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Trustworthy Image Semantic Communication with
GenAI: Explainablity, Controllability, and Efficiency

Xijun Wang, Dongshan Ye, Chenyuan Feng, Howard H. Yang, Xiang Chen, and Tony Q. S. Quek

Abstract—Image semantic communication (ISC) has garnered
significant attention for its potential to achieve high efficiency in
visual content transmission. However, existing ISC systems based
on joint source-channel coding face challenges in interpretability,
operability, and compatibility. To address these limitations, we
propose a novel trustworthy ISC framework. This approach
leverages text extraction and segmentation mapping techniques to
convert images into explainable semantics, while employing Gen-
erative Artificial Intelligence (GenAI) for multiple downstream
inference tasks. We also introduce a multi-rate ISC transmission
protocol that dynamically adapts to both the received explainable
semantic content and specific task requirements at the receiver.
Simulation results demonstrate that our framework achieves
explainable learning, decoupled training, and compatible trans-
mission in various application scenarios. Finally, some intriguing
research directions and application scenarios are identified.

I. INTRODUCTION

Unlike conventional digital communication systems that pri-
oritize bit-level correctness, semantic communication empha-
sizes the conveyance of meaning between transmitter and re-
ceiver. This approach extracts and transmits intricate features,
commonly referred to as semantic-level information, directly
from the source content. This “transmit after understanding”
philosophy significantly reduces redundant data transmission,
positioning semantic communication as a promising main-
stream technique for next-generation (6G) communication
systems [1]. As visual content, including photographs, info-
graphics, and videos, proliferates at an unprecedented rate, the
need for effective image transmission within semantic commu-
nication systems becomes increasingly important. However,
this surge in visual data presents unique challenges, primarily
due to the content richness and inherent ambiguity of images.
Addressing these challenges is crucial for advancing Image
Semantic Communication (ISC) technologies, which hold the
potential to revolutionize user experience and dramatically
improve overall efficiency.

A significant breakthrough in this field came with the
introduction of Deep Joint Source-Channel Coding (JSCC)
by Bourtsoulatze et al. [2]. This approach utilizes a unified
neural network at the transmitter and receiver for both im-
age encoding and semantic extraction, demonstrating superior
performance in image reconstruction quality. Building upon
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this preliminary work, researchers have developed several
innovative models to address various aspects of semantic
communication. To enhance the image reconstruction quality,
the Deep JSCC-f model was proposed in [3] by incorporating a
channel feedback mechanism. A model with a feature scaling
module that adapts to channel conditions was developed in
[4]. Additionally, hybrid automatic repeat request (HARQ) was
exploited in [5] to reduce the semantic transmission error.

Despite the promising advancements in deep JSCC-based
schemes, several significant limitations persist, hindering their
widespread adoption, trustworthiness, and effectiveness. These
challenges include: i) lack of interpretability in semantic
representations, as the extracted semantics are represented
as opaque feature vectors, impeding algorithm optimization
and human understanding; ii) operability issues in model
training, where the joint training and simultaneous updating
requirements for transmitter and receiver models complicate
deployment, particularly for multi-downstream tasks; iii) com-
patibility problems in signal transmission, where the assump-
tion of direct complex-valued signal transmission through
channels often conflicts with current communication systems
and hardware architectures; and iv) inefficiencies in multi-
rate and multi-task scenarios, where current techniques fail
to maximize transmission efficiency because of overlooking
the semantics of source content.

In this article, we propose a novel trustworthy ISC frame-
work designed to enhance explainability, controllability, and
operability. Our framework features an image semantic en-
coder at the transmitter, which leverages pre-trained foun-
dation models to convert images into explainable semantics
through text extraction and segmentation mapping. At the
receiver end, we employ cutting-edge Generative Artificial
Intelligence (GenAI) to perform multiple downstream infer-
ence tasks, including image caption generation, image seg-
mentation, and image reconstruction. A key advantage of our
framework is the elimination of the need for joint training or
synchronous updates between transmitter and receiver mod-
els. The transmitter utilizes pre-trained models with robust
generalization capabilities, reducing task-specific adjustments,
while the receiver can independently update and train us-
ing pre-generated semantic data. Furthermore, we introduce
a semantic-level multi-rate ISC transmission protocol. This
protocol is designed to maintain exceptionally high transmis-
sion efficiency while adapting to specific task requirements,
ensuring optimal performance across various communication
scenarios.

The remainder of this paper provides a detailed exposi-
tion of our trustworthy ISC framework, presents encouraging
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Fig. 1. An end-to-end trustworthy ISC framework based on system-compatible explainable semantics.

results, explores potential applications, and concludes with
future research directions.

II. TRUSTWORTHY ISC FRAMEWORK

Our proposed unified end-to-end trustworthy ISC frame-
work, illustrated in Fig. 1, harnesses GenAI for multitask pro-
cessing. The trustworthiness of this framework is underpinned
by its explainability and controllability, which are ensured
through two key aspects. Firstly, we employ explainable se-
mantics as image semantic carriers, including image semantic
text and image semantic segmentation maps. Secondly, the
multi-rate transmission control is dynamically determined by
both the received explainable semantic content and the specific
task requirements at the receiver. This approach enables a
flexible and transparent communication system adaptive to
varying needs. The subsequent sections will delve into a
detailed description of the main components.

A. Explainability in Decoupled Transceiver Models
Our framework incorporates an image semantic encoder

at the transmitter to ensure compatibility with contemporary
digital communication systems. This encoder, built upon a
pre-trained foundation model, generates explainable semantics
in discrete representation. At the receiver end, we implement
an Explainable Semantics-based Image Reconstruction Mod-
ule (ES-IRM). This module is designed to facilitate high-
quality image reconstruction using the transmitted explainable
semantics. Additionally, our framework also includes encoder
and modulation module for transmitting explainable semantics
through digital communication systems over physical chan-
nels. Similarly, semantics are recovered through decode and
demodulation module at the receiver.

1) Image Semantic Encoder: The image semantic encoder
is designed to transform images into explainable semantics
that facilitate downstream inference tasks. This encoder ex-
tracts two primary types of semantics: image semantic text
(IS-text) and multi-level image semantic segmentation. As
illustrated in Fig. 2, the latter encompasses three distinct
levels of segmentation maps: A-seg, which provides a semantic
segmentation map with object labels and instance boxes; B-
seg, offering a comprehensive segmentation map with fine
contours based on the segment anything model [6]; and S-
img, comprising sub-images of each object identified in A-seg,
obtained through Region of Interest (ROI)-based masking op-
erations on the original image. Importantly, all these semantic
representations are generated in discrete data formats, ensuring
seamless transmission over physical channels using modern
digital communication systems. This multi-faceted approach
to semantic extraction not only enhances the richness of the
transmitted information but also maintains compatibility with
existing communication systems.

2) Explainable Semantic Image Reconstruction Module:
Our Explainable Semantic Image Reconstruction Module (ES-
IRM) at the receiver leverages the Generative Adversarial
contrastive Language-Image Pre-training (GALIP) model [7],
offering superior generation speed and computational effi-
ciency compared to diffusion and autoregressive models. The
ES-IRM’s core architecture, illustrated in Fig. 2, harnesses
the powerful image-text pairing capability of the Contrastive
Language-Image Pre-training (CLIP) model [8]. It comprises
a CLIP text encoder with its corresponding generator, and a
CLIP image encoder (CLIP-ViT) paired with its discriminator.
The process begins with the CLIP text encoder producing a
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Fig. 2. Details of key components in the trustworthy ISC framework, where A-seg and B-seg denote the segmentation maps based on semantic segmentation
and Segment Anything, respectively, TN and IN denote the generated text and image feature vector, ZN denotes the additional noise for generative model
training, NER stands for Named Entity Recognition, and DFS-block stands for Deep text-image-segmentation Fusion Block.

text feature vector TN , which, concatenated with a random
noise vector ZN , serves as input to the generator network.
Concurrently, the CLIP-ViT generates an image feature vector
IN . The discriminator then utilizes both IN and TN to perform
accurate similarity reasoning, validating the correspondence
between the input image and text features. This mechanism
guides the generator in producing text-consistent reconstructed
images, ensuring a high-fidelity output that aligns with the
transmitted semantic information.

The generator network in our ES-IRM employs a sophisti-
cated architecture comprising a feature map module and mul-
tiple Deep Fusion of text/image Segmentation (DFS) blocks,
designed to enhance image reconstruction fidelity. Initially, the
feature map module transforms the concatenated text feature
vector and noise vector into an intermediate feature map.
The DFS blocks, central to our approach, then take on the
crucial task of image reconstruction based on this intermediate
representation. These blocks fuse the text feature vector and
received image segmentation maps into the reconstruction pro-
cess, utilizing an affine layer [9] and a Spatially-Adaptive Nor-
malization (SPADE) layer [10], respectively. This novel DFS-
Block design significantly mitigates structure-level disparities
between the generated and original images, ensuring a high
degree of visual and semantic coherence. Consequently, our

ES-IRM demonstrates remarkable capability in reconstructing
high-quality images that are visually similar and semantically
close to the origin image.

B. Controllability in Semantic-level Multi-rate Transmission
Unlike conventional HARQ-based multi-rate semantic com-

munication schemes that use uninterpretable feature vectors,
our proposed approach achieves semantic-aware multi-rate
transmission through three key components: a policy controller
at the transmitter, a correlation analysis module at the receiver,
and a shared vector database. This system facilitates adaptive
and controllable data transmission, dynamically responding to
both the semantic content of the communicated information
and the specific requirements of the receiver’s task.

1) Correlation Analysis Module: The receiver employs
a correlation analysis module to evaluate the relevance of
received semantics to the task at hand. This process begins
with both the task description and image semantic texts
being processed through a Named Entity Recognition (NER)
module [11] to extract significant entity words. These extracted
words are then converted into vector representations using a
pretrained word embedding model. The module subsequently
calculates the cosine similarity among the vectorized task
descriptions, image semantic texts, and the vector database.
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Based on these similarity scores, the correlation analysis
module determines whether additional sub-semantics should
be requested from the transmitter.

2) Policy Controller: The policy controller at the transmit-
ter strategically selects appropriate semantics for transmission
based on feedback from the receiver regarding the type and
status of downstream tasks. Initially, the image semantic text
is sent due to its low communication cost compared to the
entire image. The controller then iteratively selects which sub-
semantics to transmit based on ongoing feedback until the
task is reported as completed. For instance, only the image
semantic text might be necessary for a question answering
task, whereas an image reconstruction task might require the
policy controller to selectively transmit semantic maps from
A-seg or B-seg, or even sub-images. This flexibility enables
efficient use of bandwidth while ensuring the receiver has
sufficient information to complete its task.

3) Vector Database: The transmitter and receiver share a
vector database containing word embeddings for all classes
extracted by the image semantic encoder in A-seg. These
embeddings, generated using models like Word2Vec [12],
enable efficient computation of similarity between downstream
tasks and image semantic texts. The use of word embeddings
is beneficial for accurately handling synonyms and seman-
tic relationships through similarity calculations in the vector
space.

III. APPLICATION SCENARIOS

A. Multi-task Scenario

To evaluate the performance of the proposed framework,
the Common Objects in Context (CoCo) dataset is used,
which is a large-scale image dataset for object detection,
segmentation, and image captioning released by Microsoft
team1. For generating image captions task, the Bilingual
Evaluation Understudy (BLEU) score is used to primarily
measure the similarity between two sentences. A higher BLEU
score indicates closer approximation of the generated captions
to the manually annotated ones. For image reconstruction task,
three commonly-used performance metrics are employed: Peak
Signal-to-Noise Ratio (PSNR) to indicate the pixel-level con-
sistency of the reconstructed image, Learned Perceptual Image
Patch Similarity (LPIPS) to measure the content consistency of
the reconstructed image, and Fréchet Inception Distance (FID)
to assess the diversity and distribution consistency between the
reconstructed and original image sets.

In conventional digital communication, the image is com-
pressed firstly, then encoded and modulated, and finally sent
to the physical channel. The receiver obtains the compressed
content after demodulation and decoding, and then recon-
structs the original image. This study employs a traditional
digital scheme comprising JPEG compression, Low-Density
Parity-Check (LDPC) coding, and Quadrature Phase Shift
Keying (QPSK) modulation. Two state-of-the-art algorithms,
namley, SPADE [10] and GALIP [7], are used as comparison
schemes. GALIP utilizes textual descriptions for image gen-
eration, while SPADE focuses on image reconstruction using

1http://cocodataset.org/

only segmentation maps. Our proposed method, ES-IRM, is
evaluated in two distinct variants to assess its performance
and versatility. The first variant, ES-IRM-A, integrates ES-
IRM with image semantic text and exclusively utilizes A-
seg maps for reconstruction. In contrast, ES-IRM-B follows
a similar approach but employs B-seg maps instead of A-
seg, allowing us to compare the effectiveness of different
segmentation techniques within the ES-IRM framework.

1) Image Caption Generation Task: In the context of image
caption generation, our proposed semantic communication ap-
proach demonstrates significant advantages over conventional
digital systems. While traditional methods compress images
using JPEG at its lowest quality setting (JPEG-q1) to minimize
data transmission, potentially causing severe visual distortion,
our method transmits only the image semantic text. This allows
the receiver to generate captions directly without the need
for image reconstruction. Comparative analysis using BLEU
scores on the test image set reveals a substantial performance
gap: our semantic approach achieves a score of 33.613, while
the conventional method only manages 15.898. This represents
a 114.2% improvement in caption quality, primarily attributed
to the preservation of essential semantic information and the
avoidance of visual distortions caused by aggressive JPEG
compression in traditional systems.

2) Image Reconstruction Task: Our proposed framework,
particularly the ES-IRM-B variant, demonstrates superior per-
formance in image reconstruction tasks, as evidenced by Table
I. ES-IRM-B achieves the best results in semantic-awareness
metrics, specifically LPIPS and FID scores, where lower
values indicate closer semantic similarity to the original image.
Fig. 3 visually confirms this superiority, showing ES-IRM-B’s
ability to closely replicate original image content, including
specific details like a purple bus, a laptop, and buildings.
In contrast, alternative methods exhibit significant limitations:
JPEG-q1 suffers from severe color distortion and blocky
artifacts due to extreme compression; SPADE struggles with
complete object depiction (e.g., a purple bus), relying solely
on segmentation maps; GALIP, using only semantic text,
produces images drastically different from the originals (e.g.,
the reconstruction images of a baseball player swinging a bat
and a laptop); and ES-IRM-A, while an improvement, lacks
sufficient detail in some cases (e.g., a laptop). Overall, the pro-
posed framework consistently generates more comprehensive
and detailed reconstructions at comparable compression ratios,
making it a promising solution for efficient image transmission
and reconstruction.

3) Transmission Efficiency: Our experimental results high-
light a stark contrast in communication requirements between
various semantic representations. While image semantic text is
typically limited to a mere 200 bytes, semantic segmentation
maps and sub-images demand substantially more data. Specif-
ically, A-seg requires an average of 1,952.09 bytes, achieving
a 1/100 compression ratio relative to the original image, while
B-seg needs 2,650.29 bytes on average, resulting in a 1.35/100
ratio. These ratios significantly outperform conventional Deep
JSCC schemes, which typically achieve only 1/12 semantic
compression. For comparison, JPEG at its lowest quality
setting (JPEG-q1) requires an average of 2,094.93 bytes to
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Fig. 3. Visualization of image reconstruction quality for various schemes. The first column contains the original images, and the remaining columns consist
of the reconstructed images generated by JPEG-q1 (refer to JPEG compression algorithm at its lowest quality), SPADE [10] (refer to the semantic image
synthesis algorithm with a spatially-adaptive normalization), GALIP [7] (refer to the ingenious combination of CLIP and generative adversarial networks),
ES-IRM-A (refer to an invariant algorithm that integrates ES-IRM with image semantic text and exclusively utilizes A-seg maps for reconstruction), and
ES-IRM-B (refer to a similar approach but employs B-seg maps instead of A-seg), respectively.

reach a comparable 1/100 compression ratio. These findings
underscore our approach’s superior transmission efficiency
while maintaining semantic integrity.

TABLE I
IMAGE RECONSTRUCTION PERFORMANCE

Scheme PSNR LPIPS FID

JPEG-q1 20.779 0.432 159.063

SPADE [10] 11.507 0.534 63.601

GALIP [7] 9.406 0.597 39.846

ES-IRM-A (ours) 9.181 0.552 55.398

ES-IRM-B (ours) 10.375 0.403 34.509

B. Multi-rate Communication Scenario

1) Single-user Single-task: Fig. 4 demonstrates the effi-
cacy of our proposed framework in a single-user, single-
task multi-rate communication scenario. The receiver initially
reconstructs an image using the received semantic text (the

first image in Fig. 4). If unsatisfactory, entity nouns from
both task description and image semantic text are extracted
and embedded as word vectors (e.g., ['people', 'field'] and
['baseball', 'player', 'uniform', 'hat', 'bat', 'catcher', 'uniform',
'helmet', 'ball']). A correlation analysis between the vectorized
task descriptions and image semantic text reveals semantic
similarities, such as the word 'people'in the task description
corresponding to 'player' and 'catcher' in the image seman-
tic text. Further analysis using the shared vector database
identifies 'person' as the related category among all A-seg
categories. Based on this analysis, the correlation analysis
module requests additional sub-semantics related to the object
label 'person' from the transmitter to enhance image recon-
struction quality. Subsequently, the transmitter progressively
sends supplementary semantic information in the following
order: A-seg maps focusing on the 'person' category, detailed
B-seg maps, and associated sub-images. This iterative process
yields subsequent reconstructions (from the second to the
fifth image) with improved PSNR and lower LPIPS scores.
Our experimental results confirm that this multi-rate strategy
enhances both the efficiency and quality of task completion
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Fig. 4. Schematic diagram for single-user, single-task, and multi-rate communication.

progressively, showcasing its potential for adaptive, task-
centric image transmission and reconstruction.

2) Single-user Multi-task: In our study of single-user,
multi-task multi-rate communication, we simulate a scenario
where a user must complete a diverse set of 480 tasks: 160
each for image captioning, segmentation, and reconstruction.
These tasks are presented in random order to mimic real-world
variability. We ensure task diversity by involving each category
target in two distinct tasks. To create a comprehensive test
dataset, we utilize Python’s COCO API library functions to
filter and select images from the COCO dataset. Specifically,
we choose 50 images per category, resulting in a total of
4,000 test images. This selection method ensures that each
category appears in approximately 400 images, providing a
balanced representation across the dataset. We compare our
proposed framework with three baseline schemes. The digital
scheme combines the JPEG algorithm with traditional digital
communication methods. As it lacks knowledge of specific
downstream tasks, it uses a standard image compression
rate (e.g., JPEG-q30) to ensure adequate quality for various
potential tasks. The digital with knowledge scheme, while
similar, leverages task awareness to optimize resource usage.
It employs JPEG-q25 compression for image captioning while
maintaining the digital scheme’s approach for other tasks.
Lastly, the ISC with knowledge scheme, grounded in ex-
plainable semantics and task awareness, selectively transmits
specific types of sub-semantics tailored to each task.

Table II illustrates the average data transmission require-
ments for each communication scheme. The digital scheme,

employing JPEG compression at q30 for all tasks, requires
5,761.12 bytes per image. The digital with knowledge scheme
reduces this for image caption tasks by using a lower com-
pression rate. Our proposed framework and the ISC with
knowledge scheme demonstrate superior efficiency for image
caption tasks, requiring only 200 bytes of image semantic text.
For image segmentation, leveraging the fact that each category
appears in only 400 out of 4,000 test images, our correlation
analysis module eliminates unnecessary data transmission for
irrelevant images. Consequently, the average data required per
image segmentation task is merely 395.21 bytes, with only
10% of tasks needing both semantic text and A-seg maps.
Similarly, an average of only 465.03 bytes is needed to com-
plete an image reconstruction task. These results underscore
the significant advantages of our proposed framework in multi-
task scenarios, showcasing its ability to efficiently allocate
communication resources based on specific task requirements
and image content relevance.

IV. OPEN ISSUES

Despite the promising advancements in image semantic
communication, several challenges persist that require further
research for widespread and effective deployment. This section
outlines three critical areas that demand continued investiga-
tion and development.

A. Device-adaptive Lightweight Deployment
The challenge of ISC systems lies in device-adaptive

lightweight deployment, particularly for Internet of Things
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TABLE II
THE AVERAGE AMOUNT OF COMMUNICATION DATA REQUIRED TO COMPLETE MULTIPLE TASKS IN MULTIPLE SCHEMES (UNIT: BYTES)

Image caption task Image segmentation task Image reconstruction task

Digital scheme 5761.12 5761.12 5761.12

Digital with knowledge scheme 4684.57 5761.12 5761.12

ISC with knowledge 200 1952.09 2850.29

Semantic-level Multi-rate ISC 200 395.21 465.03

(IoT) devices. These devices often have limited computa-
tional capacity, memory, and energy resources, making the
implementation of ISC systems challenging [13]. To address
this, researchers are exploring attention mechanisms and edge
computing as potential solutions. The core idea involves
training semantic encoders and decoders on edge servers,
then distributing the trained encoders to various terminal
devices. This approach allows IoT devices to collect image
data, extract semantic features, and transmit them to edge
servers for further processing. Additionally, attention module
is developed to assess the significance of each pixel and
channel in image segmentation, thereby reducing the model’s
computational complexity. Lightweight AI design technolo-
gies, such as knowledge distillation and model pruning, are
also being investigated to alleviate computational pressure on
resource-constrained devices.

B. Privacy-preserving Computation

Privacy-preserving computation presents another significant
challenge in ISC research. The primary goal is to ensure that
sensitive information remains protected during data transmis-
sion and processing. Several strategies are being explored to
address this issue, including homomorphic encryption, secure
multi-party computation, differential privacy, and blockchain
technology. For instance, blockchain can provide a decentral-
ized storage and verification mechanism for sensitive image
data, ensuring data integrity and immutability [14]. When
combined with smart contracts, it can enable automated image
processing tasks while maintaining transparency and security.
Furthermore, trusted execution environments, such as Intel
Software Guard Extensions, are being investigated to provide
isolated execution environments that ensure the security of
code and data during processing. These environments could
allow key image processing operations to be executed securely,
preventing unauthorized access to sensitive information.

C. User-oriented Personalized Transmission

Personalized service in ISC refers to tailoring the process-
ing, analysis, and communication of image data to meet the
specific needs and preferences of individual users or groups
[15]. This user-oriented approach enhances user experience
by providing customized responses and interactions based on
the unique characteristics and context of the images being
transmitted. Intuitively, creating detailed user profiles that
capture preferences, interests, and historical interactions, could
be incorporated to implement customization ISC services.
Additionally, it is crucial to utilize context-aware computing

to understand the situational context in which images are
captured and used, allowing for more relevant semantic inter-
pretations and responses. Establish feedback mechanisms that
allow users to provide input on the personalized services they
receive, which can be used to refine and improve the service.
By implementing these strategies, personalized ISC services
can greatly enhance user satisfaction and engagement, pro-
viding a more intuitive and responsive interaction with visual
content, even for multimodal human-machine interactions in
the near future.

V. CONCLUSION

In this article, we have investigated a trustworthy image
semantic communication framework based on a decoupled
transceiver model, utilizing explainable and system-compatible
semantics. The framework employs image semantic text and
image semantic segmentation maps as carriers for image
semantics. Experimental results demonstrate that the proposed
framework supports tasks such as image captioning, image
semantic segmentation, and image reconstruction, outperform-
ing traditional image compression and digital communication
methods across all three tasks. Additionally, we have proposed
a semantic-level multi-rate communication scheme. The exper-
imental results show that it can achieve a 90% reduction in
the communication data volume required for semantic image
communication. This scheme maximizes bandwidth utilization
and enhances the overall efficacy of the communication system
by enabling adaptive data transmission tailored to the specific
requirements of the receiver.
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