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Abstract—Traditional base station siting (BSS) methods rely
heavily on drive testing and user feedback, which are laborious
and require extensive expertise in communication, networking,
and optimization. As large language models (LLMs) and their
associated technologies advance, particularly in the realms of
prompt engineering and agent engineering, network optimization
will witness a revolutionary approach. This approach entails
the strategic use of well-crafted prompts to infuse human
experience and knowledge into these sophisticated LLMs, and
the deployment of autonomous agents as a communication bridge
to seamlessly connect the machine language based LLMs with
human users using natural language. This integration represents
the future paradigm of artificial intelligence (AI) as a service and
AI for more ease. As a preliminary exploration, this research first
develops a novel LLM-empowered BSS optimization framework,
and heuristically proposes four different potential implementa-
tions: the strategies based on Prompt-optimized LLM (PoL),
human-in-the-Loop LLM (HiLL), LLM-empowered autonomous
BSS agent (LaBa), and Cooperative multiple LLM-based au-
tonomous BSS agents (CLaBa). Through evaluation on real-
world data, the experiments demonstrate that prompt-assisted
LLMs and LLM-based agents can generate more efficient, cost-
effective, and reliable network deployments, noticeably enhancing
the efficiency of BSS optimization and reducing trivial manual
participation.

Index Terms—Base station siting, large language model (LLM),
Generative Pretrained Transformers (GPT), prompt engineering,
agent engineering, AI as a Service

I. INTRODUCTION

AS the backbone of mobile communication networks,
base stations not only provide seamless connectivity

for mobile users, ensuring the continuity and reliability of
communication, but also support the ever-increasing demand
for high data throughput [1], [2]. This capability allows users
to enjoy high-speed network services even while on the move.
With the proliferation of smartphones and mobile devices,
the number of mobile users has surged and the demand for
data speed and quality has increased accordingly [3]–[5].
On-demand base station siting (BSS) has therefore become
particularly critical and challenging, as it directly affects the
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breadth and depth of network coverage and the quality of
service experienced by users [6]–[8].

Conventional BSS techniques assess network performance
and pinpoint areas for improvement predominantly through
road testing and user feedback. Specifically, road testing in-
volves the collection of signal quality data by deploying mea-
surement equipment across predetermined geographic areas.
Although this method can yield insightful insights, it is time-
consuming and often impractical to implement, particularly
in densely populated urban environments [9]. Moreover, road
testing collects data at a specific time and location, which
might not accurately represent the dynamic changes in the
entire network performance over time [10]. User complaints
and feedback constitute another essential method for iden-
tifying coverage issues and service quality deficiencies in
traditional approaches [11]. However, activating this reactive
strategy means that network improvements are typically not
initiated until problems become severe enough to provoke
user complaints. Additionally, the collected feedback may not
be representative of the entire user population, potentially
leading to biased or incomplete data [12], [13]. Engineers
must engage in a continuous and iterative process that includes
analyzing feedback, modeling BSS problems, developing so-
lutions, deploying new base stations, and reevaluating network
performance [14].

Given these limitations, traditional BSS approaches [15]
demand engineers to possess extensive expertise in commu-
nications, networking, optimization, and programming, cou-
pled with strong problem-formative, analytical, and problem-
solving skills. The continuous advancements in telecommuni-
cations technology [16], [17] and the evolving patterns of user
behavior [18] necessitate that engineers continually learn and
adapt, further increasing the complexity of the task. Addition-
ally, the dynamic character of urban environments, which is
characterized by fluctuating traffic patterns [19], dynamic user
mobility [20] and also time-varying user requirements [21],
further complicates the BSS optimization.

A promising solution to these challenges is the integration
of AI into BSS processes, especially large language models
(LLMs) such as Generative Pretrained Transformers (GPT)-
3.5, GPT-4 and GPT-4o. These LLMs can not only generate
human-like text [22], [23], but also solve complex problems
in a wide range of domains, including mathematics [24],
programming [25], visual arts [26], medicine [27], and psy-
chology [28]. Users can now describe requirements in natu-
ral language, enabling modeling and coding processes from
semi-automatic to fully automatic, freeing up professionals to



concentrate more on intricate problem solving and innovative
design. For instance, LLMs are capable of writing numerical
algorithms in mathematical and physical [29], generating
computer code related to chemical equations and structures
in chemistry [30], and assisting power engineers in problem
decomposition and code generation in electronic engineering
[31].

Regarding BSS problem, LLMs offer the following benefits:
i) LLMs can process enormous amounts of real-time data
from various sources, providing a comprehensive analysis of
network performance, which allows for more efficient and ac-
curate identification of weak coverage regions and service defi-
ciencies; ii) LLMs can mitigate the lag associated with passive
feedback mechanisms by proactively suggesting improvements
based on continuously learning from network data and user
feedback; iii) The ability of LLMs to adjust dynamically to
alterations in traffic patterns and user behavior can be utilized
to guarantee that the generated BSS solutions remain relevant
and effective in rapidly evolving urban environments.

In light of this, this research investigates how AI, in
particular LLMs, may revolutionize BSS by improving the
effectiveness of the siting procedure as well as the general
caliber of mobile network services. Precisely, we explore
an innovative LLM-empowered BSS method, which can be
described as four main strategies according to the degree of
human intervention and interaction between agents as follows:
i) Prompt-optimized LLM-based (PoL-) strategy aims to
using crafting-optimized interaction prompts to guide the
LLMs to autonomously accomplish BSS tasks with minimal
human intervention. This strategy is centered on employing
well-designed prompts to guide the LLM effectively compre-
hending and managing intricate BSS requirements, generat-
ing accurate and reliable siting solutions. ii) Human-in-the-
Loop LLM-based (HiLL-) strategy aims to simplify user
involvement in BSS decision making by allowing even users
with limited expertise to express their needs in plain natural
language descriptions. HiLL strategy comprises intelligent
prompts, policy recommendations, problem decomposition,
task planning, and comprehensive evaluation to improve ef-
ficiency and intuitiveness of the user’s interaction with the
LLM. iii) LLM-empowered autonomous BSS agent-based
(LaBa-) strategy aims to develop an autonomous agent that
is capable of managing the complete BSS process completely
independently. To mitigate the hallucination problem, which
is a typical issue in natural language processing (NLP), the
system leverages external tools and databases to verify and
validate the LLM’s outputs. With the help of external valida-
tions, this agent is intended to assume complete control over
BSS tasks, including data analysis and decision-making, and
to increase the dependability of the generated siting strategies.
iv) Cooperative multiple LLM-based autonomous BSS
agents-based (CLaBa-) strategy allows multiple agents work
collaboratively to solve the BSS problem. This strategy first
translates the problem into mathematical formulas and then
automatically generates solver code based on those formulas.
The generated code is executed to produce the solution and
saved to a file for further analysis. The effectiveness of the
solution is verified by a series of unit tests generated by the

LLMs and altered by the user. If an execution error or test
failure is encountered, the system automatically feeds back
the error message, triggering the LLM to revise the code in
an iterative process until the proper solution is found.

To the best of our knowledge, we are the first to explore the
use of LLM to solve the BSS problem. Our main contributions
in this work can be summarized as follows:

• We formulate a novel LLM-empowered BSS framework
and heuristically propose four different potential im-
plementations. Specifically, the proposed PoL strategy
enables LLMs to autonomously perform BSS tasks with
minimal human intervention; the HiLL strategy achieves
a more intuitive and user-friendly BSS process by in-
corporating human insight and preferences into decision-
making procedure; the LaBa strategy realizes the inde-
pendent completion of the entire BSS process; CLaBa
strategy is designed to ulteriorly mitigate hallucinations.

• We conduct an empirical comparative analysis by using a
dataset from the Mathorcup Undergraduate Mathematical
Modeling Challenge 2022 [32]. This analysis not only
assesses the performance of LLM-based tactics compared
to traditional techniques in terms of traffic and cost-
effectiveness, but also offers compelling data supporting
the efficacy of LLM strategies in real-world applications.

• Besides propelling technological advancements in BSS,
we also introduce fresh perspectives and tools to the tele-
com network design domain. Through these innovative
approaches, we are able to achieve more efficient, cost-
effective and reliable network deployment to fulfill the
expanding demand for communications, while optimizing
resource allocation and reducing operational costs. In
addition, our study provides several frameworks for future
researchers to further explore and improve methods for
applying LLMs to solve complex engineering problems.

The rest of this paper is structured as follows. Section
II provides a description of the BSS problem. The prompt-
optimized LLM and the LLM-based autonomous BSS agent
are demonstrated in Sections III and IV, respectively. In
Section V, a thorough comparison study is performed. The
entire paper is concluded in Section VI.

II. PROBLEM DESCRIPTION

This section offers a thorough formulation of the BSS
problem and defines the key performance metrics used to
evaluate network performance. We outline the optimization
problem for determining the optimal locations for new base
stations and introduce the metrics of traffic coverage and
cost, which are critical for effective network planning and
deployment.

A. Problem Formulation

The primary task of BSS is to identify areas with poor cov-
erage areas in the current network and strategically deploy new
base stations to enhance the coverage in these regions [33]. As
shown in Fig. 1, the bottom layer shows the communication
coverage of the existing network in a given urban area, where
the red zones indicate the areas with poor communication



Fig. 1. The coverage and planning of base stations within a given
region. The real-world map is shown on the bottom layer; existing
macro and micro base stations are displayed on the middle layer;
both planned and existing macro and micro base stations are marked
in the top layer, along with proposed upgrades to address areas with
poor coverage.

coverage. Such areas can be identified by expensive and time-
consuming road tests or can be located by user complaints
about signal quality. In practical network planning, it is
infeasible to solve all weak coverage problems simultaneously
due to the high cost of base station construction. Therefore, it
is necessary to prioritize weak coverage areas with high traffic
volume.

To simplify calculations and facilitate understanding, we
divide the given area into small grids, as shown in the middle
layer of Fig. 1, and focus on the central point of each grid.
When dividing the grid, we assume that the coverage radius
of either macro base station or micro base station is an integer
multiple of the grid radius, so as to ensure that the base station
deployed in the center of the grid can provide communication
coverage for the whole grid. Such a partition ensures that no
matter the size of the region, the location candidate set of
new base stations can be treated as a finite number of points.
The BSS decision-making is based on specific attributes of
each point, including coordinates, quality of communication
coverage, and also volume of traffic. The main notations are
listed in Table I.

When deploying a new base station, the primary goal is
to achieve seamless coverage service as much as possible in
terms of the traffic flow, in addition, the distance between any
two stations must be larger than a certain threshold in order to
account for interference mitigation and deployment expenses.
Telecom operators pursue lower costs while meeting signal
coverage requirements via intelligent deployment of macro
base stations and micro base stations, the former is character-
ized by a large coverage radius and higher construction cost,
while the latter is more suitable for supplementary coverage
and network capacity enhancement in particular places, such as
hotspots with high traffic flow. Comprehensively considering

TABLE I: Main Notations and their Descriptions

Notation System Parameter
N Total number of grid points

N Coordinate set of all candidate locations for new base
stations

T Coordinate set of all existing base stations;
dh Coverage radius of macro base station
dd Coverage radius of micro base station
Ch Deployment cost of macro base station
Cd Deployment cost of micro base station
T Set of existing base station locations

Dmin Minimum distance between any two base stations

pi
Boolean variable indicating whether a macro base

station is deployed at the central point of grid i or not

qi
Boolean variable indicating whether a micro base

station is deployed at the central point of grid i or not
wt Traffic volume associated with the point t

(xi, yi) Coordinates of the central point of grid i
(xe

j , y
e
j ) Coordinates of the jth existing base station

the characteristics of base stations, network coverage and
deployment costs, the BSS optimization problem could be
formulated as follows:

(P1) argmin{(pi,qi)}N
i=1

N∑
i=1

(piCh + qiCd) ,

s.t.(C1)
∑
t∈Gi

wt(Pi,h,t + Pi,d,t) ≥ 0.9
∑
t∈Gi

wt,∀i ∈ N ,

(C2) pi ∈ {0, 1}, qi ∈ {0, 1}, ∀i ∈ N ,

(C3) pi + qi ≤ 1, ∀i ∈ N ,

(C4)
√

(xi − xe
j)

2 + (yi − yej )
2 ≥ Dmin,

if pi + qi = 1 , ∀i ∈ N ,∀j ∈ T
(C5)

√
(xi − xn)2 + (yi − yn)2 ≥ Dmin,

if pi + qi = 1 and pn + qn = 1, ∀i, n ∈ N

(1)

with

Pi,h,t = P (pi
√
(xi − xt)2 + (yi − yt)2 ≤ dh),

Pi,d,t = P (qi
√

(xi − xt)2 + (yi − yt)2 ≤ dd)
(2)

where Pi,h,t and Pi,d,t denote the probabilities that devices at
location t ∈ Gi (with the coordinate (xt, yt)) is covered by
a macro base station or micro base station located at (xi, yi),
respectively; Gi denotes the entire area in grid i; wt denotes
the traffic volume associated with location (xt, yt); N denotes
the coordinate set of all candidate locations for new base
stations, and N represents the total number of grid points;
T is the coordinate set of all existing base stations; dh and dd
represent the coverage radii of macro base station and micro
base station, respectively; Ch and Cd are the costs of macro
base station and micro base station, respectively; Dmin is the
minimum distance between arbitrary two base stations; pi and
qi denote the Boolean variables indicating whether a macro
base station or a micro base station is deployed at the central
point of grid i, respectively; (xi, yi) is the coordinates of grid
i’s central point; (xe

j , y
e
j ) is the coordinates of existing base

station j.
In the optimization problem P1, C1 indicates that the



Fig. 2. PoL strategy: Guide LLM to effectively comprehend and manage intricate BSS requirements and produce solutions by employing
optimized prompts.

communication coverage probability for data traffic should
be greater than 90%; C2 shows the value of the deployment
decision; C3 indicates that Only one new base station, either
macro or micro base station, can be built in one single location;
C4 and C5 indicate that the distance between any two base
stations should be at least greater than Dmin.

B. Performance Metrics

To evaluate the effectiveness of BSS solution, we adopt
traffic coverage and deployment cost as performance metrics,
which are essential for BSS design and optimization since
they could comprehensively reflect network performance and
resource utilization efficiency. Specifically, traffic coverage
is a critical factor in BSS optimization as it has a direct
impact on network performance and user satisfaction. It refers
to the percentage of total traffic in a particular area that is
covered and served by base stations. Ensuring a high level
of traffic coverage is essential for maintaining service quality
and preventing congestion. Telecom networks can function
more effectively and handle high traffic volumes without
encountering congestion by covering a sizable portion of
traffic, which is set at 90% in this work. This paper aims to
develop a LLM-empowered framework to provide an efficient
method for optimizing base station layout under the premise
of maintaining satisfactory traffic coverage. Deployment cost
refers to the total expenditure required to deploy and maintain
the base stations needed to achieve the desired traffic coverage.

C. Traditional Method for BSS

In urban areas, traditional BSS method relies on road testing
of communication signals and user feedback regarding call
quality. This process requires communications engineers to
perform multiple steps to ensure that the deployment of new
base stations effectively improves network coverage and user
experience. The details are as follows.

First, communications engineers conduct road tests to mea-
sure and record signal strength, coverage, and data trans-
mission rates at different locations by driving test vehicles
on urban roads. These test data provide engineers with a
dispassionate assessment of current network performance and

help identify areas of weak coverage and blind spots. The next
step for engineers is to collect user feedback. Users typically
report call quality issues, such as dropped calls, dropped
calls, weak signals, or unstable data connections, by calling
customer service or using mobile apps. The engineer then
compiles all of these user feedback into a thorough problem
report. This feedback reveals potential issues with the real user
experience in addition to issues discovered during the road test.
The engineers started modeling the base station location issue
after gathering enough information and feedback. During this
phase, several aspects must be taken into account, including
topography, building barriers, subscriber density and the layout
of existing base stations.

Developing the solution is the next critical step. Based
on the results of the model analysis, engineers determine
the optimal location for the new base station. They can use
optimization algorithms, such as simulated annealing [34],
genetic algorithms [35], or particle swarm optimization (PSO)
[36], to balance coverage effectiveness, construction costs, and
operational efficiency to find the optimal solution. Once the
solution is determined, engineers will implement the construc-
tion of the new base station. Once the new base station is
operational, engineers need to collect feedback again. They
monitor the performance of the new base station and evaluate
its improvement in network coverage and call quality through
road tests and user feedback. Based on feedback, engineers
may need to make further tweaks and optimizations to ensure
that the new base station is getting the most out of it.

Despite being efficient, this conventional method has nu-
merous drawbacks. Time and human resources are needed for
the entire process, particularly during the data collection and
processing stage. Furthermore, there is frequently a delay in
the data gathering and processing of client feedback, which
might lead to problems not being resolved in a timely manner.

III. LLM-EMPOWERED BSS OPTIMIZATION STRATEGY
BASED ON PROMPT ENGINEERING

By introducing the advanced technology of LLMs, the
efficiency of the BSS process can be significantly improved,
reducing the need for manual intervention and making the
optimization of BSS more intelligent and automatic. Thus, we



(a) Prompt for modeling (b) Prompt for coding

Fig. 3. Auto-modeling and auto-coding in PoL strategy for the BSS problem. This figure demonstrates the basic modeling and coding process
of LLM under the prompt of researchers. (a) In response to the prompt for modeling, ChatGPT 4o gives the basic mathematical model of
BSS, including the objective function to minimize the total cost of the new base station and the constraints such as coverage constraints and
base station distance constraints. (b) In response to the prompt for coding, ChatGPT 4o uses the pulp optimizer as the solver for the coding
hint, and writes Python code to solve the BSS problem based on the mathematical model established above.

propose the LLM-enabled framework for BSS optimization
and develop two LLM prompt engineering based strategies,
namely, PoL- strategy, and HiLL-strategy. Next, we describe
their workflow in detail.

A. Prompt-optimized LLM-based (PoL-) Strategy

The PoL strategy is presented in this subsection as a
potential solution to the BSS issue in wireless networks. PoL
strategy harnesses the sophisticated capabilities of LLMs to
streamline the workflow for engineers by automating key steps,
including prompt formulation, model validation, error identi-
fication, and iterative optimization. This automation not only
expedites the BSS process but also reduce human intervention.

As depicted in Fig. 2, the PoL-based framework encom-
passes the entire workflow from preliminary site selection to
final configuration determination. Through carefully crafted
prompts, LLM can efficiently comprehend and handle the intri-
cate requirements of BSS, consequently producing solutions.
The purpose of optimizing these prompts is to guide LLM
become more proficient in issue comprehension, modeling,
and coding. Furthermore, Fig.3 illustrates the application of
the framework in the processes of automatic modeling and
coding. In response to researcher prompts, LLM is capable of
providing the basic mathematical model for the BSS problem,
including an objective function for minimizing the total cost

of new base stations, as well as constraints such as coverage
and base station distance. Additionally, the LLM utilizes the
pulp optimizer as a solver and writes Python code to solve
the BSS problem based on the aforementioned mathematical
model.

In addition to showcasing the potential of artificial intel-
ligence to automate the resolution of intricate combinatorial
optimization problems, the LLM framework presented in this
study also highlights the potent synergy between AI and
human expert knowledge, providing a novel and reliable
approach for the field of wireless network planning.

B. Human-in-the-loop LLM-based (HiLL-) Strategy

As illustrated in Fig. 2, the concept of the PoL framework
is straightforward. However, our primary goal is to evaluate
various LLMs’ capabilities in addressing routine BSS tasks. In
the site selection modeling phase, the precision of the LLM’s
suggested solution needs to be confirmed by engineering
expertise. If there are discrepancies, feedback is provided
through fresh prompts that specify the error type without
explicitly stating the correction method. In the coding phase
for base station configuration, the LLM-generated code is
executed to identify any functional issues. Errors are com-
municated back to the LLM with the associated system error
messages, prompting necessary adjustments. Upon successful



Fig. 4. In the HiLL strategy, the engineer and the LLM collaborate to solve issues and combine their respective advantages through
human-machine interaction.

(a) Problem-solving strategies (b) Demonstration of subtasks question and answer

Fig. 5. Problem-solving strategies and demonstration of subtasks question and answer for the BSS problem using HiLL strategy. This figure
shows how users guide the LLM through heuristic questioning and feedback to generate a comprehensive solution. (a) In response to user
questions, the LLM describes the BSS problem in depth, breaks it down into six phases for solution, and suggests attempting algorithm. (b)
In response to detailed user questions, the LLM provides answers and solves the corresponding code based on the previous steps.

execution, the proposed base station configurations are vali-
dated against benchmarks set by established network planning
tools. Any deviations are fed back into the LLM to refine the
solution further. Through this iterative collaboration between
communication engineers and LLMs, it is feasible to automate
the programming and optimization of BSS problems.

A simple prompt, such as “How to optimize the layout of
5G base stations in an urban environment,” may not provide
sufficient details to allow an LLM to generate a comprehensive
solution on its own. To address this challenge, we propose a
HiLL framework that combines the computational advantages
of LLMs with the expertise of telecommunications engineers.

As shown in Fig. 4, the framework intended to serve as
an algorithmic consultant for the project, using sophisticated
models such as ChatGPT 4.0 to provide more targeted analy-
sis, as illustrated in Fig. 4. For instance, ChatGPT can recom-
mend literature on “heuristic methods for optimizing network
infrastructure layout” and suggest the use of algorithms such
as genetic and PSO algorithms [36] for dynamic BSS.

Following the framework’s guidance, ChatGPT can break
down the BSS problem into the following actionable steps, as
shown in Fig. 5 (a). First, define objectives and constraints.
Second, collect data. Third, perform mathematical modeling.
Fourth, develop optimization algorithms. Fifth, refine solu-



Fig. 6. LaBa strategy: LLM engages in the entire process from data collection and analysis to decision-making, introducing external tools
and databases to verify and validate the output of LLM, achieving comprehensive automation and intelligence.

tions. And sixth, plan and implement deployment. This step-
by-step approach requires a combination of domain-specific
knowledge and programming skills, where human input is
invaluable throughout the process.

Following an examination of the recommended literature
and ChatGPT’s deconstruction of the BSS issue, telecom
engineers can further refine these tasks into more specific
coding subtasks that LLMs can help with. Subtasks 1 through
5 include, for instance, reading and processing data, designing
a fitness function to assess each site option, initializing the
particle swarm and designating each particle as a site option,
updating the particle position and velocity in accordance with
the fitness function to find the best solution, and deciding on
the site selection scheme based on the final group optimal
location. ChatGPT’s coding implementation for subtask 3 is
displayed in Fig. 5 (b).

In summary, the HiLL strategy enables LLMs to recommend
relevant literature and methods to initiate BSS projects. Once
engineers grasp the technical roadmap, they need to decom-
pose the problem into subtasks that LLMs can help with.
The ability of LLMs to generate code snippets and provide
programming guidance significantly reduces development time
and complexity, allowing engineers to focus on synthesizing
key components and optimizing the system. Through this col-
laboration, engineers and LLMs can precisely and effectively
complete BSS tasks.

IV. LLM-EMPOWERED BSS OPTIMIZATION STRATEGY
BASED ON AGENT ENGINEERING

To address the challenge of BSS in complex urban envi-
ronments, we propose two LLM-empowered solutions based
on human-computer interaction in Section III. To perform
BSS tasks autonomously with minimal human intervention,
we propose two fully intelligent LLM-based schemes, that is,
strategies based on LaBa and CLaBa in this section. Next,
we’ll cover the details and advantages of both schemes.

A. LaBa Strategy

As depicted in Fig. 6, the LaBa is a highly automated system
designed to independently handle the entire BSS process.
This system leverages the natural language processing and

understanding capabilities of LLMs to manage tasks from
data collection and analysis to decision-making, with minimal
human intervention. To mitigate the risk of “hallucinations”
[37]—where the LLM might generate inaccurate or erro-
neous information—the system incorporates external tools and
databases to verify and validate the outputs of the LLM,
ensuring the accuracy and reliability of its decisions.

The agent begins by collecting a large amount of network
performance data and user feedback. These data sources are
diverse, including road test data and user feedback data. Road
test data is collected by communications engineers who drive
test vehicles through urban roads, measuring and recording
signal strength, coverage, and data transmission rates. The
agent uses these data to objectively assess current network
performance, identifying areas with weak coverage and blind
spots. User feedback is collected through customer service
calls or mobile apps, where users report issues with call
quality, such as dropped calls, weak signals, or unstable data
connections. The agent aggregates this user feedback into
detailed problem reports, supplementing the findings from the
road tests.

After gathering sufficient data, the agent processes and
deeply analyzes these data. Data processing steps include data
cleaning and pre-processing to remove noise and invalid data,
ensuring data quality. Subsequently, the agent extracts key
features from the data, such as signal strength distribution
and user density distribution, which serve as inputs for sub-
sequent modeling. Using advanced modeling techniques and
optimization algorithms, the agent generates BSS strategies.
These algorithms, including simulated annealing, genetic and
PSO algorithms, help the agent balance coverage effective-
ness, construction costs, and operational efficiency to find the
optimal solution.

To ensure the reliability of the generated siting strategies,
the agent uses external tools and databases for validation. This
step includes data accuracy checks and strategy effectiveness
assessments. To be more precise, data accuracy checks verify
the accuracy of the input data, ensuring a reliable data foun-
dation. Strategy effectiveness assessments use simulation tools
to evaluate the generated siting strategies in practical applica-
tions, considering metrics such as coverage, signal quality, and
user experience. Through these external validation steps, the



Fig. 7. CLaBa strategy: Multiple LLMs work together, where each is responsible for different aspects of BSS task. The LLMs convert
optimization problems into mathematical formulas and generates solving codes. The obtained LLM data is verified based on users and issues
through testing, and the code is improved and corrected.

agent significantly enhances the reliability and practicality of
the generated strategies.

The validated siting strategies are then used to guide the
construction and deployment of new base stations. Once the
new base stations are operational, the agent continues to
monitor their performance. Through regular road tests and
user feedback, the agent assesses the improvements in network
coverage and call quality brought by the new base stations.
Based on the feedback received, the agent may need to make
further adjustments and optimizations to ensure the continuous
optimization of the new base stations’ performance.

This LaBa strategy significantly improves the efficiency and
accuracy of BSS, reducing the need for human intervention.
However, the system also faces challenges, including ensur-
ing data quality and consistency, the reliability of external
validation, and the capability for continuous optimization.
By integrating advanced natural language processing technol-
ogy and external validation mechanisms, the LaBa strategy
achieves comprehensive automation and intelligence in the
BSS process, providing an efficient and reliable solution for
the planning and optimization of wireless communication
networks.

B. CLaBa Strategy

The CLaBa strategy represents an innovative solution de-
signed to tackle the BSS problem through collaborative efforts
of multiple LLMs. As shown in Fig. 7, this approach first
translates the problem into mathematical formulas and then
automatically generates solver code based on those formulas.
The generated code is executed to produce the solution, which
is then saved to a file for further analysis. To verify the
solution’s effectiveness, a series of unit tests, generated by
the LLMs and modified by the user, are conducted. If an
execution error or test failure occurs, the system automatically
feeds back the error message, prompting the LLM to revise
the code iteratively until the correct solution is found.

In the implementation process, multiple LLMs work to-
gether, each contributing to different aspects of the BSS task.
Initially, these LLMs use natural language understanding and
processing technologies to parse the input BSS requirements

and related constraints, translating them into mathematical
models. This process involves identifying key variables and
constraints and expressing them as mathematical formulas for
subsequent processing. Next, based on these mathematical
formulas, the LLMs automatically generate solver code. This
code, typically written in advanced programming languages,
is designed to efficiently solve the BSS problem. Once the
code is generated, the system executes it immediately to
obtain a preliminary solution. To ensure the reliability of this
solution, the system saves it to a file for further analysis and
validation. After generating the solution, the system validates
its effectiveness through a series of unit tests. These unit
tests are automatically generated by the LLMs and adjusted
by the user as needed. The purpose of these tests is to
comprehensively examine the solution’s performance under
various conditions, ensuring its feasibility and effectiveness in
practical applications. If any errors or test failures are detected
during execution, the system logs the error messages and feeds
them back to the LLMs. The LLMs then automatically correct
the code, iteratively optimizing and refining the solution until
the correct and effective solution is found.

Through this cooperative approach, multiple LLMs can fully
leverage their own proficiencies to jointly tackle the intricate
BSS issue. This method not only enhances problem-solving
efficiency but also significantly reduces the requirement for
human intervention. With the collaborative efforts of multiple
LLMs, the system can quickly adapt to changing requirements
and environmental conditions, providing flexible and efficient
BSS solutions.

V. EXPERIMENTAL RESULT AND DISCUSSIONS

In this section, extensive experimental results are provided
to verify the effectiveness of the proposed schemes.

A. Experimental Setup
The dataset for the 12th MathorCup College Mathemat-

ical Modeling Challenge in 2022, Problem D, involves a
2500 × 2500 grid area, where the coordinates of each grid
point range from 0 to 24991. The dataset consists of two

1http://www.mathorcup.org



parts: the first part includes the coordinates and traffic volume
information of all weak coverage points within the region, and
the second part contains the coordinates of existing network
base stations. In this work, the coverage radii of macro and
micro base station are set as 30 grids and 10 grids, respectively.
The deployment costs of macro and micro base station are
set as 10 and 1, respectively. The minimum distance between
any two base stations is set as 10 grids. In order to ensure a
realistic architecture and network optimization, the objective
is to rationally plan the positions and types of base stations
to cover at least 90% of the traffic volume of weak coverage
points, taking traffic volume and cost into consideration.

In this paper, we proposed four LLM-based strategies, the
first two of which emphasize the interactive engagement be-
tween humans and LLMs. Considering the practical limitations
of time and efficiency, we have imposed a cap on the number
of permissible interactions. Specifically, if a solution is not
successfully formulated in ten interactions, or if the solution
generated post this threshold fails to align with the stipulated
criteria, the endeavor is deemed unsuccessful. This approach
starkly contrasts with fully automated methods, enabling a
stringent evaluation of the efficacy and efficiency of HiLL
strategy.

B. Experiment Results and Analysis
1) Performance of PoL Strategy: The performance of PoL,

based on ChatGPT 4o, was evaluated to determine the optimal
placement of macro and micro base stations for effective
coverage and cost minimization. The results, visualized in Fig.
8, show that PoL achieved a traffic coverage of 90.01% with
a total cost of 26. The figure includes a clear legend, with
red diamonds representing existing base stations, blue squares
representing new macro base stations, and black hexagrams
representing new micro base stations. The new macro base
stations were placed to maximize coverage over larger areas,
while the new micro base stations were deployed to fill
coverage gaps and handle high-traffic areas. This approach
ensures a balance between coverage efficiency and cost. The
PoL’s ability to achieve high traffic coverage with low cost can
be attributed to its efficient use of prompts to guide the LLM
in generating optimal base station placements. This approach
leverages the LLM’s ability to process complex requirements
and generate reliable solutions.

2) Performance of HiLL Strategy: The HiLL, also based
on ChatGPT 4o, was evaluated using the same metrics of
traffic coverage and cost. This approach leverages both human
expertise and the computational power of the LLM. The
iterative process involves human experts providing feedback
on the LLM-generated solutions, which the LLM then uses
to refine its outputs continuously. This synergy allows the
model to address complex problems that may be challenging
for an LLM to solve autonomously. The results, illustrated
in Fig. 9, indicate that the HiLL strategy achieved a traffic
coverage of 90.01% with a total cost of 26. The HiLL’s ability
to achieve a higher traffic coverage with a lower cost can be
attributed to the integration of human insights and preferences
into the decision-making process. This approach allows for
more nuanced and context-aware solutions.

Fig. 8. PoL strategy employs ChatGPT 4o to solve the BSS problem
and obtains the results of base station planning, including the dis-
tribution of existing base stations, new macro and new micro base
stations.

Fig. 9. HiLL strategy uses ChatGPT 4o to solve the BSS problem and
obtains the solution to base station planning, including the distribution
of existing base stations, new macro and new micro base stations.

3) Performance of LaBa Strategy: In this subsection, we
evaluate the performance of the LaBa strategy in addressing
the BSS selection problem. Unlike PoL and HiLL strategies,
which rely on continuous human interaction, the LaBa strat-
egy operates with minimal human intervention, autonomously
managing the entire BSS process from data collection to
decision-making. Similarly, the primary metrics used for eval-
uation were traffic coverage and cost.

Fig. 10 illustrates the distribution of weak coverage areas,
existing base stations, new macro base stations, and new
micro base stations. The LLM-based agent achieves 100%
traffic coverage with a cost metric of 91, effectively balancing



Fig. 10. LaBa strategy based on ChatGPT 4o is used to solve the
BSS problem, and the results of base station planning are obtained,
including the distribution of existing base stations, new macro and
new micro base stations.

coverage needs with cost constraints. This comprehensive
automation highlights the potential of LLM-based solutions
in achieving efficient and effective base station planning, sig-
nificantly reducing the need for extensive human involvement.

4) Performance of CLaBa Strategy: In this subsection, we
evaluate the performance of CLaBa strategy in solving the
BSS problem. Fig. 11 illustrates that the cooperative multiple
LLM-based agents achieved a total traffic coverage of 90.44%
with a cost metric of 31. This method effectively balances
coverage needs with cost constraints, demonstrating the ability
of multiple LLMs working together to provide a robust and
cost-effective solution for base station planning.

Unlike the LaBa strategy, the CLaBa strategy emphasizes
collaboration among multiple LLMs. Each LLM specializes in
different aspects of the BSS task, such as problem representa-
tion, mathematical formulation, code generation, and solution
verification. This cooperative approach enhances problem-
solving efficiency and adaptability by allowing each LLM
to focus on its strengths, significantly reducing the need for
extensive human intervention. Furthermore, this collaborative
effort facilitates continuous improvement and iterative refine-
ment of solutions through feedback mechanisms, ensuring that
the final outcomes are reliable and effective. The choice of
traffic coverage and cost as performance metrics is justified
because they directly impact the efficiency and effectiveness
of base station placement. High traffic coverage ensures that
the majority of weak coverage points are served, while low
cost ensures that the solution is economically viable.

5) Performance Comparison and Analysis: In addition, we
tested the success rate of four proposed LLM-based methods
for solving the BSS problem, each of which was tested 10
times. From Fig. 12, it is evident that the CLaBa strategy
has the highest success rate among the four approaches.
The CLaBa approach’s multi-agent cooperation mechanism

Fig. 11. CLaBa strategy is used to solve the BSS problem, and the
results of base station planning are obtained, including the distribution
of existing base stations, new macro and new micro base stations.

Fig. 12. Success rate of the proposed four LLM-based strategies for
the BSS optimization problem.

primarily accounts for its superior performance in resolving
the BSS issue. This approach divides duties among agents
with different areas of expertise, resulting in a notable boost in
efficiency and flexibility. Each agent focuses on its expertise,
such as mathematical modeling, code generation, and solution
validation. In addition, the CLaBa strategy enables continuous
improvement and iterative optimization of the solution through
a feedback mechanism, ensuring the reliability and effective-
ness of the final result.

VI. OPEN ISSUES & FUTURE DIRECTIONS

In this section, we explore several open issues and also
promising directions for future research and development in
the integration of LLMs with next-generation networks and
communications.



A. LLM-empowered AI Native Next-Generation Networks

The native intelligence of the next generation communica-
tion network can be rapidly established and boosted by fully
utilizing LLM’s potent natural language processing capability,
the native intelligence of the upcoming generation of com-
munication networks. For example, in future communication
and networks, resource management is a core task to ensure
efficient network operation. LLMs and other AI technologies
play a significant role in resource management by improv-
ing the utilization efficiency of network resources through
intelligent scheduling and optimization. Specifically, LLMs
can analyze historical data and current network status, predict
future network needs, optimize resource allocation in advance,
and reduce network congestion and latency. The integration of
LLMs does, however, come with certain difficulties, including
designing flexible interfaces to adapt to different network
environments, developing efficient algorithms to meet real-
time requirements, and optimizing models to accommodate
the resource constraints of network devices. By adopting a
modular design, different components of the LLMs can be
integrated into the network system as needed. Algorithm
optimization can reduce computing resource consumption to
ensure fast responses. Additionally, flexible interface design
ensures that LLMs can operate efficiently in various network
environments.

B. Task-oriented Selection in Human-LLM Interaction or Pure
LLMs

For the future generation of networking and communication
systems, it is essential to make the task-oriented decision
between a human-LLM interaction framework or a fully
automated LLM framework. On the one hand, the purely
autonomous LLM-based framework can significantly improves
efficiency by reducing human involvement. However, LLMs
are known to suffer from the hallucination problem, where
models can produce inaccurate or misleading information.
This issue is particularly severe in automated network man-
agement and communication systems, where it can result in
hazards and faults in the system. On the other hand, human-
LLM interaction can mitigate the impact of hallucinations,
improving system reliability. Human involvement can serve
as a verification and correction mechanism to detect and cor-
rect erroneous information generated by LLMs promptly. For
example, in an automated customer service system, customer
service personnel can review and adjust the model’s responses
to ensure users receive accurate and reliable service. Although
this approach may reduce overall efficiency, it enhances the
accuracy and reliability of information, increasing user trust
and reducing potential risks.

C. Lightweight Design Adaptive to Wireless Communication
Networks

The emergence of mobile applications and edge computing
in the realm of next-generation networks and communications
has put further demands on the computing power and storage
of models. Resource-constrained devices need to effectively

reduce model complexity and size without compromising
their functionality. Therefore, it is crucial to develop device-
adaptive model lightweight and fast inference technologies.

Lightweight deployment aims to lower the volume and
computing demands of models through a variety of techniques,
including quantization, pruning, knowledge distillation, com-
pression, hardware acceleration, etc. For instance, quantization
is a technique that can drastically reduce the size of the
model and speed up inference while maintaining acceptable
accuracy levels, whose key ides is decreasing the precision of
the numbers used in the model’s weights and activations from
floating-point numbers to integers. Pruning strategies simplify
the model structure by removing superfluous connections from
the neural network, which further reduces complexity. Rapid
inference techniques focus on improving the execution speed
of models on edge devices, especially when real-time or
near-real-time performance is required. Adaptive inference
technology can dynamically adjust the operating parameters
of the model according to the current network environment
and device performance, achieving optimal inference speed
and accuracy.

All in all, lightweight deployment and fast inference are
indispensable for applying LLMs to next-generation networks
and communications. These technologies enable the efficient
deployment and operation of LLMs on resource-constrained
devices, meeting the need for low latency and high per-
formance in areas such as real-time communications, smart
devices, and the Internet of Things.

VII. CONCLUSION

This work demonstrates the significant potential of LLMs
in addressing the BSS problem through innovative strategies.
Specifically, the PoL strategy autonomously performs BSS
tasks with minimal human intervention, efficiently generating
reliable siting solutions through well-designed prompts. The
HiLL strategy is particularly effective in scenarios where
validation or feedback from user expertise is required to
improve the quality of the decision-making process. The
LaBa strategy independently manages the entire BSS process,
utilizing external tools and databases to validate its outputs,
ensuring the reliability of the generated strategies. The CLaBa
strategy further enhances system adaptability and reduces the
need for human intervention through collaborative problem-
solving. These strategies can be extended to other domains
such as urban planning, logistics, and resource management,
where autonomous decision-making is crucial.

This innovative framework is expected to be swiftly ex-
tended to other task-oriented network optimization process as
an first but significant baby step. This will allow humans to
breezily inject experiences or specific requirements into vari-
ous computation-intensive tasks, relieving them from a great
deal of laborious and tedious work and facilitating more ef-
fective decision-making through human-LLM interaction. This
cornerstone will serve as the foundation for more future work
on AI as a Service and AI for insightful Science/Engineering.
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