
K − 1

N

)
× pN × (1− p)K−1−N

+
N

N + 2
×
(
K − 1

N + 1

)
× pN+1 × (1− p)K−1−(N+1)

+ · · ·+ N

K
×
(
K − 1

K − 1

)
× pK−1. (35)
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Fig. 7. Convergence rate of training CNN on the CIFAR-10 dataset under FML by using ABS policy. Fig (a) and Fig. (c): p = 0.1, Fig. (b) and Fig. (d):
p = 0.8. The dataset is distributed to the clients in an i.i.d. manner in Fig (a) and Fig. (b) cases, and in a non-i.i.d. manner in Fig (c) and Fig. (d) cases.

In the situation that Ñ < N , all the clients that have reliable
channels will be selected for parameter update. We can thus
compute Q2 as follows:

Q2 =P(Sk[t] = 1|Ñ = N − 1, Rk = 1)× P(Ñ = N − 1)

+P(Sk[t] = 1|Ñ = N − 2, Rk = 1)× P(Ñ = N − 2)

+ · · ·+ P(Sk[t] = 1|Ñ = 0, Rk = 1)× P(Ñ = 0)

=

(
K − 1

N − 1

)
× pN−1 × (1− p)K−N

+

(
K − 1

N − 2

)
× pN−2 × (1− p)K−1−(N−2)

+ · · ·+
(
K − 1

0

)
× (1− p)K−1. (36)

The result then follows by substituting (35) and (36) into (34).

B. Proof of Theorem 1

According to (11), f is L-smooth and hence when the
global parameter is updated from wt to wt+1, the following
relationship is satisfied:

f(wt+1) ≤f(wt) + ⟨wt+1 −wt,∇f(wt) ⟩+
L

2
∥wt+1 −wt∥2

=f(wt)− η

K∑
k=1

pk

H−1∑
s=0

⟨∇fk(wt−τk,s; ξk,s),∇f(wt)⟩

+
L

2

∥∥∥η K∑
k=1

pk

H−1∑
s=0

∇fk(wt−τk,s; ξk,s)
∥∥∥2. (37)

From the right-hand side of the above inequality, we can
identify two sources of randomness in a generic round of
communications: i) the random sampling of data points of
the selected clients during the local computing stage, and ii)
the staleness associated with the parameters of the unselected
clients.

We thereby deal with these two aspects separately. First of
all, by taking an expectation on both sides of (37) with respect
to the data points, ξ, randomly sampled during the t-th round
of FL training we have

Eξ

[
f(wt+1)

]
≤f(wt)− η

K∑
k=1

pk

H−1∑
s=0

Eξ [⟨∇fk(wt−τk,s; ξk,s),∇f(wt)⟩]

+
L

2
Eξ

[∥∥∥η K∑
k=1

pk

H−1∑
s=0

∇fk(wt−τk,s; ξk,s)
∥∥∥2]

(a)

≤f(wt)− η

K∑
k=1

pk

H−1∑
s=0

⟨∇fk(wt−τk,s),∇f(wt)⟩+
L

2
η2H2C2

=f(wt)−η

K∑
k=1

pk

H−1∑
s=0

⟨∇fk(wt−τk),∇f(wt)⟩+
L

2
η2H2C2
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+ η

K∑
k=1

pk

H−1∑
s=0

⟨∇fk(wt−τk)−∇fk(wt−τk,s),∇f(wt)⟩

(b)

≤f(wt)−η

K∑
k=1

pk

H−1∑
s=0

⟨∇fk(wt−τk),∇f(wt)⟩+
L

2
η2H2C2

+ η

K∑
k=1

pk

H−1∑
s=0

∥∇fk(wt−τk)−∇fk(wt−τk,s)∥ · ∥∇f(wt)∥

(c)

≤f(wt)−ηH

K∑
k=1

pk ⟨∇fk(wt−τk),∇f(wt)⟩+
3L

2
η2H2C2

(38)

where (a) follows from Eξ[∇fk(wt−τk,s; ξk,s)] =
∇fk(wt−τk,s), Jensen’s inequality, and using (12); (b)
by using the Cauchy-Schwartz inequality: ⟨x,y⟩ ≤ ∥x∥ ·∥y∥;
and (c) by using (11) and what follows:

∥∇fk(wt−τk)−∇fk(wt−τk,s)∥ · ∥∇f(wt)∥
≤LC∥wt−τk −wt−τk,s∥
≤LC

(
∥w(k)

t−τk,0
−w

(k)
t−τk,1

∥+ ∥w(k)
t−τk,1

−w
(k)
t−τk,2

∥

+ · · ·+ ∥w(k)
t−τk,s−1 −w

(k)
t−τk,s

∥
)

=LCη
(
∥∇fk(w

(k)
t−τk,0

)∥+ ∥∇fk(w
(k)
t−τk,1

)∥

+ · · ·+ ∥∇fk(w
(k)
t−τk,H−1)∥

)
≤ηHLC2. (39)

Next, we take an expectation on both sides of (38) with
respect to τk, k = 1, 2, ...,K. Because the random variables
{τk}Kk=1 are i.i.d. ∼ τR, we arrive at the following

Eτk,k=1,2,...,K

[
f(wt+1)

]
≤f(wt)− ηH

K∑
k=1

pkEτk [⟨∇fk(wt−τk),∇f(wt)⟩]

+
3L

2
η2H2C2

=f(wt)−ηHEτR

[
⟨∇f(wt−τR),∇f(wt)⟩

]︸ ︷︷ ︸
Q3

+
3L

2
η2H2C2.

(40)

For ease of exposition, let us denote ql = P(τR = l). Then,
using (14), Q3 can be calculated as follows:

Q3 =− ηH

t∑
l=0

ql ⟨∇f(wt),∇f(wt−l)⟩

− ηH(1− β)t+1 ⟨∇f(w0),∇f(wt)⟩

=− ηH

t∑
l=0

ql ∥∇f(wt−l)∥2

−ηH

t∑
l=0

ql ⟨∇f(wt)−∇f(wt−l),∇f(wt−l)⟩︸ ︷︷ ︸
Q4

−ηH(1− β)t+1 ⟨∇f(w0),∇f(wt)⟩︸ ︷︷ ︸
Q5

.

(41)

By interchangeably using the Cauchy-Schwartz and AM-GM
inequalities, we can bound Q4 and Q5 as follows:

Q4 = ηH

t∑
l=0

ql

t−1∑
d=t−l

⟨∇f(wd)−∇f(wd+1),∇f(wt−l)⟩

≤ ηH

t∑
l=0

ql

t−1∑
d=t−l

∥∇f(wd)−∇f(wd+1)∥ · ∥∇f(wt−l)∥

≤ ηH

t∑
l=0

ql

t−1∑
d=t−l

L∥wd −wd+1∥ · ∥∇f(wt−l)∥

= ηH

t∑
l=0

ql

t−1∑
d=t−l

Lη ∥∇f(wd)∥ · ∥∇f(wt−l)∥

≤ η2H

t∑
l=0

qlL

t−1∑
d=t−l

∥∇f(wd)∥2 + ∥∇f(wt−l)∥2

2

≤ η2HL
t∑

l=0

ql × l × C2 (42)

and

Q5 = ηH(1− β)t+1 ⟨−∇f(w0),∇f(wt)⟩
≤ ηH(1− β)t+1∥ − ∇f(w0)∥ · ∥∇f(wt)∥

≤ ηH(1− β)t+1 ∥∇f(w0)∥2 + ∥∇f(wt)∥2

2
≤ ηH(1− β)t+1C2. (43)

By substituting (41), (42), and (43) into (38), and taking
expectations to the corresponding random variables, we have

E
[
f(wt+1)

]
≤ E

[
f(wt)

]
− ηH

t∑
l=0

qlE
[
∥∇f(wt−l)∥2

]
+ η2HLC2E

[
τR
]
+

3L

2
η2H2C2 + ηH(1− β)t+1C2. (44)

Following the above inequality, we can rearrange the terms
and telescope through t, which yields

min
0≤t≤T−1

E
[
∥∇f(wt)∥2

]
ηH

T−1∑
t=0

t∑
l=0

ql︸ ︷︷ ︸
Q6

≤E
[
f(w0)−f(wT )

]
+ η2LC2HT

(
E[τR] +

3

2
H
)

+ ηH

T−1∑
t=0

(1− β)t+1C2. (45)

Using (14), we can further bound Q6 as follows:

Q6 =

T−1∑
t=0

t∑
l=0

β(1− β)l =

T−1∑
t=0

[
1− (1− β)t+1

]
= T − 1− β

β

[
1− (1− β)T

]
≥ T − 1− β

β

[
1− (1− βT )

]
= βT. (46)
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Finally, one can also use the bound
∑T−1

t=0 (1−β)t+1 ≤ 1
β on

the last term in (45) and rewrite it as

βηTH min
0≤t≤T−1

E
[
∥∇f(wt)∥2

]
≤f(w0)− f(w∗) + η2LC2HT

(
E[τR] +

3

2
H
)
+

ηHC2

β
.

(47)

By further taking η = 1/H
√
T we complete the proof.

C. Proof of Theorem 2

Following similar lines from the proof of Theorem 1 (cf.
derivation of (40)), we can show that under the ABS policy,
when the global parameter is updated from wt to wt+1, the
following relationship holds:

Eξk,τk,k=1,2,··· ,K
[
f(wt+1)

]
≤f(wt)−ηHEτA

[
⟨∇f(wt−τA),∇f(wt)⟩

]︸ ︷︷ ︸
Q7

+
3L

2
η2H2C2.

(48)

Using the distribution of τA per (27), we can bound Q7 as
follows:

Q7 = −ηH

G−1∑
l=0

1

G

〈
∇f(wt),∇f(wt−l)

〉
= −ηH

G−1∑
l=0

1

G
∥∇f(wt−l)∥2

+ ηH

G−1∑
l=0

1

G

〈
∇f(wt−l)−∇f(wt),∇f(wt−l)

〉
≤ −ηH

G−1∑
l=0

1

G
∥∇f(wt−l)∥2

+ ηH

G−1∑
l=0

1

G

(Lη
2

t−1∑
d=t−l

∥∇f(wd)∥2+
Lη

2
l ∥∇f(wt−l)∥2

)
≤ −ηH

G−1∑
l=0

1

G
∥∇f(wt−l)∥2 + E [τA] ηHLηC2. (49)

Putting (49) into (48), and taking expectation on both sides
with respect to all the randomness up to communication round
t, we have the following

E
[
f(wt+1)

]
≤ E

[
f(wt)

]
− ηH

G−1∑
l=0

1

G
E
[
∥∇f(wt−l)∥2

]
+HLη2C2

(
3

2
H + E [τA]

)
. (50)

By rearranging the terms above and telescoping, we have
the following

ηH

T−1∑
t=0

1

G

G−1∑
l=0

E
[
∥∇f(wt−l)∥2

]
≤ f(w0)− f(w∗)

+HLη2C2

(
3

2
H + E [τA]

)
T. (51)

The left hand side of the above inequality can be expressed
as

ηH

T−1∑
t=0

1

G

G−1∑
l=0

E
[
∥∇f(wt−l)∥2

]
=ηH

T−1∑
t=G−1

1

G

G−1∑
l=0

E
[
∥∇f(wt−l)∥2

]
+ ηH

G−2∑
t=0

1

G

G−1∑
l=0

E
[
∥∇f(wt−l)∥2

]
. (52)

By jointly considering (51) and (52), we have

ηHT min
0≤t≤T−1

E
[
∥∇f(wt)∥2

]
≤f(w0)− f(w∗) +HLη2C2

(
3

2
H+E [τA]

)
T

+
ηH

G

G−1∑
t=1

G−1∑
l=G−t

E
[
∥∇f(wl)∥2

]
≤f(w0)− f(w∗) +HLη2C2

(
3

2
H + E [τA]

)
T

+ E [τA]× ηHC2. (53)

By setting η = 1/H
√
T , the result follows.

D. Proof of Theorem 3

By substituting (8) into (30) and (31), the procedure of
global parameter updates under momentum can be expressed
as follows:

vt+1 = wt − η

K∑
k=1

pk

H−1∑
s=0

∇fk(wt−τk,s; ξ
s
k), (54)

wt+1 = vt+1 + γ(vt+1 − vt). (55)

We denote by gt = η
∑K

k=1 pk
∑H−1

s=0 ∇fk(wt−τk,s; ξ
s
k).

Then, (54) can be rewritten as vt+1 = wt−gt and the update
procedure (55) can be written as:

wt+1 = wt − gt + γ(wt − gt −wt−1 + gt−1). (56)

Let us define an auxiliary term ut as

ut =
γ

1− γ

(
wt −wt−1 + gt−1

)
(57)

and establish the following relationship based on (56)

ut+1 = γut −
γ2

1− γ
gt. (58)

Following the update process, one can use the above equations
to express

wt+1 + ut+1 = wt + ut −
1

1− γ
gt. (59)

We further denote zt = wt + ut and rewrite (59) as

zt+1 = zt −
1

1− γ
gt. (60)
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Owing to the smoothness property of f , the following holds:

f (zt+1) ≤ f (zt) + ⟨zt+1 − zt,∇f(zt)⟩+
L

2
∥zt+1 − zt∥2

=f (zt)−
1

1− γ
⟨gt,∇f(zt)⟩+

L

2(1− γ)2
∥gt∥2

=f (zt)−
η

1− γ

K∑
k=1

pk

H−1∑
s=0

⟨∇fk(wt−τk,s; ξ
s
k),∇f(zt)⟩

+
η2L

2(1− γ)2

∥∥∥∥∥
K∑

k=1

pk

H−1∑
s=0

∇fk(wt−τk,s; ξ
s
k)

∥∥∥∥∥
2

︸ ︷︷ ︸
Q8

.

(61)

We can use Jensen’s inequality to bound Q8 as follows:

Q8 ≤ η2H2LC2

2(1− γ)2
, (62)

and write (61) in the following way:

f (zt+1) ≤ f (zt) +
η2H2C2L

2(1− γ)2

− η

1− γ

K∑
k=1

pk

H−1∑
s=0

⟨∇fk(wt−τk,s; ξ
s
k),∇f(wt)⟩

− η

1− γ

K∑
k=1

pk

H−1∑
s=0

⟨∇fk(wt−τk,s; ξ
s
k),∇f(zt)−∇f(wt)⟩.

(63)

Note that ⟨∇fk(wt−τk,s; ξ
s
k),∇f(wt) − ∇f(zt)⟩ can be

bounded using the Cauchy-Schwartz inequality and the
smoothness of f as follows:

⟨∇fk(wt−τk,s; ξ
s
k),∇f(wt)−∇f(zt)⟩

≤∥∇fk(wt−τk,s)∥ · ∥∇f(wt)−∇f(zt)∥
≤C × L× ∥wt − zt∥ = C × L× ∥ut∥

(a)
=C × L× γ2

1− γ
× ∥

t−1∑
j=0

γjgt−1−j∥

≤γ2LC

1− γ

t−1∑
j=0

γj∥gt−1−j∥

≤γ2LC

1− γ

t−1∑
j=0

γj
∥∥∥η K∑

k=1

pk

H∑
s=1

∇fk(wt−1−j−τk,s; ξ
s
k)
∥∥∥

≤ γ2

1− γ

t−1∑
j=0

γjLηHC2

=
γ2

1− γ
× 1− γt

1− γ
× LηHC2, (64)

where (a) follows from solving the recurrence relation in (58).
Therefore, we have

f(zt+1)

≤f(zt)−
η

1− γ

K∑
k=1

pk

H−1∑
s=0

⟨∇fk(wt−τk,s; ξ
s
k),∇f(zt)⟩

+
γ2

(1− γ)2
× Lη2H2C2 × 1− γt

1− γ
+

Lη2H2C2

2(1− γ)2
. (65)

By taking an expectation on both sides of the above in-
equality, we have

Eξ

[
f(zt+1)

]
≤ Eξ

[
f(zt)

]
+
Lη2H2C2

(1− γ)2

(
1

2
+γ2× 1− γt

1− γ

)
− ηH

1− γ

K∑
k=1

pkEτk [⟨∇fk(wt−τk),∇f(wt)⟩] ,

(66)

which results in the following

E[f(zt+1)] ≤ E[f(zt)]−
ηH

1− γ
EτR [⟨∇f(wt−τR),∇f(wt)⟩]︸ ︷︷ ︸

Q9

+
Lη2H2C2

(1− γ)2

(
1

2
+ γ2 × 1− γt

1− γ

)
.

(67)

Under the RS policy, τR follows the distribution in (14), with
which we can bound Q9 as follows using the same set of tricks
used in bounding the term Q3 in (40):

Q9 = − ηH

1− γ

[ t∑
l=0

ql∥∇f(wt−l)∥2

+

t∑
l=0

ql⟨∇f(wt)−∇f(wt−l),∇f(wt−l)⟩

+ (1− β)t+1⟨∇f(w0),∇f(wt−l)⟩
]

≤ − ηH

1− γ

t∑
l=0

ql∥∇f(wt−l)∥2 +
H

1− γ
η2LC2E[τR]

+ ηH(1− β)t+1C2 1

1− γ
. (68)

To this end, we can substitute (68) into (67) and obtain the
following

E[f(zt+1)] ≤ E[f(zt)]−
ηH

1− γ

t∑
l=0

qlE
[
∥∇f(wt−l)∥2

]
+

Lη2H2C2

(1− γ)2

(
1

2
+

γ2

1− γ
× (1− γt)

)
+

HLη2C2

1− γ
E[τR] +

ηHC2

1− γ
(1− β)t+1.

(69)

We telescope according to the above relationship and arrive at

ηH

1− γ

T−1∑
t=0

t∑
l=0

ql min
0≤t≤T−1

E
[
∥∇f(wt)∥2

]
≤f(w0)− f(w∗) +

HLη2C2

1−γ
E[τR]T +

ηHC2

1−γ

T−1∑
t=0

(1−β)t+1

+
Lη2H2C2

(1− γ)2

[(1
2
+

γ2

1− γ

)
T −

T−1∑
t=0

γt+2

1− γ

]
(70)

and the result follows by substituting η = 1/H
√
T to the

above.
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