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Two-Timescale Adaptive Live Video Streaming
Transmission Mechanism for Vehicular Networks

Biqian Feng, Chenyuan Feng, Geyong Min, and Tony Q. S. Quek

Abstract—This research explores a novel adaptive live video
streaming transmission strategy over vehicular networks to solve
the conundrum between resource-constrained environment and
user demand on high Quality-of-Experience (QoE). With an
exquisite design of resource types and channel variations, we
propose a two-timescale transmission mechanism which allocates
the bitrate and bandwidth for each large-timescale frame based
on the statistical knowledge of the channel state information
(CSI) and refines the power allocation for each small-timescale
slot based on instantaneous CSI. Subsequently, we formulate
a QoE maximization problem under the restrictions of finite
bitrates, bandwidth and power budget. To solve this problem
with low computation complexity, we propose a two-stage on-
line successive convex approximation (TOSCA)-based resource
allocation algorithm. Simulation results illustrate the rationality
and necessity of the proposed dual-time scale optimization, and
the proposed mechanism noticeably outperforms the conventional
resource allocation schemes under different power budgets and
lane configurations.

Index Terms—Live video transmission, vehicular networks,
resource allocation, two-timescale optimization

I. INTRODUCTION

Given the rapid rise of on-vehicle video services such as
video conferencing and video surveillance, the contradiction
between the highly time-varying vehicular communication en-
vironments and users’ demands for a clear and seamless view-
ing experience has intensified [1]. Traditional video streaming
distribution systems complete content acquisition, caching and
transcoding in the cloud. Although this can alleviate the
pressure on cloud storage, there are still serious issues such
as large transmission latency, high bandwidth consumption
and redundant transmission in the network edge [2]. With the
advancement of vehicular edge computing (VEC) technology,
the service delay and the communication overhead in the coer
network can be significantly reduced by using the road side
units (RSUs) to download the original bitrate version of the
video from the cloud and dynamically transcoding it to the
bitrate version suitable for different user channels [3].

To enhance the Quality-of-Experience (QoE) to be per-
ceived by users in the VEC networks, some studies focus on
the joint optimization of video transcoding selection and trans-
mission resource allocation. Such an optimization problem
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Fig. 1. A typical vehicular communication network supporting high-data-rate
video live streaming services.

can be formulated as a mixed-integer nonlinear programming
problem with computational and wireless bandwidth resource
constraints and solved with a low-complexity online scheme
[4]. A joint allocation mechanism of computing resources
and communication resources was also proposed in VEC-
assisted video streaming delivery network [5]. However, these
studies only consider the pairwise joint optimization between
communication resource allocation and video bitrate version
selection, and do not fully consider the dynamics of the
network and vehicular users. Considering the short coherence
time caused by user mobility, it is not only impractical but
also uneconomical to instantly reassign all kinds of resources.

Inspired by this problem, we propose an adaptive video
streaming transmission strategy that adapts power, bandwidth,
and video bitrate versions to the communication environment
at different time scales. Our contribution can be summarized
as follows: i) To improve the transmission efficiency with
mobile vehicular users, we formulate a two-timescale trans-
mission decision-making problems to configure the bitrate
and bandwidth allocation on large-timescale frames and adjust
the transmitting power for each small-timescale slot based
on CSI; ii) To reduce the computational complexity of real-
time joint optimization problem, we design a two-stage online
successive convex approximation (TOSCA)-based resource
allocation algorithm; iii) We conducted extensive experiments
and the results demonstrate the effectiveness and robustness
of our proposed strategy and algorithm.

Notations: We adopt x, x, and X to denote a scalar,
vector, and matrix, respectively. Superscript T stands for the
transpose. ∥x∥1 and ∥x∥ denote the l1-norm and the l2-norm
of the vector x, respectively. ΠB(x) denotes the projection of
x onto the set B.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a typical vehicular
communication network that supports live video streaming
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transmission at high data rates. In this network, the RSU can
only simultaneously serve V vehicular users (VUs) within its
communication range, in diameter D, through the V2I links.

A. Live Video Streaming Transmission

In a realistic scenario, an RSU can transcode each live
video segment into S different bitrate versions. Let B ≜
{b(1), b(2), · · · , b(S)} denote the set of all bitrate versions
in a descending order, that is, b(1) > b(2) > · · · > b(S). Let
bv,t ∈ B represent the transmitting bitrate version selected by
VU v at time slot t. Intuitively, as more power and bandwidth
resources are allocated and the achievable data rate increases,
the RSU prefers to select a higher bitrate to provide a higher
definition video to the target VU.

Let wv,t and pv,t denote the bandwidth and the transmission
power allocated to VU v by the RSU at time slot t, respec-
tively. Then, the achievable data rate of the VU v at time slot
t can be expressed as [7]:

Rv,t = wv,t log2

(
1 +

pv,tgv,t
wv,tN0

)
, (1)

where gv,t and N0 represent the channel gain between the RSU
and VU v and the noise power spectral density, respectively.
Considering that the RSU in real life has the limit of maximum
transmit power pmax and maximum available bandwidth wmax

at one certain time slot t, we have the following constrains:

∥pt∥1 ≤ pmax, ∀t,
∥wt∥1 ≤ wmax, ∀t,

(2)

where pt ≜ (p1,t, · · · , pV,t)T and wt ≜ (w1,t, · · · , wV,t)
T .

B. Two-Timescale Operation Model

According to Clarke’s model for the Doppler spectrum [8],
[9], the short coherence time of vehicular communication
channels alongside the sluggishness of resource allocation
strategies, will result in a scenario where certain vehicles
face resource wastage while others face resource scarcity. To
overcome this problem, we propose a two-timescale adaptive
live video streaming transmission mechanism which allocates
the bitrate and bandwidth for each large-timescale frame based
on the statistical knowledge of the CSI and updates the power
allocation every small-timescale time slot based on available
instantaneous CSI. The reasons for matching the allocation
of different kinds of resources with different time scales are
as follows: First, the frequent changes in bitrate between
consecutive segments will inevitably lead to a degradation of
user viewing experience, possibly even causing carsickness,
and the frequent changes in bandwidth will increase the com-
munication overhead; Secondly, real-time bitrate configuration
leads to a notable increase in computational cost.

More specifically, we assume one large-timescale frame
consists of T short-timescale slots, let t = 1, 2, · · · , T denote
the index of short-timescale slot. During one large-timescale
frame, the bandwidth allocated to the user and the selected
video bitrate version remain unchanged, that is,

bv = bv,1 = · · · = bv,T ,

wv = wv,1 = · · · = wv,T .
(3)

For the sake of simplicity, we stack all bitrates, bandwidths,
powers, and channel gains in a vector or matrix, denoted as
b ∈ RV×1

+ , w ∈ RV×1
+ , P = (p1,p2, · · · ,pT ) ∈ RV×T

+ , and
G = (g1,g2, · · · ,gT ) ∈ RV×T

+ , respectively.

C. Problem Formulation

To evaluate the performance of live video streaming in
vehicular communication networks, we adopt three widely-
used performance metrics, namely bit rate, rate instability
index and achievable data rate. Hence, the QoE is defined
as follows:

ψ(b,w,P,G) ≜
1

V

V∑
v=1

(
ω1

bv
b(1)

− ω2

(
bv,0 − bv
b(1)

)2

− ω3
1

T

T∑
t=1

(
Rv,t

bv
− 1

)2
)
,

(4)

where bv,0 represents the bitrate selected in the last large-
timescale frame, ω1, ω2 and ω3 are non-negative weights used
to balance these factors.

In this paper, our objective is to maximize QoE by jointly
optimizing the transmission bitrate, power allocation, and
bandwidth allocation. Accordingly, the optimization problem
is formulated as

max
b∈B,w≥0

E
{
max
P≥0

ψ(b,w,P,G)

}
, (5a)

s.t. ∥pt∥1 ≤ pmax, ∀t, (5b)
∥w∥1 ≤ wmax. (5c)

It is arduous to solve Problem (5) due to Challenge I: the
objective function (5a) is non-convex with respect to w and
P; and Challenge II: the discrete variable bv implies that the
problem is NP-hard. General speaking, there is no standard op-
timal solution for such a two timescale optimization problem.
In the following section, we will propose an efficient solution
based on two-stage online successive convex approximation
(TOSCA) algorithm.

III. DESIGN OF ADAPTIVE VIDEO STREAMING
TRANSMISSION MECHANISM

A. Overall Description

We first relax discrete bitrates to continuous variables to
address Challenge II. Subsequently, we adopt the TOSCA
algorithm [10] to solve the approximate non-convex optimiza-
tion problem efficiently to address Challenge I. Finally, we
map the relaxed bitrates into the given bitrate set B and refine
the bandwidth allocation using the TOSCA algorithm again.

1) Relaxation Stage: Let B̃ ≜ [b(1), b(S)] be the relaxed
version of B and the initial problem (5) is transformed to the
following approximated problem with convex constraints:

max
b∈B̃,w≥0

E
{
max
P≥0

ψ(b,w,P,G)

}
, (6a)

s.t. ∥pt∥1 ≤ pmax, ∀t, (6b)
∥w∥1 ≤ wmax. (6c)
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Using primal decomposition, the problem can be decomposed
into a large-timescale optimization sub-problem and a fam-
ily of small-timescale optimization sub-problems, which are
described as follows:

i) Small-timescale optimization problem: Given the channel
gain gt at time slot t, we can find the optimal p∗

t by solving
the following small-timescale optimization problem:

p∗
t ≜ argmin

pt≥0

V∑
v=1

(
Rv,t

bv
− 1

)2

, (7a)

s.t. ∥pt∥1 ≤ pmax. (7b)

ii) Large-timescale optimization problem: Given the map-
ping P∗(G) ≜ {p∗

t (gt)}Tt=1, the bitrate and bandwidth can
be optimized as follows:

(b̃∗, w̃∗) ≜ max
b∈B̃,w≥0

E {ψ(b,w,P∗(G),G)} , (8a)

s.t. ∥w∥1 ≤ wmax. (8b)

2) Projection Stage: The relaxed bitrates are mapped into
the given bitrate set, i.e.,

b∗ ≜ ΠB(b̃
∗) = min

b∈B
∥b− b̃∗∥. (9)

3) Refinement Stage: For a given fixed bitrate vector b∗,
the problem reduces to

max
w≥0

E
{
max
P≥0

ψ(b∗,w,P,G)

}
, (10a)

s.t. ∥pt∥1 ≤ pmax, ∀t, (10b)
∥w∥1 ≤ wmax, (10c)

which can be solved by the same strategies as in Relaxation
Stage. Therefore, we then only focus on solving the optimiza-
tion problems (7) and (8) in Relaxation Stage.

B. Short-Term Optimization Problem

At time slot t, the RSU firstly acquires the channel gain
vector gt, and aims to adjust the power allocation pt according
to the selected bitrate version b, and allocated bandwidth w.

1) Optimal-Solution Algorithm Design: The stationary
point of the short-term power allocation pt can be obtained
when the condition in the following proposition is satisfied.

Proposition 1. The optimal p∗
t satisfies

Rv,t ≤ bv, ∀v.

In particular, the equality holds if the power budget satisfies

pmax ≥
∑
v

wvN0

gv,t

(
2

bv
wv − 1

)
,

Proof. Consider the partial Lagrangian function:

L(pt, λ) =

V∑
v=1

(
Rv,t

bv
− 1

)2

+ λ (∥pt∥1 − pmax) , (11)

The optimal solution p∗
t must satisfy

∂L(pt, λ)

∂pv,t
=

2
(

Rv,t

bv
− 1
)
wvgv,t

(wvN0 + pv,tgv,t)bv ln 2
+ λ = 0. (12)

We can conclude that Rv,t ≤ bv must hold since all parameters
ωv,t, gv,t, pv,t, λ are non-negative. In particular, if the total
power budget satisfies

pmax ≥
∑
v

wvN0

gv,t

(
2

bv
wv − 1

)
, (13)

the RSU can allocate pv,t = wvN0

gv,t

(
2

bv
wv − 1

)
to VU v such

that Rv,t = bv .

Based on Proposition 1, power allocation optimization is
only required when

pmax <
∑
v

wvN0

gv,t

(
2

bv
wv − 1

)
. (14)

To solve it, we introduce an auxiliary optimization variables
z = [z1, z2, · · · , zV ]T and the initial problem is equivalent to

min
pt≥0,z

V∑
v=1

z2v , (15a)

s.t.
Rv,t

bv
− 1 ≥ zv, ∀v, (15b)

∥pt∥1 ≤ pmax, (15c)

which can be solved by CVX, and the computational com-
plexity is O(V 3.5). Although it yields the optimal solution,
the high computational complexity renders its execution chal-
lenging, especially in scenarios with high-speed VUs and
extremely short coherence time.

2) Low-Complexity Algorithm Design: As demonstrated in
Proposition 1, the basic idea of power allocation strategy is
to reduce the objective function in (15a) by allocating more
power to VUs with superior channel gain. Simultaneously, it
should ensure fairness by prohibiting any VU from unneces-
sarily holding an excessive amount of power.

Inspired by this idea, we resort to the classic water-filling
algorithm to reduce the complexity. Specifically, there are
three primary steps in the allocation procedure. Step 1: The
remaining power p is allocated to the set of the remaining
VUs V according to Eq. (2) reported in [11], which can be
expressed as:

pv,t =

[
wv

λ
− wvN0

gv,t

]+
, (16)

where λ ≥ 0 is the optimal dual variable for the transmit power
constraint in (15c). It can be obtained via one dimensional
search techniques, e.g., bisection method. ii) Step 2: The
achievable data rate for each VU is assessed. In order to avoid
resource waste and violate Proposition 1 in the event that
the achievable data rate of a VU exceeds the target bitrate,
we employ a bisection method to incrementally reduce the
allocated power until the achievable data rate matches the
target bitrate. Step 3: Re-distribute the remaining power to the
VUs that haven’t yet received sufficient power by repeating
Steps 1 and 2 until all the power is completely assigned.
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C. Long-Term Optimization Problem

The large-timescale optimization is executed once at the
beginning of each large-timescale frame to improve the QoE,
which can be solved recursively by the TOSCA algorithm.
Specifically, at iteration (k), a new channel gain matrix G(k)

is randomly drawn from the known distribution according the
future positions of the vehicles. Given (b(k),w(k)) and G(k),
the intermediate variable P(k) is calculated by solving the
small-timescale optimization problem in the aforementioned
subsection. Thus, we can solve the following problem:

(b̄(k), w̄(k)) ≜ max
b∈B̃,w≥0

ψ̄(k)(b,w,P(k),G(k)), (17a)

s.t. ∥w∥1 ≤ wmax, (17b)

with the surrogate function ψ̄(k)(b,w,P(k),G(k)) defined as

ψ̄(k)(b,w,P(k),G(k))

= tr((b− b(k))T (ρ(k)∇bψ̄
(k) + (1− ρ(k))f

(k)
b ))

+ tr((w −w(k))T (ρ(k)∇wψ̄
(k) + (1− ρ(k))f (k)w ))

+ τb∥b− b(k)∥2 + τw∥w −w(k)∥2,

(18)

where τb > 0 and τw > 0 are constant to ensure strong
convexity; f (k)b and f

(k)
w are the accumulation vectors that can

be updated recursively as follows:

f
(k)
b = (1− ρ(k))f

(k−1)
b + ρ(k)∇bψ̄

(k),

f
(k)
W = (1− ρ(k))f

(k−1)
W + ρ(k)∇Wψ̄(k),

(19)

with ρ(k) ∈ (0, 1] being a sequence to be properly chosen [10,
Assumption 5]: ρ(k) → 0, 1

ρ(k) ≤ O(kβ) for β ∈ (0, 1), and∑
k(ρ

(k))2 <∞.

Proposition 2. The optimal solution to Problem in (17) can be
decomposed into two independent sub-problems w.r.t. b and
w, which are, respectively, given by

b̄(k) = ΠB̃

[
b(k) − 1

2τb
(ρ(k)∇bψ̄

(k) + (1− ρ(k))f
(k)
b )

]
,

(20a)

w̄(k) =

[
w(k) − 1

2τw
(ρ(k)∇wψ̄

(k) + (1− ρ(k))f (k)w + λ1)

]+
,

(20b)

where λ ≥ 0 is the optimal dual variable for the transmit
power constraint in (17b). It can be obtained via one dimen-
sional search techniques, e.g., bisection method.

Proof. i) Optimize b: The objective function is quadratic w.r.t.
each element of b and the constraint is in a convex domain.
Therefore, The optimal solution can be derived by projecting
the stationary point of the objective onto the convex domain,
which leads to the desired Eq. (20a).

ii) Optimize w: The partial Lagrangian function is given by

L(w, λ) = tr((ρ(k)∇wψ̄
(k) + (1− ρ(k))f (k)w )T (w −w(k)))

+ τw∥w −w(k)∥2 + λ (∥w∥1 − wmax) .
(21)

Algorithm 1 The TOSCA-based adaptive live video streaming
transmission mechanism
Initialization: {γ(k)}, k = 0,b(0) ∈ B,w(0) ≥ 0.
Relaxation Stage: Repeat the following S1-S5:
S1: Obtain the random channel gain matrix G(k).
S2: At each time slot k, if pmax satisfies Eq. (13),

set pv,t = wvN0

gv,t

(
2

bv
wv − 1

)
.

Otherwise, compute p
(k)
t by the following steps:

S2.1: Compute the set of remaining VUs V and the total
remaining power p.

S2.2: Compute power allocation according to Eq. (16).
S2.3: Assess the achievable rate for each VU in V . If

Rv,t ≥ bv , reduce the power such that Rv,t = bv
and remove VU v from V . Otherwise, pv,t = 0.

S2.4: If all VUs satisfies Rv,t < bv , compute power
allocation according to Eq. (16) and STOP.
Otherwise, τ = τ + 1 and go to S2.1.

S3: Update f
(k)
b and f

(k)
w according to Eq. (19).

S4: Compute b̄(k) and w̄(k) according to Eq. (20).
S5: Update b(k+1) and w(k+1) according to Eq. (24).
S6: k = k + 1 and go to S1.
Projection Stage:
S7: Project the relaxed bitrate b∗ ≜ ΠB.
Refinement Stage:
S8: Execute the similar steps as S1-S6 with setting f

(k)
b = 0

and b̄(k) = b(k).

The dual function is given by g(λ) = infw L(w, λ). Since
L(w, λ) is a convex function w.r.t w, we can find the optimal
matrix w from the following optimality condition:

∇wL(w, λ) = ρ(k)∇wψ̄
(k) + (1− ρ(k))f (k)w

+ 2τw(w −w(k)) + λ1 = 0,
(22)

which yields

w = w(k) − 1

2τw
(ρ(k)∇wψ̄

(k) + (1− ρ(k))f (k)w + λ1). (23)

Then, w is projected onto the non-negative domain, which
leads to the desired Eq. (20b).

Finally, (b,w) is updated according to

b(k+1) = (1− γ(k))b(k) + γ(k)b̄(k),

w(k+1) = (1− γ(k))w(k) + γ(k)w̄(k),
(24)

where γ(k) ∈ (0, 1] is a step size sequence satisfying γ(k) → 0,∑
k γ

(k) = ∞,
∑

k(γ
(k))2 < ∞, and limk→∞ γ(k)/ρ(k) = 0

[10, Assumption 5].
The above procedure is summarized in Algorithm 1.

D. Convergence and Complexity Analysis

Convergence analysis: Firstly, according to [10, Thm. 2], the
objective value is convergent in both relaxation and refinement
stages. Secondly, the projection has a closed-form solution.
Therefore, our proposed algorithm is convergent.

Complexity analysis: In both relaxation and refinement
stages, the complexity of updating P at small timescale is
O(V T ). The complexity of updating b and w mainly depends
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on computing the gradients ∇bψ̄ and ∇wψ̄, which is O(V ).
In the projection stage, the complexity of projection is O(V ).

IV. NUMERICAL RESULTS

To numerically evaluate the performance of the proposed
algorithm, the coherence time τ is set as 10 ms, the number of
time slots within each large-scale frame T is 500. In live video
transmission services, the commonly-used available bitrates
include 5.8 Mbps, 3 Mbps, 1.75 Mbps, and 0.75 Mbps1. The
available bandwidth wmax is 10 MHz. The coverage radius of
the RSU is 200 m. The speed of the vehicles ranges from 100
to 120 km/h. Considering the safety distance between vehicles,
we assume that there are two moving VUs in each lane within
the coverage radius of the RSU.

The proposed algorithm are compared with the following
baselines: i) Baseline 1: Bandwidth and bitrate are optimized
at each large-timescale frame, and the power is uniformly
allocated; ii) Baseline 2: Bandwidth and bitrate are optimized
based on a fixed uniform power allocation at the beginning of
each large-timescale frame, and the power is optimized at each
small-timescale slot; iii) Baseline 3: Bandwidth is uniformly
allocated, the selected bitrate is consistent with the last large-
timescale frame, and the power is optimized at each small-
timescale slot.

Figs. 2-3 illustrates the QoE for different configurations
of transmission power at the RSU and the number of lanes
on the road. Firstly, across various configurations, the pro-
posed design routinely beats three baselines in terms of QoE.
Secondly, the uniform power allocation strategy in baseline
1 makes some vehicles experience resource wastage, while
others face resource scarcity, which is exacerbated by the
increase of transmission power. It demonstrate the significance
and necessity of dynamically adjusting power for improving
the QoE. The fact that baseline 2 considerably enhances
baseline 1’s performance by optimizing the power allocation in
each time slot further supports this conclusion. Baseline 2 has
a reduced complexity because bitrate, bandwidth, and power
allocation are not optimized jointly in large-timescale frames.
This suggests that baseline 2 can be utilized as a sub-optimal
method in situations when computation complexity is low
or decision-latency is minimal. Thirdly, the performance gap
between baseline 3 and the proposed algorithm demonstrates
the need for dynamic bandwidth and bitrate optimization. In
conclusion, the mismatches in bitrate, bandwidth and power
allocation will cause resource waste and deteriorate the QoE.

V. CONCLUSION

In this paper, we proposed a two-timescale adaptive live
video streaming transmission mechanism, where the bitrate
and bandwidth are allocated for each large-timescale frame
based on the statistical CSI and the power allocation is updated
every small-timescale. To solve the two-timescale optimization
problem efficient, we employed the TOSCA algorithm to
decoupled the QoE maximization problem into large- and
short-timescale problems. Simulation results confirmed the
effectiveness of the proposed mechanism across various power
budgets and lane configurations.

1https://netflixtechblog.com/per-title-encode-optimization-7e99442b62a2
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