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Abstract—Graph data, essential in fields like knowledge rep-
resentation and social networks, often involves large networks
with many nodes and edges. Transmitting these graphs can be
highly inefficient due to their size and redundancy for specific
tasks. This paper introduces a method to extract a smaller, task-
focused subgraph that maintains key information while reducing
communication overhead. Our approach utilizes graph neural
networks (GNNs) and the graph information bottleneck (GIB)
principle to create a compact, informative, and robust graph
representation suitable for transmission. The challenge lies in
the irregular structure of graph data, making GIB optimization
complex. We address this by deriving a tractable variational
upper bound for the objective function. Additionally, we propose
the VQ-GIB mechanism, integrating vector quantization (VQ)
to convert subgraph representations into a discrete codebook se-
quence, compatible with existing digital communication systems.
Our experiments show that this GIB-based method significantly
lowers communication costs while preserving essential task-
related information. The approach demonstrates robust perfor-
mance across various communication channels, suitable for both
continuous and discrete systems.

Index Terms—Task-oriented communication, graph neural net-
work, graph information bottleneck, vector quantization.

I. INTRODUCTION

IN the swiftly changing realm of communication systems,
marked by the emergence of 5G and its advancements,

an increasing demand arises for efficient and smart com-
munication frameworks capable of adjusting to intricate and
ever-shifting environments. Conventional communication sys-
tems concentrate on enhancing metrics such as throughput
and latency, frequently neglecting the distinct needs of task-
oriented communications. In task-oriented scenarios, the ob-
jective extends beyond the mere effective transmission of raw
data; it aims to optimize the performance for specific tasks
like classification, prediction, or decision-making. It is worth
noting that in addition to Euclidean data such as images and
text, there are vast amounts of non-Euclidean data generated in
social networks, biological networks, transportation networks
and recommendation systems, etc. [1] This graph-structured
data has no order or coordinate reference points, and is difficult
to represent in a grid-like matrix or a tensor. A graph is
usually composed of nodes and edges, which contain rich
relational information. We can regard the graph data as a
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web of relationships, wherein the nodes are the subjects and
the edges represent the relationships between the nodes. This
feature makes graph an effective tool for modeling complex
relationships in various non-Euclidean data scenarios [2]–[6].

Graph data is widely applied to knowledge representation,
recommendation systems, and user behavior analysis [7].
However, the inherent complexity and size of graph data can
pose challenges for transmission and storage. A complete
graph, which contains all possible relationships between the
nodes, is often not suitable for direct transmission due to the
substantial bandwidth and storage resources required. More-
over, a complete graph tends to contain redundant information,
leading to unnecessary resource consumption. In many practi-
cal applications, only specific task-related information within
the graph needs to be transmitted to accomplish particular
objectives. Additionally, graph data might contain sensitive
information or personal privacy that should be safeguarded
during transmission. Transmitting the entire graph increases
the risk of information leakage. Therefore, an intelligent and
concise communication system is needed to transmit graph
data effectively. Within this context, the Graph Information
Bottleneck (GIB) stands out as an innovative strategy to tackle
these challenges. It draws upon the principles of information
theory and graph neural networks to craft solutions. Central to
this approach is the compression of transmitted information,
ensuring that it retains only the most pertinent features relevant
to the task. This targeted compression facilitates a more
efficient and impactful mode of communication.

A. Related Works
Task-oriented communication is a promising solution for

graph data transmission. Different from traditional communi-
cation, it focuses on the accurate transmission of task-relevant
information, rather than the bit-level precise transmission [8],
[9]. Its characteristics align well with our demands for graph
data transmission. It is difficult to characterize or extract task-
related information with mathematical models, and the existing
task-oriented communication systems mainly rely on deep
learning technology [10]. That is, the neural networks (NNs)-
based encoder and decoder are constructed and trained, so that
the task-oriented communication system obtains the ability to
extract task-relevant information [11]–[13].

Precisely, Farsad et al. proposed a neural network archi-
tecture for text transmission task, that combines joint source-
channel coding (JSCC) with recurrent neural network (RNN)
based encoder, binarization layers, channel layers, and RNN-
based decoder [14]. Xie et al. introduced a system for tex-
tual semantic restoration tasks based on Transformer model
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[9]. Their approach focuses on maximizing system capacity
while minimizing semantic errors by restoring the meaning
of sentences. Guo et al. proposed to utilize pre-trained lan-
guage models to quantify the semantic importance of text and
allocate unequal power based on semantic importance [15].
Some JSCC methods map image pixel values directly to input
representations to achieve high-quality image reconstruction
tasks [16], [17]. Kang et al. proposed an image transmission
method specifically designed for scene classification tasks
[18]. Shao et al. developed a task-oriented communication
scheme for edge inference using the information bottleneck
(IB) [11], [13]. Their scheme aims to improve the performance
of image classification task at the edge server by efficiently
transmitting relevant information. These NNs-based task-
oriented communication systems have achieved outstanding
outcomes, demonstrating the capacity to effectively execute
specific tasks.

B. Motivation & Contributions

However, these works cannot be directly used for graph
data transmission. Because they are based on CNNs or fully
connected networks and deal with regular data such as text
(represented as sequences of characters) and images (repre-
sented as continuous two-dimensional or three-dimensional
pixel sets). Graph data exhibits a more intricate structure,
which is composed of nodes and edges with attribute in-
formation. When transmitting graph data, it is important to
consider the efficiency of transmitting large-scale graph data
while accurately preserving the correlation between nodes
and edges [19], [20]. Therefore, it is necessary to design
a new task-oriented communication system for graph data
transmission. Using information bottleneck theory to develop
task-oriented communication systems is a good option [11],
[21]. Because IB theory aims to find an optimal intermediate
representation that can retain important information in the
input data to ensure the accuracy of the output prediction
while eliminating redundant information [22], [23]. However,
it should be noted that the direct utilization of IB-based
frameworks in graph data processing is not feasible. This is
because the IB framework assumes that the data follows an
independent identically distributed (IID) pattern. Whereas in
graph data, the presence of edges and their attributes results in
the data points being dependent on one another, which makes
the graph data deviate from the IID assumption [24], [25].

Recently, an information-theoretical design principle for
graph data, named GIB, has been developed, which seeks
the right balance between data compression and informa-
tion preservation for graph data [26]. Specifically, employing
GNNs1 as the foundational framework for graph data process-
ing, GIB works well. Through the process of learning and

1GNN is a deep learning model specifically designed to work with graph
data. In contrast to traditional deep learning models primarily handling
vectorized data, GNNs excel at capturing intricate relationships within graphs,
involving nodes and edges [27]. The fundamental principle of GNNs is to
gradually aggregate local neighborhood information by iteratively updating
the representation of nodes [28]. Typical GNN models include Graph Con-
volutional Networks (GCNs), Graph Isomorphism Network (GIN), Graph
Attention Networks (GATs), etc.

parameter adjustments, GIB ensures the preservation of only
task-relevant information while simultaneously compressing
extraneous data. One of the challenges in studying graph in-
formation bottleneck, i.e., how to handle the interdependencies
between nodes in graph data, is the non-IID character of
graph data. One of the primary technical contributions of our
research is task-oriented transmission, which we will further
optimize for.

In addition, the actual widespread use of digital communi-
cation systems makes the realization of compatibility between
task-oriented communication systems and digital communi-
cation systems a necessity. Thus, there is a requirement to
identify a suitable digitization mechanism for communication
systems geared towards graph data, ensuring both effective
data compression and robustness. Vector quantization (VQ)
emerges as a powerful technique that addresses these needs
by mapping high-dimensional data into a finite set of lower-
dimensional codewords. This process not only facilitates sig-
nificant data compression but also enhances the system’s
robustness against noise and transmission errors. Furthermore,
by integrating with deep learning, VQ is highly adaptive and
can be dynamically adjusted to different data distributions and
channel conditions.

Motivated by these issues, we design GIB-enabled task-
oriented communication systems for graph data in this work.
Our main contributions are summarized as follows:

• We introduce GIB into a task-oriented communication
system for graph data. We build a Markov chain model
for information transmission and formulate an optimiza-
tion problem to maximize the mutual information be-
tween the task target and received codewords while
minimizing the mutual information between the received
codewords and the raw graph data. This approach bal-
ances the preservation of critical information in the
extracted features while eliminating redundant informa-
tion, thereby enhancing task success rates and reducing
communication overhead.

• To address the difficulty of handling mutual information
terms in GIB due to high-dimensional integration, we
use the Mutual Information Neural Estimator (MINE)
to directly estimate the mutual information between the
original graph and the subgraphs. This approach over-
comes the challenge of obtaining the prior distribution
of the subgraphs in applying variational approximation
methods.

• Recognizing the importance of topological information
in graph data, particularly in revealing community struc-
tures, we introduce a connectivity loss term into the
objective function. This term leverages topological infor-
mation during feature extraction, reduces fluctuations in
ambiguous node assignments, and contributes to a more
stable training process.

• We map the resulting subgraph representation onto a
jointly trained codebook to generate a discrete index
sequence for transmission. This mapping ensures com-
patibility with existing digital communication systems.
Experimental results show that the system is able to
achieve higher compression rates while achieving task
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Fig. 1. Task-Oriented Communication Scheme for Graph Data: In this scheme, the “transmitted codeword ”refers to the encoded representation
of the task-related subgraph, while the “corrupted codeword ”denotes the representation of the subgraph received by the receiver, which has
undergone corruption during transmission through the channel. The symbol Ŷ represents the task inference output.

success rates comparable to traditional digital communi-
cation methods.

C. Organization

The subsequent sections of this paper are organized as
follows. In Section II, we outline the system model, describe
the structure and design objectives of the task-oriented com-
munication system for graph data. Section III introduces the
details of GIB-enabled task-oriented communication systems
for graph data, including the handling of GIB objectives
and the system training strategy. Section IV presents our
proposed approach for digitizing the task-oriented commu-
nication system. In Section V, we evaluate the performance
and effectiveness of the proposed method through experiments.
In Section VI, potential applications of the proposed method
in practical scenarios are discussed. Finally, we make a brief
summary of this paper in Section VII.

D. Notations

In this paper, a graph with m nodes is defined as g
or G = (V,E,A,X ), where V = {Vi|i = 1, 2, ...,m}
is the set of nodes with cardinality m, E =
{(Vi, Vj) |i < j, Vi and Vj are connected} is the edge
set, A = {0, 1}m×m is the adjacent matrix, and X ∈ Rm×d is
the feature matrix corresponding to V with feature dimension
d. The pair (G, Y ) stands for the graph data and its target
variable. The entropy of Y is defined as H (Y ). The mutual
information between X and Y is represented as I (X,Y ).

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System Model

In this paper, we consider a task-oriented communication
system for graph data as shown in Fig. 1. The system mainly
includes a transmitter and a receiver, where the transmitter
consists of a feature extractor implemented by a GNN and a
joint source-channel (JSC) encoder. The receiver is a neural
network used for task inference. Given an input graph g,
they cooperate to perform tasks to make the inference output
ŷ consistent with the true target variable y. The random

variables (G, Y ) together with the encoded codeword X
and the channel-corrupted codeword X̂ form the following
probabilistic model:

(Y )G → X → X̂ → Ŷ , (1)

which satisfy p (ŷ|g) = pθ (ŷ|x̂) pchannel (x̂|x) pϕ (x|g).
Herein, the lowercase letters g, x, x̂, y, and ŷ denote re-
alizations of the variables represented by the corresponding
uppercase letters. pϕ (x|g) represents the transmitter neural
network parameterized by adjustable parameters ϕ. For a given
input graph g, the feature encoder identifies the representation
x related to the task. The task-relevant features are encoded by
the JSC encoder and then transmitted to the receiver through
the channel.

To accommodate both continuous channels and discrete
channels within this framework, we introduce an indicator
variable ζ that distinguishes between the channel types: ζ = 0
for an continuous channel and ζ = 1 for an discrete. The con-
ditional probability distribution pchannel (x̂|x) is thus defined
as:

pchannel(x̂|x; ζ) =

 1√
2πN0

exp
(
− (x̂−x)2

2N0

)
, if ζ = 0

PX̂|X(x̂|x). if ζ = 1
(2)

where we assume that the continuous channel is the additive
white Gaussian noise (AWGN) channel and the discrete chan-
nel is the Symmetric Discrete Channel (SDC).

AWGN is implemented using an untrained neural network
layer, and the transfer function is expressed as:

x̂ = x+ ϵ, (3)

where the Gaussian noise ϵ ∼ N (0, N0/2).

For SDC, PX̂|X(x̂|x) signifies the transition probability
matrix, encapsulating the likelihood of transitioning from
input to output symbols. The SDC model assumes that both
channel inputs and outputs utilize the same symbol set, with
each symbol corresponding to an identical output probability
distribution. This probabilistic behavior is succinctly captured
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by a transition matrix:

P =


ε 1−ε

r−1 · · · 1−ε
r−1

1−ε
r−1 ε · · · 1−ε

r−1

· · · · · · · · · · · ·
1−ε
r−1

1−ε
r−1 · · · ε


r×r

, (4)

where ε represents the probability of correct symbol trans-
mission and r denotes the cardinality of the channel symbol
set. Potential transmission errors could lead to the receiver
retrieving incorrect vectors, impacting the inference task.

The conditional distribution pθ (ŷ|x̂) stands for the task
inference network parameterized by adjustable parameters θ
at the receiver. It deduces the class label ŷ based on x̂ based
on the channel-corrupted codeword x̂.

B. Problem Description

The effectiveness of task execution is intricately linked to
the dimension of the feature vector produced by the trans-
mitter. For instance, in the context of graph classification
tasks, a higher dimension of the feature vector could lead to
an elevated classification accuracy. However, this advantage
comes at the cost of increased communication overhead. Thus,
the challenge is to identify a concise and informative repre-
sentation that aligns with the optimal subgraph. To formalize
this trade-off, we formulate the following objective function
based on the GIB principle:

LGIB = −I
(
Y, X̂

)
+ βI

(
G, X̂

)
, (5)

in which I(Y, X̂) represents the mutual information capturing
the relevance of task-specific information in the received
codeword, I(G, X̂) represents the preserved information in
X̂ given G, and β acts as a trade-off factor governing the
relationship between the two.

Developing task-oriented communication based on GIB
is a promising approach to solving the graph transmission
challenges. This approach offers an information metric for
the graph data and can effectively capture node and edge
information. However, there are a few noteworthy problems:

• Problem 1: How to deal with mutual information con-
taining graph data to get a tractable objective function?
The expansion of the first term in (5) yields:

I
(
Y, X̂

)
=

∫
p(y, x̂) log

p(y, x̂)

p(y)p(x̂)
dydx̂

=−
∫

p(y, x̂) log p(y)dydx̂︸ ︷︷ ︸
H(Y )=constant

+

∫
p(y, x̂) log p(y | x̂)dydx̂,

(6)

where the first term of the second equation is the entropy
of Y . For a given graph and a given task, the entropy
of Y is determined, so this term can be regarded as a
constant and can be ignored in subsequent optimization.

Therefore, we can obtain the expression for (6) in the
optimization implication:

I
(
Y, X̂

)
=

∫
p(y, x̂) log p(y | x̂)dydx̂. (7)

The joint distribution p (g, y) for graph data and target
labels is known. pϕ (x̂|g) is determined by the transmitter
network pϕ (x|g) and channel model pchannel (x̂|x; ϵ).
For the second integral term, we derive according to the
Markov chain:

p(y | x̂) =
∫

p(g, y)pϕ(x̂ | g)
p(x̂)

dg, (8)

Next, we address the second mutual information term of
(5) and expand it:

I
(
G, X̂

)
=

∫
p(x̂ | g)p(g) log pϕ(x̂ | g)

p(x̂)
dgdx̂, (9)

where p(x̂) is also an intractable high-dimensional inte-
gral:

p(x̂) =

∫
p(g)pϕ(x̂ | g)dg. (10)

It is customary in IB to substitute this marginal distri-
bution with a tractable prior distribution [29]. In GIB,
finding a suitable variational prior is difficult. This is
because of GIB’s interpretation of p(x̂): it represents the
distribution of irregular subgraph structures, not just a
latent graph data representation. Moreover, due to the
non-IID nature of graph data, finding a simple function
as a prior distribution is not feasible. Therefore, a new
method is needed to estimate that mutual information.

• Problem 2: How to utilize topological information in
graph data for communication tasks?
By designing a feature extractor based on GIB theory,
it becomes possible to selectively extract task relevant
information, reducing redundancy and improving effi-
ciency. Yet, when GNNs extract features from graph data,
they often concentrate too much on nodes and neglect
the graph’s structural features. However, for many tasks,
the crucial information is deeply rooted in the graph’s
topology. Therefore, in the process of feature extraction,
it is necessary to consider the topological structure of
the graph. To do this, we need to impose constraints on
the feature extractor to improve the role of topological
information in feature extraction.

• Problem 3: How to be compatible with digital commu-
nication systems?
While the proposed task-oriented communication sys-
tem effectively addresses the challenge of graph data
transmission, its use of continuous signals poses com-
patibility issues with existing digital communication sys-
tems. Given the well-established infrastructure of digital
communication systems, it is impractical to abandon
it completely. Therefore, it is necessary to develop a
task-oriented communication system compatible with the
digital communication system to transmit graph data.
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III. GIB-ENABLED TASK-ORIENTED COMMUNICATION

In this section, we develop a task-oriented communica-
tion system based on GIB theory. Specifically, we combine
variational approximation and MINE techniques to improve
the GIB formulation [30]. This modification enables a more
streamlined optimization process employing neural networks,
which solves Problem 1. In addition, we describe the process
of feature extraction in detail and also node assignment,
including the network configuration and the pertinent revision
made to the objective function, which solves Problem 2.

A. Graph Information Bottleneck Reformulation

To solve Problem 1, we introduce the variable distribution
qθ (y|x̂) as a substitute for the true posterior distribution
p (y|x̂). θ represents the parameter of the inference neural
network in the receiver computing the inference output ŷ.
Consequently, (7) is transformed into:

I
(
Y, X̂

)
=

∫
p (y, x̂) log qθ (y|x̂) dydx̂

= Ep(y,x̂) [log qθ (y|x̂)] .
(11)

Subsequently, Monte Carlo sampling is used to derive the
empirical distribution of the joint distribution as an approx-
imation. N samples are taken for the given data, that is:

p (y, x̂) ≈ 1

N

N∑
i=1

δy (yi) δx̂ (x̂i) . (12)

Here, δ (·) denotes the Dirac function utilized for sampling the
training data. yi and x̂i represent the label and representation
received by the receiver for the i-th training data, respectively.
This approximation leads to a tractable optimization objective
from (11):

Linf (qθ (y | x̂)) = − 1

N

N∑
i=1

logqθ (yi | x̂i) . (13)

Minimizing the objective function in (5) is consistent with
maximizing I

(
Y, X̂

)
and minimizing Linf . This function

is defined as the loss between the inference result Y and
the ground truth for the received x̂. A smaller loss signifies
superior performance of the inference neural network.

About the second mutual information term I
(
G, X̂

)
of (5),

indicating the transmission informativeness, we employ the
MINE to directly approximate it without the need to estimate
p(x̂). We express this term in the form of Kullback-Leibler
(KL)-divergence:

I
(
G, X̂

)
= DKL

[
P
(
G, X̂

)
||P (G)⊗ P

(
X̂
)]

. (14)

For ease of analysis and mathematical treatment, we adopt the
Donsker-Varadhan representation of KL-divergence, which ex-
presses the mutual information term as the difference between
the expected value and the logarithmic expected value:

Transmitter Channel Receiver
𝐺 𝑋 𝑋

GNN
MINE 

estimator

𝑌

Local MI Estimator Training

GIB-based Neural Network Training

Fig. 2. Training Framework for GIB-Based Task-Oriented Com-
munication Systems: The process begins with training the mutual
information estimator to acquire a set of optimized MINE parameters,
denoted as κ∗. Following this, the entire neural network undergoes
training, during which the mutual information estimator utilizes the
previously determined MINE parameters.

I
(
G, X̂

)
= sup

T :G×X̂→R
EP(G,X̂) [T ]− logEP (G)P(X̂)

[
eT

]
= LMI (T ) ,

(15)
in which T = fκ (g, x̂) encompasses all functions that render
two expectations finite. The MINE can be used to estimate
the mutual information between regular input data and its
vector representation. Due to the irregularity of graph data,
GNN is employed to extract the vector representation before
feeding it into the multi-layer perceptron (MLP) for processing
alongside the representation X̂ . fκ (·) serves as the statistics
network, denoting the neural network that executes the process
of obtaining the corresponding real numbers from G and
X̂ . The optimization of this estimator involves adjusting the
MINE parameter κ such that the value on the right-hand side
of (14) closely approximates I

(
G, X̂

)
. This optimization is

formalized as:

max
κ

LMI

(
κ, X̂

)
=

1

K

K∑
i=1

fκ (gi, x̂i)−log
1

K

K∑
i=1,j ̸=i

efκ(gi,x̂i).

(16)
After training with K sets of training data, the training process
generates a set of suboptimal MINE parameters denoted as κ∗

(see Fig. 2).

Drawing from (11) and (15), we derive a reformulation of
the overall loss function:

LGIB (ϕ, θ, κ∗) = Ep(g,y)

{
Epϕ(x̂|g) [− log qθ (y|x̂)]

+ β
[
Epϕ(x̂|g)fκ∗ (g, x̂)− logEp(x̂)e

fκ∗ (g,x̂)
]}

.
(17)

By combining the sampling method, equations (13) and (16),
we arrive at a tractable optimization problem for the entire
system:

min
ϕ,θ

LGIB (ϕ, θ, κ∗) = Linf (θ, ϕ) + βLMI

(
κ∗, X̂

)
. (18)
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B. Model Training Strategy

To solve Problem 2, we specially design the feature extrac-
tion module. Node assignment is the main step in the graph
feature extraction process. First, we introduce assignment
probabilities as a continuous relaxation in node assignment,
to address the problem that the discrete nature of the graph
make it difficult to optimize (18) using gradient optimization
methods. Next, we introduce connectivity loss to improve the
impact of topological information on feature extraction, which
can also make the node assignment process more stable. The
detailed design process of this module will be discussed below.

We devise a node assignment mechanism to determine the
inclusion of each node in the graph within the subgraph. This
mechanism involves GNN extracting node features X from the
original graph G. These features are then input into an MLP to
obtain preliminary node assignments. The Softmax function
is subsequently employed to convert these assignments into
a probabilistic form. We represent the selected subgraph as
Gsub. Specifically, for a given graph G, nodes either belong
to Gsub or Gsub. The node assignment mechanism yields a
matrix S:

S = Softmax (MLPσ2 (X)) with X = GNNσ1 (A,X) .
(19)

The matrix S has dimensions m×2, where m is the number of
nodes in the input graph, and each row is a two-dimensional
vector indicating the assignment probability of the correspond-
ing node. Specifically, the i-th row of S,[

p (Vi ∈ Gsub | Vi) , p
(
Vi ∈ Gsub | Vi

)]
,

represents the probability of the i-th node belonging to Gsub

or Gsub.
We define ϕ1 = {σ1, σ2} as the parameter of the node

assignment mechanism, which is part of the parameter of the
transmitter. Once adequately trained, the values in each row of
S should converge to 0 or 1, achieving robust node assignment.
We take the first row of STX to obtain the feature vectors of
the n nodes belonging to the subgraph.

In conjunction with the JSC encoder parameter ϕ2, we
obtain the transmitter parameter ϕ = {ϕ1, ϕ2}. For simplicity,
we collectively refer to the node assignment mechanism and
the JSC encoder as the feature extractor and encoder, denoted
as gϕ (·). Consequently, the objective function is explicitly
expressed as:

min
ϕ,θ

LGIB (ϕ, θ, κ∗) = Linf (qθ (gϕ (G))) + βLMI

(
κ∗, X̂

)
.

(20)
We introduce a continuous relaxation with probabilistic

assignment of nodes, alleviating the problems arising from the
discreteness of the graph. Nevertheless, inadequate initializa-
tion may lead to poorly trained node allocation mechanisms
and failure to achieve the desired outcomes. In other words,
if the probabilities of a node belonging to Gsub or not are
too close, nodes amay not be appropriately assigned. On
one hand, over-assigning nodes to Gsub will lead to the
presentation of a subgraph that includes an excessive amount
of redundant information. On the other hand, assigning too
few nodes to Gsub will result in an inadequate amount of task-

Algorithm 1 Model Training Procedure

1: Input: Graph and class label pairs {G, Y }, dimension of
the encoder output D, batch size B, channel variance N0

2

2: while epoch t=1 to T do
3: Select a mini-batch of data {(gb, yb)}Bb=1

4: Extract node feature vectors
5: Compute the node assignment matrix S
6: Compute the encoded feature vectors of subgraphs X
7: while batch b=1 to B do
8: Sample noise ϵ N times for each pair of (gb, yb)
9: end while

10: Compute the connectivity loss based on (21)
11: Compute the inference loss based on (13)
12: while inner loop k = 1 to K do
13: Tanin the MINE by (16) to get the suboptimal κ∗

14: end while
15: Compute the MI loss with κ∗:

LMI = 1
N

N∑
i=1

fκ∗ (gi, x̂i)− log 1
N

N∑
i=1,j ̸=i

efκ∗ (gi,x̂i)

16: Compute the overall loss LGIB based on (17)
17: Calculate gradients and update model parameters by

backpropagation
18: end while

related information in the subgraph, rendering it incapable of
successfully executing the task.

To address the above issues, we assume that the model has
an inductive bias that helps the model to focus more on the
connectivity relationships between nodes. The model is thus
better able to capture and utilize the topological information
of the graph. We incorporate the connectivity loss proposed in
[31] to introduce this inductive bias:

Lcon =
∥∥Norm

(
STAS

)
− I2

∥∥
F
, (21)

where Norm (·) denotes row normalization, I2 is the 2 × 2
identity matrix , and ∥·∥F is the Frobenius norm. Elements
a11 and a12 in the first row of STAS are defined as follows:

a11 =
∑
i,j

Aijp (Vi ∈ Gsub | Vi) p (Vj ∈ Gsub | Vj) , (22)

and

a12 =
∑
i,j

Aijp (Vi ∈ Gsub | Ni) p
(
Vj ∈ Gsub | Vj

)
. (23)

Intuitively, if a node belongs to Gsub, its neighboring nodes
are highly probable to belong to Gsub as well. Conversely, if
a node does not belong to Gsub, its adjacent nodes likely do
not belong to Gsub either. Consistently with this, ensuring ad-
equate nodes are assigned to Gsub while reducing redundancy
is achieved through a11

a11+a12
→ 1. This occurs simultaneously

with reducing redundancy in Gsub through a12

a11+a12
→ 0.

Analogously, this holds for Gsub and the elements of the
second row of STAS.

To summarize, we introduce the continuous relaxation with
probabilistic node assignment to enhance the optimization
process. To address potential challenges stemming from inad-



7

equate initialization, such as ambiguous node assignment and
unstable training process, we incorporate the inductive bias
with the connectivity loss Lcon. The overall loss function is
refined as:

min
ϕ,θ

LGIB (ϕ, θ, κ∗) = Linf (qθ (gϕ (G)))

+βLMI

(
κ∗, X̂

)
+ αLcon (gϕ (G)) .

(24)

The training procedures for the GIB-enabled task-oriented
communication system are illustrated in Algorithm 1.

C. Computational Complexity Analysis

The computational complexity inherent in the proposed
methodology primarily emanates from its reliance on GNNs.
In our analysis, the GCN is chosen as the representative
GNN to elucidate the computational complexity of the system.
Characteristically, GCN employs a one-hop receptive field to
assimilate local features, subsequently enlarging this receptive
field through the stratification of layers. Denoting the number
of GCN layers by L, the computational complexity attributed

to GNNs can be articulated as O
(
|E|

L∑
i=1

D
(i)
inD

(i)
out

)
, where

|E| signifies the quantity of edges in the graph, and D
(i)
in ,

D
(i)
out represent the input and output dimensions of each

respective layer. In parallel, the complexity associated with
the MLP layer and the Softmax function within the node
assignment mechanism is quantified as O(mD) and O(m)
respectively, with m indicating the total number of graph
nodes and D symbolizing the output dimension of GNNs.
Consequently, the cumulative computational complexity of the
proposed framework can be comprehensively expressed as

O(|E|
L∑

i=1

D
(i)
inD

(i)
out +ND).

IV. DIGITIZATION OF GIB-ENABLED TASK-ORIENTED
COMMUNICATIONS

This section extends the analog task-oriented communica-
tion system, introduced in Section III, to suit digital commu-
nication environments. As outlined in Problem 3, practical
applications necessitate compatibility with digital systems.
We address this by integrating vector quantization for digital
transmission adaptation.

A. Digital Transmission

A pivotal strategy for transitioning to a digital framework
involves discrete codebook mapping. This technique maps
the continuous outputs of the neural network encoder into
discrete codewords, as discussed in related works [32], [33].
The mapping process employs a predefined discrete codebook
alongside nearest neighbor rules [34]. Let x1, x2, . . . , xn ∈ Rd

be the continuous outputs from the encoder described in
Section III. The codebook, denoted as E ∈ RK×d consists
of K codewords e1, e2, . . . , eK ∈ Rd, where K represents the
codebook size. The discrete mapping function is formulated
as:

xi q = ek where k = argmin
j

∥xi − ej∥2. (25)
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Fig. 3. System Digitization Modules. This figure illustrates the pro-
cess where the subgraph representation is matched against a codebook
to generate an index sequence via the nearest neighbor principle.
This sequence is sent through a symmetric discrete channel, subject
to a specified error probability, leading to potential discrepancies
between the transmitted and received index sequences. The receiver
then reconstructs the representation vector using a shared codebook
with the transmitter for subsequent task inference.

Employing discrete codebook mapping, the probabilistic
model of the system is transformed into a new Markov chain,
represented as:

(Y )G → X → Z → Ẑ → X̂ → Ŷ , (26)

which adheres to the following relationship:

p (ŷ|g) = pϕ (x|g) pQ (z|x) pSDC (ẑ|z) pDQ (x̂|ẑ) pinf (ŷ|x̂) .
(27)

Here, the transition from X to Z entails discretizing feature
representations using the codebook. Z represents the index
sequence derived via the nearest neighbor rule, substituting
X as the input to the channel. For the discrete signal Z, we
employ the discrete channel defined in (2) for its transmission,
that is:

pSDC (ẑ|z) = pchannel(ẑ|z; ζ = 1) = PẐ|Z(ẑ|z), (28)

where PẐ|Z(ẑ|z) is the transition probability matrix of SDC
described in Section II when ζ = 1.

In digital transmission, as indicated in (25), each vector xi

from the encoder output is aligned with its nearest embedding
vector ek from the shared codebook. The transmitter’s role
is simplified to sending the index k to the receiver. The
assignment of indices for transmission is defined as:

p(Zi = k | xi) =

{
1 for k = argmin

j
∥xi − ej∥2

0 otherwise
.

(29)
This results in a continuous vector being translated into a
discrete one-hot codeword. However, channel imperfections
can lead to erroneous index detection (Ẑ). We utilize the SDC
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to model this transmission of discrete indices.

B. Design of Discrete Codebook

Each codeword ei in the vector quantizer’s codebook defines
a Voronoi region Vi:

Vi =
{
x ∈ Rd : ∥x− ei∥ ≤ ∥x− ej∥ , for all j ̸= i

}
. (30)

These regions collectively span the entire vector space Rd to
which the encoder’s output belongs. The quantization process
entails finding the codeword closest to a given vector, which
subsequently determines the Voronoi region and index for
the vector. Balancing the size of the codebook is crucial as
increasing it reduces quantization distortion but also elevates
computational complexity.

We opted for a moderate-sized, suboptimally designed code-
book to achieve acceptable quantization results. To enhance
the codebook’s performance, we introduce a learnable aspect,
allowing codewords to adapt during training. Additionally,
the encoder’s output range is constrained to prevent extreme
variations.

The non-differentiable nature of the quantization operation
poses a challenge for encoder training. To address this, a
straight-through estimator is employed, allowing gradients
from the decoder input to flow back to the encoder output.
Furthermore, a loss term (Lvq) is added to reduce the distance
between the encoder output and the corresponding codeword:

Lvq = ∥sg [x]− e∥2, (31)

with sg [·] representing a stop gradient function.
A commitment loss (LCM ) is also introduced to ensure

the encoder’s output does not deviate excessively from the
codewords:

LCM = ∥x− sg [e]∥2. (32)

The final objective function ( LV Q−GIB) encompasses these
elements alongside the mutual information and connectivity
losses, guiding the entire system:

LV Q−GIB = Linf (qθ (gϕ (G))) + βLMI

(
κ∗, X̂

)
+ αLcon (gϕ (G)) + Lvq + λLCM

(33)

subject to the optimized mutual information parameters κ∗:

κ∗ = argmax
κ

LMI

(
κ, X̂

)
. (34)

Lvq = ∥sg [x]− e∥2, (35)

where sg [·] denotes stop gradient. Therefore, this item is
solely valid for codebook learning, not encoder training.

Given that the volume of the encoder’s output space is
dimensionless, achieving satisfactory quantization mappings is
challenging if the training of the codewords in the codebook
does not align with the rate of parameter training in the en-
coder. Therefore a commitment loss is introduced to constrain
the encoder’s output from increasing:

LCM = ∥x− sg [e]∥2. (36)

TABLE I: Architecture of Neural Network for GIB-Enabled
Task-Oriented Communications

Layer Output
Dimensions

Encoder
Network

GCN Layer (num, dim)
GCN Layer (num, dim)

Node
Assignment

Fully-connected Layer
+ Tanh (num, dim)

Fully-connected Layer
+ Softmax

(num, 2)

Aggregation (batch, dim)
Channel AWGN Channel (batch, dim)
Decoder
Network

Fully-connected Layer + Dropout (batch, dim)
Fully-connected Layer + Log-softmax (batch, class n)

This item only affects the encoder, bringing the output closer
to the code vector without influencing codebook learning.

For codebook updating, we adopt an exponential moving
average (EMA) approach akin to K-means clustering. This
method assigns variable weights to cluster centers over training
batches, ensuring that the codebook dynamically adapts to the
encoder’s output.

V. EXPERIMENTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
GIB-based task-oriented communication system on graph clas-
sification tasks, and investigate the adaptability and effec-
tiveness of continuous and discrete communication systems
respectively. Additionally, ablation studies are also conducted
to illustrate the contributions of the MI loss LMI in GIB and
the connectivity loss Lcon presented in Section III, as well as
the impact of the trade-off factor β on the system performance.

A. Experimental Setup

1) Datasets: For our graph classification experiments, we
carefully select two datasets: COLLAB and PROTEINS.

• COLLAB: This scientific collaboration dataset represents
a researcher’s ego network, where nodes correspond
to researchers and edges indicate collaboration between
them. Each researcher’s ego network is labeled based on
the field to which the researcher belongs, resulting in
three possible labels. COLLAB consists of 5,000 graphs,
with an average of 74 nodes and 2,457 edges per graph.

• PROTEINS: This dataset comprises 1,113 proteins clas-
sified as enzymes or non-enzymes. Nodes in the graph
represent amino acids, and edges exist between nodes
if the distance between corresponding amino acids is
less than 6 angstroms. On average, each graph in the
PROTEINS dataset has 39 nodes and 73 edges.

2) Setings and Baselines: To assess the performance of the
proposed method in a graph classification task, we integrate
GIB into two distinct backbones: Graph Convolutional Net-
work (GCN) [35] and Graph Isomorphism Network (GIN)
[36].

We compare the proposed method with other graph-level
representation learning methods: InfoGraph based on mean
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TABLE II: Architecture of Neural Network for GIB-Enabled
Discrete Task-Oriented Communications.

Layer Output
Dimensions

Encoder
Network

GCN Layer (num, dim)
GCN Layer (num, dim)

Node Assignment (batch, dim)
Aggregation (batch, dim)

Vector Quantization (batch, size)
Channel Symmetric Discrete Channel (batch, size)

Decoder
Network

Vector Decoding (batch, dim)
Fully-connected Layer + Dropout (batch, dim)

Fully-connected Layer + Log-softmax (batch, class n)

aggregation [35] and ASAP (Adaptive Structure Aware Pool-
ing) based on pooling aggregation [37] in terms of graph
classification accuracy, respectively.

• InfoGraph: InfoGraph is an unsupervised graph-level
representation learning method that maximizes the mutual
information between the representations of entire graphs
and the representations of substructures at different gran-
ularity (e.g., nodes, edges, triangles) to make the graph
representations adequately capture the features of sub-
structures.

• ASAP: ASAP utilizes self-attention network along with
GNNs to capture the importance of each node in a given
graph. It also learns a sparse soft cluster assignment for
nodes at each layer to pool the subgraphs to form the
pooled graph.

For a fair comparison, all methods use the same number
of GNN layers in the backbone. Models are trained using
Stochastic Gradient Descent (SGD) with the Adam optimizer.
We employ 10-fold cross-validation to report classification
accuracy in experiments to validate the performance of the
models.

3) Neural Network Architecture: While we do not enforce
complete consistency in the network architectures of different
approaches, we ensure that the GNN backbone and the number
of layers are consistent across methods. The neural network
architectures for the proposed method are shown in Tables I
and II, which are outlined below. In the tables, num is the
number of nodes, batch is the batch size during training,
class n is the number of graph classes, and dim represents
the hidden dimension. The size in Table II refers to the size
of the codebook, which was set to 256 in the experiment.

• Table I shows the network architecture of the proposed
method where GCN is used as the backbone. We use
two GCN layers to extract the node features of the
graph and then perform node assignment. The output of
the Node Assignment layer is multiplied with the full
node features extracted by the GCN to obtain the node
features of the selected subgraph. This output undergoes
power normalization before passing through the AWGN
channel.

• Table II illustrates the network architecture of the pro-
posed digital communication system. In discrete commu-
nication systems, subgraph representations require quan-
tization before entering the channel. During the training

process, the codebook utilized for vector quantization
undergoes automatic updates until it reaches a stabilized
state. The index sequence obtained from quantization
passes through a symmetric discrete channel with a cer-
tain error transfer probability, and the decoder performs
dequantization based on the codebook shared with the
encoder.

We note that the hidden layer dimensions of the proposed
method and baseline methods are set to the same. To comply
with the original implementation idea of the baseline methods,
the output dimension of their encoder network is twice as large
as that of the proposed method, consuming more communica-
tion resources. In addition, since the vector quantization part
is not involved in baselines, the same quantization method as
the proposed method is adopted for comparison algorithms.

B. Performance of GIB-enabled Task-oriented Communica-
tions Without Vector Quantization

In the experiments, we evaluated the robustness of the
proposed method amidst varying channel conditions. Prior
to transmission, we implemented signal power normalization.
During the training phase, a consistent SNR of 5 dB was
maintained, whereas for testing, the SNR was methodically
varied within a range extending from -15 dB to 25 dB. Two
distinct experimental sets were executed, each with a batch
size of 128. The first set operated with a hidden dimension of
16, while in the second, this parameter was augmented to 32.

Fig. 4 graphically illustrates the inference performance of
the methods under evaluation across different channel quality
scenarios. A discernible trend was noted, wherein the infer-
ence accuracy of all three methods demonstrated progressive
enhancement in conjunction with rising SNR levels during
testing, culminating in a plateau. Specifically, Fig. 4 (a) delin-
eates the variation of classification accuracy relative to SNR
for the three methods on the PROTEINS dataset. Our proposed
GIB-based method, alongside the ASAP method, showcased
robust classification performance, with the former exhibiting
particularly notable efficacy. The InfoGraph method achieved
commendable classification accuracy, especially under near-
ideal channel conditions and with a higher hidden dimension.
Fig. 4 (b) presents the experimental outcomes on the COLLAB
dataset, a social network dataset characterized by complex
topology and diverse node interrelations. The presence of
densely connected communities within such networks signifi-
cantly influences the graph’s structural information, which in
turn impacts the classification task. Both baseline methods
exhibited suboptimal performance on this dataset, attributable
to their inadequate consideration of graph topology. As expli-
cated in Section III, the connectivity loss Lcon steers the model
towards heightened consideration of the graph’s structural
characteristics, enhancing the performance of our approach.

Fig. 5 compares the graph classification performance be-
tween our method, which employs the GIN as the backbone,
and the alternative method utilizing the GCN. These experi-
ments were conducted on both the PROTEINS and COLLAB
datasets, with hidden dimensions set to 16 and 32, respectively.
Notably, in the realm of graph classification, the GIN-based
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(a) PROTEINS (b) COLLAB

Fig. 4. Classification accuracy variation with SNR for three methods on PROTEINS and COLLAB Datasets using GCN backbone, at hidden
dimensions of 16 and 32.

(a) Dataset: PROTEINS (b) Dataset: COLLAB

Fig. 5. Classification accuracy variation with SNR for the proposed method on PROTEINS and COLLAB datasets, utilizing GCN and GIN
backbones at hidden dimensions of 16 and 32.

method surpassed its GCN-based counterpart. The GCN, a
prevalent choice for graph data processing, updates node
representations through uniform aggregation of neighboring
nodes. In contrast, GIN adopts a distinct methodology, where
each node initially aggregates its feature with those of its
neighbors via weighted summation. This non-commutative
aggregation process, which is indifferent to the order of nodes,
imparts to the GIN model an invariance to graph isomorphism,
thus enabling it to effectively capture both the structure and
global information inherent in the graph.

Given the specific focus on graph classification in this
study, the adoption of GIN as the backbone is recommended.
However, for a broader spectrum of tasks, the selection of
GNNs with varying intrinsic characteristics as backbones can
significantly bolster task-specific performance.

C. Performance of GIB-enabled Task-Oriented Communica-
tion Systems Utilizing Vector Quantization

In this part, the performance of the proposed discrete
communication system, which incorporates digital codebooks,

is rigorously evaluated. Our experiments are structured to
assess system robustness under varying probabilities of correct
transmission. Here, the probability of correct transmission,
denoted as ε, signifies the likelihood that the index received
by the receiver accurately corresponds with that transmitted
by the sender. Consequently, higher values of ε are indicative
of superior channel quality. During the model training phase,
ε is fixed at 0.94, whereas for testing, an array of ε values,
specifically [0.90, 0.92, 0.94, 0.96, 0.98], are examined.

Fig. 6 graphically represents the classification performance
of all three evaluated methods as a function of ε, with the
hidden dimensions set at 16 and 32 respectively. The results
delineated in these figures unequivocally demonstrate that
our method significantly outperforms the baseline methods
under various channel quality scenarios. The integration of
InfoGraph with VQ is observed to be substantially ineffective
for graph classification tasks within digital communication
systems. The ASAP method exhibits moderate effectiveness
on the PROTEINS dataset; however, its efficacy is markedly
diminished when applied to the more complex COLLAB
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(a) PROTEINS (b) COLLAB

Fig. 6. Classification accuracy variation with probability of correct transmission (ε) for three methods on PROTEINS and COLLAB datasets
using GCN backbone at hidden dimensions of 16 and 32.

dataset. As illustrated in Figure 6 (b), its classification ac-
curacy is confined to approximately 0.6 or lower, indicating
that minor transmission errors exert negligible impact on the
outcomes. The curve illustrating the fluctuation of classifica-
tion accuracy in relation to ε is characterized by irregular
and unpredictable oscillations. In stark contrast, our proposed
method demonstrates robust performance across both datasets,
with classification accuracy exhibiting a modest but consistent
upward trend in line with improvements in channel quality.
This outcome aligns well with our initial hypotheses and
theoretical underpinnings.

To further evaluate the performance of our proposed task-
oriented digital communication system based on the GIB and
VQ, we compared it against traditional digital communica-
tion method. Additionally, to validate the effectiveness of
the VQ mechanism in task-oriented graph data transmission
scenarios, we conducted experiment combining GIB with 8-
bit scalar quantization followed by Quadrature Phase Shift
Keying (QPSK) modulation. Given the non-uniformity in the
dimensionality of the signals produced by these methods,
we apply the same error rate per symbol to all methods to
ensure that the assessment is based on the methods’ ability
to handle equivalent levels of channel-induced errors, rather
than on their inherent dimensions. Models were trained with
a fixed error rate of 0.01 and tested across a range of error
rates from 0.06 to 0.014. These experiments were carried out
on two datasets, PROTEINS and COLLAB, respectively. The
experimental results are shown in Fig. 7.

On PROTEINS, all methods exhibited comparable out-
comes. This is because the PROTEINS data set is relatively
simple and does not require a more elaborate symbolic
representation. However, on COLLAB, the performance of
the GIB based methods is significantly better than that of
traditional digital communication method, which reflects the
effectiveness of GIB for extracting task-related information on
complex graph data. Between the two GIB-based methods,
vector quantization significantly outperforms the traditional
digitization method, highlighting its advantages in handling
complex datasets with higher dimensionality and complexity.

TABLE III: Impact of different hidden dimensions on the
performance of GIB and GIB without LMI on PROTEINS
dataset.

SNR -15 dB -5 dB 5 dB 15 dB 25 dB

GIB
dim-16 0.564 0.661 0.720 0.734 0.738
dim-32 0.549 0.670 0.733 0.731 0.735

diff -0.015 0.009 0.013 -0.003 -0.003

GIB dim-16 0.544 0.634 0.717 0.728 0.733
without dim-32 0.535 0.640 0.730 0.731 0.734
LMI diff -0.009 0.006 0.013 0.003 0.001

TABLE IV: Impact of different hidden dimensions on the
performance of GIB and GIB without LMI on COLLAB
dataset.

SNR -15 dB -5 dB 5 dB 15 dB 25 dB

GIB
dim-16 0.559 0.725 0.762 0.767 0.765
dim-32 0.586 0.723 0.770 0.774 0.778

diff 0.027 -0.002 0.008 0.007 0.013

GIB dim-16 0.537 0.701 0.758 0.763 0.765
without dim-32 0.571 0.720 0.769 0.773 0.776
LMI diff 0.034 0.019 0.011 0.010 0.011

The superior performance of the proposed task-oriented digital
communication system based on the GIB and VQ on the
COLLAB dataset highlights its potential advantages over tradi-
tional communication systems and traditional digital schemes,
particularly in scenarios where data is characterized by high
dimensionality and intricate patterns.

D. Ablation Study

To empirically ascertain the contribution of the individual
components in our proposed methodology, we executed a
series of ablation studies. Specifically, we extracted LMI and
Lcon from the loss function, thereby deriving two distinct
variants of our method: GIB lacking LMI and GIB lacking
Lcon.
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(a) PROTEINS (b) COLLAB

Fig. 7. Classification accuracy of three methods varying with the symbol error rate on the PROTEINS and COLLAB datasets: GIB combined
with vector quantization, GIB combined with scalar quantization, and traditional digital communication using 8-bit + QPSK modulation.

TABLE V: Task accuracy and standard deviation of GIB
and GIB without Lcon on the PROTEINS dataset at the 16-
dimensional hidden dimension.

SNR -15 dB -5 dB 5 dB 15 dB 25 dB

GIB mean 0.564 0.661 0.72 0.734 0.738
stdev 0.049 0.050 0.036 0.028 0.027

GIB mean 0.532 0.648 0.724 0.737 0.725
without Lcon stdev 0.052 0.058 0.039 0.033 0.030

1) Effectiveness of LMI : Observations from Tables III and
IV indicate that, across both datasets, the system based on
GIB and its variant without the LMI component consistently
exhibit superior performance at a hidden dimension of 32
compared to a hidden dimension of 16. This is because an
increase in the hidden layer dimension increases the capacity
of the model, which means that the network can capture more
details in the data. Especially for graph data with complex
structures, higher model capacity can help the model learn
richer representations and thus improve performance.

It is worth noting that the size of hidden dimension has a
more significant effect on the performance of the variant with-
out LMI than GIB. The absence of LMI in the variant causes
the model to focus more on maximizing mutual information
between the input graph data and the extracted representations,
while neglecting the aspect of compression. Consequently, the
extracted representations contain much redundant information
that takes up space for useful information. Therefore, as the
hidden dimension increases, the model capacity increases. This
allows the model to capture richer information in the graph
data and more information needed for the task. In other words,
GIB takes into account information compression, meaning it
can achieve good performance even with relatively smaller
model capacity.

2) Effectiveness of Lcon: Furthermore, the absence of the
connectivity loss constraint, Lcon , not only detrimentally
impacts system performance on certain datasets but also in-
stigates volatility in node assignments, subsequently leading
to inconsistent graph classification results. To illustrate the

TABLE VI: Task accuracy and standard deviation of GIB
and GIB without Lcon on the COLLAB dataset at the 16-
dimensional hidden dimension.

SNR -15 dB -5 dB 5 dB 15 dB 25 dB

GIB mean 0.537 0.701 0.760 0.763 0.768
stdev 0.022 0.012 0.012 0.014 0.013

GIB mean 0.541 0.699 0.752 0.760 0.763
without Lcon stdev 0.018 0.024 0.016 0.016 0.013

TABLE VII: Influence of Mutual Information Weight β on
Graph Classification Accuracy

β
SNR -15 dB -5 dB 5 dB 15 dB 25 dB

0.01 0.530 0.648 0.706 0.722 0.731
0.1 0.564 0.661 0.720 0.734 0.738
0.3 0.575 0.650 0.727 0.730 0.733
0.5 0.552 0.660 0.718 0.724 0.727
0.7 0.571 0.643 0.722 0.728 0.736

significance of connectivity loss and its impact on system relia-
bility, we adopt the arithmetic mean of outcomes derived from
a 10-fold cross-validation process as the benchmark for task
execution accuracy. Complementarily, the standard deviation
computed from these same 10 iterations serves as the metric
to gauge the consistency and robustness of our system’s perfor-
mance under different communication conditions. It becomes
evident upon analysis that the standard deviation associated
with GIB added Lcon exhibits a reduction in comparison to
its variant without Lcon under various channel conditions. This
result suggests that the connectivity loss we incorporate plays
a critical role in improving the robustness and stability of the
system performance.

3) Influence of Variations in β on System Performance:
The hyperparameter β, associated with the mutual information
term, plays a pivotal role in modulating the extent of mutual
information between the graph features and the subgraph fea-
tures, thereby reflecting the relative importance of the graph’s
global structure versus its local features. To explore this
interplay, we conducted experiments assessing the impact of
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varying β values on classification accuracy, with the findings
presented in Table VII. The experimental data reveal that the
system attains optimal performance at a moderate MI factor
level, in contrast to either extremely high or low levels.

When β is set to a low value, the model predominantly
accentuates local features, while marginalizing the global
structural information of the graph. This can lead to the
model’s failure in capturing critical global relationships within
the graph, culminating in a diminished classification accuracy.
Inversely, a high β value results in the model prioritizing
the global graph structure at the expense of local features.
Such an overemphasis on the macro structure of the graph
renders the classifier less receptive to nuanced local features,
thereby constraining the model’s task execution capabilities.
By selecting a moderate value for β, the model achieves
an equilibrium between harnessing the global structure and
incorporating local features. This equilibrium enables the
model to effectively utilize the intrinsic global structure of
the graph while concurrently considering the node-specific
local features. The resultant synergistic integration of global
and local features thus significantly enhances the model’s
performance in graph classification tasks.

VI. DISCUSSION

Task-oriented graph data transmission is a promising re-
search avenue, especially relevant in smart city scenarios
such as traffic management and environmental monitoring,
where distributed edge computing plays a crucial role. In
these contexts, numerous sensors and devices across the city
communicate with central servers for data processing. This
communication technique significantly reduces bandwidth us-
age while maintaining accurate inference capabilities, making
it highly suitable for real-time applications in urban settings.
To effectively translate the theoretical foundations of the
GIB approach into tangible applications, it is essential to
demonstrate its practical utility in addressing real-world, task-
oriented communication challenges. Here are some heuristics
worth exploring.

A. Heuristics for Inference Goal Formulation

Real-world scenarios encompass a broad spectrum of in-
ference objectives, contingent upon the specific application
context. For example, in the realm of autonomous vehicles, the
focus might be on detecting and responding to traffic signals
and obstacles. In contrast, industrial IoT may concentrate on
predicting equipment failures. The GIB framework is designed
to fine-tune the communication process, thereby amplifying
the precision and efficiency tailored to these particular tasks.
The GIB model can be crafted to cater to either uni-task
or multi-tasks. While task-specific models are optimized for
a unique objective, task-agnostic models can be expanded
to address a variety of tasks through strategic architectural
enhancements and transfer learning techniques. This approach
necessitates training the model across a diverse array of tasks
and datasets, fostering its ability to generalize across varied
communication scenarios.

B. Heuristics for GIB Model Training

The GIB model should be trained on data that mirrors the
complexities of its target real-world task. This process entails
amassing comprehensive datasets that encompass both raw
input data, such as sensor readings or visual imagery, and the
relevant task-specific labels, such as classifications of objects
or indicators of faults. It is imperative that these data are
meticulously annotated and preprocessed to construct a graph
that encapsulates the interconnections and interdependencies
among various data elements. The efficacy of GIB framework
should be substantiated through rigorous experimentation with
datasets that pertain to different task-oriented communication
applications. For instance, industrial datasets could be utilized
to train the model in predictive maintenance tasks, employing
sensor data to anticipate equipment failures. Additionally,
deploying the GIB framework on medical imaging datasets
could enhance communication efficiency in tasks such as
diagnosing diseases and monitoring patient conditions.

C. Heuristics for Training Dataset Construction

To construct a training dataset for tasks without a standard
dataset, follow these steps: First, clearly specify the task,
such as node classification or link prediction; second, collect
raw data needed for the graph-based task, typically in the
form of nodes, edges, and node features; third, preprocess
the data suitable for graph-based learning by normalizing
node features, removing self-loops, and converting the graph
to an appropriate format (e.g., adjacency matrix, edge list);
Construct graph representations to serve as inputs to GNN,
typically involving adjacency matrices and node feature matri-
ces; Generate pairs of input graphs and target outputs specific
to the task. For instance, for node classification, the input is
subgraphs centered around each node with the output being
the class label of the central node for node classification tasks,
while for link prediction tasks, the input is subgraphs around
a candidate link with the target being a binary label indicating
whether the link exists; Implement GIB to identify and retain
the most informative parts of the graph while discarding
unnecessary information by encoding the graph data into a
compressed representation and decoding it to approximate the
original or task-specific output; Finally, divide the dataset to
ensure the model generalizes well to unseen data. Addition-
ally, feature engineering, such as aggregating neighborhood
information and generating higher-order features, can enrich
node features. Data augmentation can also be used to improve
the model’s robustness in data-hungry cases.

VII. CONCLUSION

In this study, we explored GIB-based task-oriented commu-
nication for graph data transmission, focusing on optimizing
mutual information between received codewords and the task
goal while reducing the mutual information with the origi-
nal graph representation. Utilizing variational approximation,
Monte Carlo sampling, and MINE, we devised a workable ob-
jective function, addressing the challenge of computing mutual
information for irregular graph data. We also incorporated a
connectivity loss term to account for community structure in
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graph data, which improved subgraph selection and stabilized
training, as confirmed by our experiments. Furthermore, we
adapted our method for digital transmission using vector quan-
tization. Our tests across various SDC channel qualities consis-
tently showed strong performance, underscoring the method’s
adaptability and efficacy. Future work will explore more
practical application areas and include hands-on experiments
with real-world data.
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