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Abstract—Trustworthy task-oriented semantic communication
(ToSC) emerges as an innovative approach in the 6G landscape,
characterized by the transmission of only vital information that
is directly pertinent to a specific task. While ToSC offers an
efficient mode of communication, it concurrently raises concerns
regarding privacy, as sophisticated adversaries might possess the
capability to reconstruct the original data from the transmitted
features. This article provides an in-depth analysis of privacy-
preserving strategies specifically designed for ToSC relying on
deep neural network-based joint source and channel coding
(DeepJSCC). The study encompasses a detailed comparative
assessment of trustworthy feature perturbation methods such as
differential privacy and encryption, alongside intrinsic security
incorporation approaches like adversarial learning to train the
JSCC and learning-based vector quantization (LBVQ). This
comparative analysis underscores the integration of advanced
explainable learning algorithms into communication systems,
positing a new benchmark for privacy standards in the forth-
coming 6G era.

I. INTRODUCTION

The sixth generation (6G) communication represents the
next frontier in communication technology, promising sig-
nificant advancements over the current 5th generation (5G)
networks. 6G networks are projected to achieve data speeds
in the range of terabits per second, a significant leap from
the gigabit speeds of 5G [1]. The integration of artificial
intelligence (AI) in 6G networks is anticipated to be more
profound, with AI algorithms playing a crucial role in network
management and user-centric services. Additionally, 6G is set
to revolutionize industries by enabling new business models
and services. The network’s reliability, trustworthiness and
timeliness will be critical in the scenario of massive mo-
bile users with real-time response requirements [2]. Despite
the promising prospects, the practical implementation of 6G
continues to encounter numerous unprecedented hurdles, par-
ticularly for burst communications [3]. ToSC, emerging as a
promising paradigm, is primarily characterized by its selective
transmission of information [4]. This approach has garnered
considerable attention [5], chiefly due to its proficiency in
enhancing efficiency and reducing latency through the mini-
mization of data transmission volume [6]. Furthermore, ToSC
exhibits the capacity to offer a more customized and efficient
user experience. The targeted and efficient nature of ToSC,
therefore, not only aligns with the technological advancements
envisaged in 6G communications but also caters to the nuanced
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demands of modern digital applications, ensuring a seamless
and user-oriented interaction.

To alleviate the misunderstandings and incorrect interpre-
tations, ToSC can increase information clarity, relevance,
transparency, credibility, and verifiability by concentrating on
task-relevant information, implementing well-designed mech-
anisms of channel coding and feedback. Although this strategy
inherently provides a certain level of privacy since selective
data transmission eliminates the unnecessary data sharing, the
information conveyed may still be vulnerable [7]. If inter-
cepted, even these task-relevant data bits could reveal personal
or sensitive information [8]. This risk is heightened by the
advanced capabilities in machine learning and data analysis,
which might enable adversaries to extract significant insights
from minimal data. This work discusses ongoing research
aimed at developing privacy-preserving methods specifically
for ToSC relying on deep neural network-based joint source
and channel coding (DeepJSCC). The task at hand is devising
techniques that can be seamlessly incorporated into seman-
tic communication without hindering their efficacy and effi-
ciency. This work meticulously evaluates and contrasts feature
perturbation methodologies, such as differential privacy and
encryption techniques, with intrinsic security incorporation
approaches like adversarial learning to the JSCC and learning-
based vector quantization (LBVQ). This comprehensive com-
parative analysis highlights the potential for integrating sophis-
ticated learning algorithms into contemporary communication
systems, thereby establishing a new paradigm for privacy
standards in the forthcoming 6G era.

II. SHIFT FROM TASK-AGNOSTIC COMMUNICATIONS TO
TOSC AND PRIVACY CHALLENGES

Within the traditional framework of source-channel sepa-
ration, the identification, representation, and transmission of
information are rigorously addressed by rate-distortion the-
ory and channel coding theory respectively. This paradigm,
which prioritizes reconstruction-oriented compression and
task-agnostic communication, has underpinned several itera-
tions of digital communication systems. However, the advent
of machine-to-machine communications and human-machine
interactions necessitates a reassessment of this paradigm, con-
sidering that exact reconstructions are often of secondary im-
portance from a machine’s perspective. Notably, task-specific
descriptors, derived via machine learning algorithms from
latent feature spaces, are substantially more concise than their
counterparts used for reconstruction purposes. Furthermore,
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Fig. 1. Traditional transceivers versus ToSC transceivers.

communication systems trained end-to-end can significantly
surpass those designed based on source-channel separation,
across various performance metrics [4].

In ToSC systems, data transmission is meticulously tailored
to align with the receiver’s requirements. As delineated in Fig.
1, the ToSC transceivers differ from traditional transceivers.
The ToSC system comprises two main components: the “Deep-
JSCC” and the “Task inference module”. The DeepJSCC
contains a JSCC encoder that plays the role of task-related
information extraction, compression, and protection (against
both channel noise and adverseries’ attacks). The output of
this passes through a channel and arrives at the task inference
module. This module is outlined with examples of tasks such
as classification, object detection, information retrieval, and
content generation. Inside, it displays a multi-layered network
topology that indicates intricate processing is occurring to
perform the given tasks.

However, alongside these advantages, ToSC introduces sig-
nificant privacy concerns. The main issue stems from the
nature of the information being transmitted. Although ToSC
systems transmit only task-specific information, this data can
be sensitive and vulnerable to privacy infringements. Given the
unpredictability of adversaries’ objectives, it is imperative to
devise a comprehensive and efficacious strategy for safeguard-
ing a spectrum of private data. For instance, in the transmission
of facial imagery, adversaries may undertake diverse strategies
to extract personal attributes such as gender or skin tone, or
alternatively, engage in facial recognition. In our research,
we postulate the quality of image reconstruction—evaluated
by metrics such as peak signal-to-noise ratio (PSNR)—as a
quantifiable proxy for privacy preservation. Our rationale is
predicated on the supposition that by amplifying the perturba-
tion of data reconstructed by potential intruders, we indirectly
shield various facets of personal information. This approach
resonates with the principles of perturbative privacy preser-
vation, notably exemplified by differential privacy paradigms.
By escalating the degree of distortion, we can significantly di-
minish the likelihood or amplify the challenge for adversaries
in gleaning sensitive information, thereby strengthening the
robustness of privacy protection.

III. PRIVACY PRESERVATION METHODS FOR TOSC

Most ToSC systems are based on DeepJSCC architec-
tures and employ an end-to-end training methodology to

extract high-dimensional task-related channel-robust features
for transmission. This approach ensures a coherent and au-
tomatically optimized process from data input to the final
task output. Many traditional privacy protection techniques,
such as k-anonymity, l-diversity, and t-closeness, are often
designed to protect user privacy by modifying data and are not
suitable for working with complex or high-dimensional data
[8], [9], as the process of making records indistinguishable can
lead to significant data loss or impracticality in datasets with
numerous attributes. A thorough analysis of privacy-preserving
strategies specifically designed for ToSC is provided, along
with a detailed comparative assessment of feature perturbation
methods and intrinsic security incorporation approaches.

A. Feature Perturbation Methods

Conventional approaches to AI inference privacy protection
concentrate primarily on the safeguarding of original data,
typically through direct preprocessing under the assumption
that the entire AI model is in the possession of a potentially
untrustworthy third party. However, in DeepJSCC-based ToSC,
the DeepJSCC encoder (partial of the AI models) belongs to
the transmitter, which plays the role of task-related information
extraction, compression, and protection (against both channel
noise and adverseries’ attacks). The employment of DeepJSCC
makes conventional privacy and security techniques applied
in-between source and channel coding difficult in DeepJSCC.
Applying these techniques in front of DeepJSCC will prevent
the DeepJSCC to extract the task-related and channel-robust
features, thus the only feasible is to process the output
of DeepJSCC. Therefore, traditional data perturbations (e.g.,
noise addition, encryption) should be replaced by the feature
perturbations on the DeepJSCC output. Next, we discuss two
typical feature perturbation methods for privacy preservation.

• Differential privacy offers a mathematical framework
for quantifying privacy loss. It provides strong privacy
guarantees by adding noise to the DeepJSCC output. This
approach is widely adopted due to its robustness and the
theoretical guarantees. The addition of noise to protect
individual data points can diminish the utility of data,
especially in scenarios where precise data (i.e., semantic
information) is used for task inference, as in ToSC. Too
much noise can well protect privacy, however, it will
inherently affect the task inference performance, that is
the utility of the transmitted data.
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Fig. 2. Transceiver structure of four privacy protection methods: differential privacy, encryption, adversarial learning, and vector quantization.

• Encryption serves as a fundamental method for securing
the output of DeepJSCC, by converting it into a for-
mat that is not readily intelligible or accessible without
the appropriate decryption key. However, implementing
encryption and decryption processes can significantly
decelerate both the training and inference phases of
ToSC. Additionally, in the absence of channel coding,
encryption becomes vulnerable and may compromise the
integrity of decryption. To mitigate these challenges,
only methods such as simple encryption or error-robust
encryption techniques are recommended for ToSC. An
example of such a technique is the key-guided feature
shuffling, as discussed in the recent literature [10]. Be-
sides, encryption-based privacy-preserving methods are
facing an additional key-sharing burden and the challenge
of key leakage.

B. Intrinsic Security Incorporation Strategies

It is key to design and train DeepJSCC with intrinsic
security. Adversarial learning, as a commonly-used technique,
involves training a model in a competitive setting where two
models, usually called the generator and the discriminator, are
pitted against each other. The generator aims to produce data
that is indistinguishable from real data, while the discrimina-
tor’s goal is to accurately distinguish between the generator’s
fake data and real data. This process helps to improve the
performance in both models. Adversarial learning plays a
crucial role in privacy protecting of ToSC. By training models
in an adversarial setting, it is possible to generate feature
representations that are informative for intended tasks but are
simultaneously difficult for adversarial models to exploit. This
is particularly useful in scenarios where sensitive data needs to
be protected from potential privacy breaches. The adversarial
process ensures that while the essential characteristics of
the data are preserved for the task at hand, the ability of
an adversary to extract sensitive information from the data
is minimized. This approach is instrumental in developing
models that balance the need for utility and privacy.

It is noteworthy that the transmitter does not know the
architectures of the adversary neural networks in the design.

In practice, the adversary is not fixed, and it is impractical
to obtain the adversary’s network architecture. To defend
against model inversion attacks, one can construct a simulated
adversary and utilize adversarial learning to assist in ToSC
training [11]. Even if the adversary’s inversion network ar-
chitecture is unknown, the approach still provides effective
privacy protection via a simulated adversary.

Besides adversary learning, LBVQ uses discrete latent rep-
resentations which are more robust against inversion. This
means that it’s harder to reconstruct the original input data
accurately from the latent representations, thereby providing
a layer of privacy. The quantization step in LBVQ, which
converts continuous latent variables into discrete ones, acts
as a bottleneck, reducing the amount of detailed information
that can be decoded from the latent space. This inherent
characteristic of LBVQ makes it a suitable choice for tasks
where preserving privacy is crucial, as it inherently limits the
detailed information that can be extracted from the encoded
representations.

The integration of LBVQ within ToSC systems presents an
additional benefit regarding compatibility with existing digital
communication frameworks. In current ToSC models, features
extracted by neural networks are typically continuous, aligning
well with analog communications but not with prevalent digital
communication systems. LBVQ, on the other hand, produces
discrete representations that can be directly mapped to digital
modulation symbols. This compatibility is instrumental in
facilitating a seamless transition from well-established digital
communication systems to the emerging ToSC paradigms,
thereby bridging the gap between current technologies and
future communication methodologies.

C. Transceiver Structure Comparison

Comparing feature perturbation methods and encryption
with intrinsic security incorporation strategies reveals distinct
strengths and weaknesses. Their differences in transceiver
structures are demonstrated in Fig. 2. Feature perturbation
methods like differential privacy and encryption offer robust
theoretical guarantees for privacy. Differential privacy provides
a quantifiable measure of privacy by adding noise to the
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TABLE I
COMPLEXITY, COST AND LATENCY OF FOUR PRIVACY-PRESERVING MECHANISMS EVALUATED IN THE CIFAR-10 DATASET.

DeepJSCC DeepJSCC-DP DeepJSCC-Encryption IBAL DeepJSCC-LBVQ

FLOPs 0.085 G 0.085 G 0.085 G 0.382 G 0.477 G

Params 3.19 M 3.19 M 3.19 M 10.91 M 12.61 M

Train Time for 1 Epoch 8.23 s 8.93 s 8.79 s 32.5 s 37.30 s

Test Time for 1 Instance 0.002 s 0.002 s 0.002 s 0.002 s 0.004 s

features. Encryption provides strong security for DeepJSCC
output in transit but does not address the unique challenges
of vulnerability to channel errors and real-time processing.
On the other hand, adversarial learning offers an intrinsic
security incorporation approach in ToSC. By introducing the
adversary loss in the training phase of DeepJSCC, attacking-
robust communication models can be obtained. Adversarial
learning maintains strong performance even in the face of
unknown or intentional attacks. However, the complexity and
computational demands of adversarial models are notable
challenges in the training phase. Additionally, continuous
updates and model improvements may be needed to cope with
new attack methods. LBVQ offers an effective approach for
safeguarding feature privacy through the map of features into
smaller vector spaces. This method significantly reduces fea-
ture dimensions while upholding the integrity of information.
Nevertheless, the process of dimension reduction might result
in potential information loss. And another challenge is the
need for appropriate vector quantization based on the specific
tasks and data types involved.

D. Cost and Delay Comparison

Tab. III-B shows the computational cost, complexity, and
communication latency of four privacy schemes running on
an 11th Gen Intel(R) processor at 2.50 GHz and a single
3060 CPU core, including the specific number of floating-point
operations (FLOPs) in the whole training process, the number
of parameters in all the neural network model, the time for a
single training epoch (batch-size: 512) and the task-inference
time of a single image input.

The mechanisms evaluated are DeepJSCC, DeepJSCC-DP,
DeepJSCC-Encryption, IBAL, and DeepJSCC-LBVQ. The re-
sults indicate that DeepJSCC, DeepJSCC-DP, and DeepJSCC-
Encryption demonstrate similar computational requirements
and maintain a lower complexity profile, as evidenced by
their FLOPs and parameter counts. In contrast, IBAL and
DeepJSCC-LBVQ necessitate substantially greater resources,
manifesting in increased FLOPs, a higher number of pa-
rameters, and extended training durations. Despite this, the
inference times for all configurations, with the exception of
DeepJSCC-LBVQ, remain comparably low. This suggests that
all configurations, barring the LBVQ variant, achieve high
efficiency during the inference phase. The LBVQ variant,
however, incurs additional delays due to its discrete code-
book mapping and remapping processes. Importantly, when
compared to the baseline DeepJSCC model without privacy
enhancements, the DeepJSCC-DP, DeepJSCC-Encryption, and

IBAL models exhibit negligible increases in task-inference
time, rendering them particularly suitable for applications
requiring low-latency and privacy-sensitive remote inference.

IV. EXPERIMENTS AND DISCUSSIONS

Two experimental evaluations (i.e. image classification and
face recognition) are provided to assess both the task perfor-
mance and the degree of privacy preservation within end-to-
end ToSC systems, along with the attacker settings to improve
the overall privacy-preserving process.

A. Experimental Settings

1) Dataset and Attack Setups: CIFAR-10 dataset and
CelebA dataset are adopted for image classification task and
face recognition task, respectively. The former comprises
60, 000 color images, each measuring 32 × 32 pixels, and
categorized into 10 distinct classes. The latter contains over
200,000 celebrity images with 40 attribute annotations per im-
age, whose images cover a rich range of human pose variations
and complex and diverse background information. To ensure
comparability, all algorithmic networks under consideration
are configured to produce outputs of identical dimensions.
Furthermore, we incorporate a hypothetical scenario involving
an adversarial attack network. This network is designed to
execute model inversion via a black-box attack approach. It
is posited to have continuous access to the network model on
the target device, thereby enabling it to attempt image recon-
struction. This scenario is pivotal in assessing the robustness
of our framework against potential security breaches.

2) Performance Metrics: For the image classification task,
classification accuracy and PSNR of the attacker are employed.
The former serves as an indicator of inference performance,
with higher classification accuracy signifying more effective
inference capabilities. The latter, the PSNR value, is utilized
to gauge the level of privacy protection. In this context, a
lower PSNR value in the reconstructed images indicates that its
attacker steals the transmitted data, having a worse distortion
of the reconstructed image, which also reflects the stronger
privacy preservation, as it indicates that the reconstructed
image has a reduced clarity or fidelity, which prevents unau-
thorised interpretation. For the face recognition task, the top-
1 accuracy and the reconstructed image of the attacker are
used. The former is a metric of recognition performance and
is used to judge the task performance. The latter, i.e., the direct
reconstruction effect of the image, is used to measure the level
of privacy protection.
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3) Approaches for Evaluation: To comprehensively demon-
strate the efficacy of diverse privacy-preserving approaches,
we have meticulously selected four state-of-the-art ToSC
schemes, including:

• DeepJSCC-DP: DeepJSCC, originally designed for data-
oriented communication systems, utilizes deep neural
network-based encoders to map data directly to chan-
nel input symbols. To facilitate a comparative analysis
of both performance and security aspects, we propose
the integration of differential privacy mechanism [12],
specifically through the injection of Laplacian noise into
the transmission characteristics. The differential privacy
mechanism allows for precise control over the level of
privacy by adjusting the privacy budget, which is set at
0.05, 0.1, and 0.9 for our experiments. A pivotal aspect
to note is that a smaller privacy budget correlates with
a higher volume of noise injected into the transmitted
features. This increased noise level consequently leads
to stronger privacy protection, as it more effectively
obscures the original data features, thereby enhancing the
security against potential data breaches or unauthorized
data reconstruction efforts.

• DeepJSCC-Encryption: In DeepJSCC-Encryption, the
encoder not only processes the data to extract features for
the JSCC, but also integrates an encryption operation into
its output [10]. At the encoder, encryption operations are
performed on the encoded semantic features. This dual-
functionality approach effectively combines feature ex-
traction and encoding with a layer of cryptographic secu-
rity. At the receiver, the process is reversed. The encoded
and encrypted features are subjected to a decryption
operation, a critical step for regaining the original data
characteristics. Post-decryption, these features are then
utilized for the intended classification and reconstruction
tasks. This mechanism ensures that the data remains
secure during transmission, only becoming accessible
and usable upon successful decryption at the intended
destination.

• IBAL: IBAL [11] represents a novel privacy-preserving
scheme within the context of ToSC, leveraging the princi-
ples of adversarial learning. This method uniquely trains
the encoder to effectively deceive the potential adver-
saries. It does so by optimizing the encoder to maximize
the distortion in the data reconstruction process. Such a
strategy is designed to thwart unauthorized attempts at
data reconstruction, thereby enhancing the privacy and
security of the transmitted information.

• DeepJSCC-LBVQ: DeepJSCC-LBVQ [13] represents a
sophisticated ToSC scheme that incorporates digital mod-
ulation. Central to this approach is the implementation of
a robust encoding framework, which is underpinned by
a learned codebook. Its primary objective is to enhance
communication robustness in response to channel varia-
tions. The essence of DeepJSCC-LBVQ lies in its ability
to effectively balance the trade-off between informative-
ness and robustness. By employing a learned codebook,
the scheme adapts to varying channel conditions, ensuring

that the integrity and reliability of the transmitted data are
maintained, even in challenging communication environ-
ments. This adaptability makes it a significant contender
in scenarios where channel variability is a critical factor.

The inference performance and the quality of image recon-
struction are critically influenced by the dimensionality of the
encoded representation. To facilitate fair and equitable compar-
isons across the different methods, we have standardized the
dimensionality of the representations encoded by all meth-
ods under consideration. For the continuous representation
methods such as DeepJSCC-DP, DeepJSCC-Encryption, and
IBAL, we employ a full-resolution constellation modulation
technique. This approach is instrumental in maintaining the
integrity and resolution of the encoded data during the mod-
ulation process. In contrast, for DeepJSCC-LBVQ, which is
a discrete method, we utilize the M -ary quadrature amplitude
modulation (QAM) scheme. This choice is tailored to suit the
discrete nature of the representations encoded by DeepJSCC-
LBVQ, ensuring that the modulation process is compatible
with the encoding method. Additionally, to further ensure
the impartiality of our evaluation, we have standardized the
settings across all adversary attack networks. This uniformity
in settings is vital for ensuring that each method is subjected to
non-discriminatory attacks, thereby providing a more accurate
and fair assessment of private level. By adopting this approach,
we aim to offer a comprehensive and unbiased comparison
of each method’s ability to protect privacy under equivalent
adversarial conditions.

B. Information Leakage Under Adversarial Attack

Regarding the adversarial’s description, we assume ToSC
system is under black-box model inversion attacks [14], where
the adversaries reconstruct the received features as raw input
using DNNs, and obtain users’ privacy. Specifically, the ad-
versary network is a DNN designed by the adversary and de-
ployed on the adversary’s device. And the transmitter’s coded
features are illegally accessed by the adversary. The adversary
then attempts to generate an approximate reconstruction of
the user’s data based on the stolen transmission data. To
improve the system’s capability to combat attacks, we make
a weak assumption that attacker knows the codebook and can
continuously access the trained encoder. As the intentions of
attacker are not known, we consider a universal loss function
for training the attacker neural network, which is to minimize
the distortion of reconstructed data. For image transmission
task, the loss function for training attacker can be expressed
as

LAttack = LMSE + LPER, (1)

where LMSE = 1
N

∑N
i=1 ∥xi − x̃i∥2 represents the MSE with

N denoting the number of samples, xi representing the i-th
sample, and x̃i standing for the reconstructed data samples
by the attacker; LPER = 1

N

∑N
i=1 ∥V GN(xi)− V GN(x̃i)∥2

represents the perception loss with V GN(·) being the first
three layers of the pretrained visual geometry group’s (VGG)
neural network [15].
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Fig. 3. Classification Performance versus SNR on the CIFAR-10 dataset.

C. Experimental Results – Image Classification

Each scheme undergoes training at a specific signal-to-noise
ratio (SNR), denoted as SNRtrain, which is set at 12 dB.
The testing phase involves varying SNR levels, specifically
at SNRtest values of 0 dB, 4 dB, 8 dB, 12 dB, 16 dB, and
20 dB. To maintain consistency and fairness, both discrete
and continuous, the dimension of the encoded representation
is uniformly set to 128. This uniformity ensures that any
observed differences in performance are attributable to the
scheme’s inherent characteristics rather than discrepancies
in encoded representation size. Specifically, for DeepJSCC-
LBVQ method, which employs a discrete approach, we use a
codebook of size 16. This size is selected as it offers a balance
between complexity and performance.

The analysis of Figs. 3(a) and 3(b) reveals the significant
insights into the image classification performance of various
privacy-preserving schemes under an additive white Gassian
noise (AWGN) channel using the CIFAR-10 dataset. First,
the classification accuracies of IBAL and DeepJSCC-LBVQ
are significantly higher under regular channel conditions (i.e.
SNR ≥ 4dB) compared to DeepJSCC-DP and DeepJSCC-
Encryption. Moreover, these two schemes also exhibit superior
privacy protection capabilities than DeepJSCC-DP method.
Under low SNR regimes (i.e. SNR < 4dB), DeepJSCC-DP
and DeepJSCC-Encryption show better robustness in terms
of classification accuracy. At this point, DeepJSCC-LBVQ
classification accuracy decays, due to the wide deflection of
discrete features caused by the codebook indexing of the
channel transmission, but still maintains good privacy pre-
serving ability. And IBAL shows the best privacy-preserving
capability, as it focuses on trade-off between both privacy and
task, with a slight bias at low SNR.

Notably, DeepJSCC-DP, with its increased Laplacian noise
injection, offers improved privacy protection at the cost of
task performance. For instance, DeepJSCC-DP with a privacy
budget of 0.05 achieves similar privacy protection levels as
DeepJSCC-LBVQ, but its classification accuracy falls behind
by approximately 3 to 4 when SNR is greater than 4dB.
DeepJSCC-Encryption presents the best privacy protection
among the compared methods. However, this comes at the
expense of task performance, failing to strike an optimal

TABLE II
THE TOP-1 ACCURACY OF FACE RECOGNITION IN THE CELEBA DATASET.

Mustache Smiling Wavy Hair

DP-0.05 73.3% 66.8% 69.6%

DP-0.1 75.5% 66.7% 70.7%

DP-0.9 76.5% 68.3% 70.8%

Encryption 77.8% 65.7% 72.6%

IBAL 76.7% 69.9 % 71.7%

LBVQ 85.0% 80.6% 79.4%

balance between privacy and utility. This contrast highlights
the superiority of the intrinsic security incorporation schemes
(IBAL and DeepJSCC-LBVQ) over feature perturbation meth-
ods in achieving a well-balanced effect in both task perfor-
mance and privacy preservation. The advanced IBAL scheme
particularly stands out for its capability to improve privacy
protection without significantly compromising task inference
performance, achieving an optimal privacy-utility trade-off
compared to the baseline methods. A key factor contributing
to DeepJSCC-LBVQ’s superior task performance is that its
discrete representation, enhanced by the learned codebook,
contains more informative messages, thereby leading to better
performance. This underscores the effectiveness of discrete
representation encoding in ToSC systems.

D. Experimental Results – Face Recognition

Regarding the face recognition task, we consider a few
single attributes as the target of the retrieval, e.g., smiling,
moustache, wavy hair. Furthermore, the network requires
significantly less information to predict a single characteristic
than it does for 40 attributes recognition, which should make
it simpler to create privacy-protected features. As shown
in Tab. IV-C, DeepJSC-LBVQ scheme achieves better task
performance when performing face recognition with arbitrarily
selected different attributes. This scheme, despite the fact that
it undergoes dimensionality reduction and may lead to poten-
tial loss of information, adequately extracts the features needed
for the face, maintains the integrity of the information and
therefore ensures higher task performance. IBAL, on the other
hand, a pre-trained model with adversarial learning, is also
better able to extract the required features for the face recog-
nition task. The performance of face recognition under all three
attributes is better than the DeepJSCC-DP scheme, but under
some attributes (e.g., mustache, wavy hair) the performance
is similar to the DeepJSCC-Encryption scheme. The reason is
that IBAL considers the overall trade-off between performance
and privacy, and outperforms both schemes in terms of privacy
preservation, shown in Fig. 4. Longitudinally, the common
DeepJSCC-DP and DeepJSCC-Encryption schemes have a
greater loss (about 5%-15% drop) in performance compared
to the above DeepJSC-LBVQ scheme, i.e. on the mustache,
on the smiling, and on the wavy hair attributes.

Next, we investigate the images of the Celeba dataset
obtained after reconstructing the transmitted signals of these
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Fig. 4. CelebA: from left to right, original, DeepJSCC-DP-0.9, DeepJSCC-DP-0.1, DeepJSCC-DP-0.05, DeepJSCC-Encryption, IBAL, DeepJSCC-LBVQ

schemes using model inversion attacks. The results demon-
strated in Fig. 4 can be seen that the attacker reconstructs the
image worse with IBAL and DeepJSCC-LBVQ. IBAL even
affects the attacker’s judgement on the gender reconstruction
of men and women, which brings great protection. Combined
with the above analysis of performance it can be seen that
IBAL and DeepJSCC-LBVQ improve privacy protection while
ensuring better task inference performance. And as Laplacian
noise increases, DeepJSCC-DP scheme improve their privacy
protection, i.e., the attacker reconstructs a blurrier image. In
addition, the DeepJSCC-encryption scheme also provides good
privacy protection because it completely disrupts the order of
features in the image transmission, while the attacker only
steals the image data and cannot carry out the complete re-
construction process later. In a comprehensive analysis, IABL
and DeepJSCC-LBVQ schemes achieve a better privacy-utility
trade-off compared to the baseline scheme.

V. FUTURE RESEARCH DIRECTIONS

Regarding securing privacy in ToSC, several research direc-
tions merit further exploration.

A. Balancing Utility, Efficiency, and Privacy

In ToSC systems, achieving a harmonious balance between
utility, efficiency, and privacy is a multifaceted challenge.
Utility is paramount, as the primary goal is to transmit data that
is semantically relevant to the task at hand. However, ensuring
utility often requires processing and transmitting detailed
information, which can inadvertently expose sensitive data,
thereby conflicting with privacy goals. Efficiency is crucial
in the high-volume, high-speed environment of 6G networks.
Efficient data transmission not only conserves bandwidth but
also reduces latency, enhancing the overall performance of
the network. Privacy is perhaps the most challenging aspect
to balance. While feature perturbation methods like encryp-
tion provide robust security, they do not address the unique
challenges of real-time, semantically-rich communication. Ad-
vanced strategies, although more adaptable, come with their
own set of risks, such as the inexplicability and uncertainty

of black-box deep learning. To achieve this balance, a multi-
layered approach [7] is often required. This involves com-
bining feature perturbation privacy methods with intrinsic
security incorporation techniques, continuously adapting to the
changing dynamics of the network and data. Regular audits
and updates to the privacy protocols are also essential to
respond to new threats and technologies.

B. Exploring Generative AI for Privacy Preserving

Generative AI presents a novel approach to preserving
privacy in ToSC. It focuses on creating data that is se-
mantically similar to, but distinct from, the original dataset,
thereby enabling the use of valuable data without exposing
sensitive information. In ToSC, where the goal is to transmit
semantically relevant information, generative AI can be used
to produce high-quality synthetic data that maintains the
statistical properties of the original dataset. This ensures that
the utility of the data is not compromised, which is crucial
for the effective functioning of ToSC systems. Additionally,
since the synthetic data does not directly correspond to real
user data, the risk of privacy breaches is significantly reduced.
However, the use of generative AI in privacy preservation
also poses challenges. One key issue is ensuring that the
synthetic data does not retain any indirect identifiers that could
lead to privacy breaches. This requires careful design and
continuous evaluation of the generative models. Moreover, the
computational complexity of training generative models can
be a limiting factor.

C. Transfer Learning for Task, Data and Channel Adaption

In learning-based privacy-preserving ToSC, the system
needs to be retrained as either the task, data or channel varies.
Transfer learning can be instrumental for task/data/channel
adaptation, allowing communication systems to efficiently
adapt to new domains using pre-existing knowledge. Task
adaptation focuses on applying learned models to new but
related tasks. In ToSC, this could involve using a model trained
for one semantic communication task (e.g., image recognition)
and adapting it for another (e.g., image retrieval). Transfer
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learning enables ToSC systems to quickly adjust to new tasks
without the need for extensive retraining, thereby saving time
and computational resources. Data adaptation is essential due
to the variability of data types and sources. Transfer learning
allows for the utilization of pre-trained models on one type of
data (like text) and adapts them for different types (such as
images or sensors data). This flexibility is particularly benefi-
cial in multi-modal communication scenarios where different
types of data need to be processed and transmitted seamlessly.
Transfer learning can be also employed to adapt ToSC systems
to varying channel conditions such as interference, signal
attenuation, and mobility. By learning from data transmitted
under different channel conditions, a ToSC system can predict
and adjust its parameters for optimal performance, even in
less-than-ideal transmission environments.

D. Integrating Physical Layer Security

In ToSC, integrating physical layer security is paramount
for preserving privacy by safeguarding the confidentiality,
integrity, and availability of transmitted semantic information,
especially when conventional security measures at higher
layers are ineffective. Physical layer security strengthens com-
munication systems by providing an additional defense layer
against eavesdropping and jamming attacks. The resilience
of the communication channel against compromise by adver-
saries could be enhanced by leveraging inherent properties
of the communication medium, such as signal attenuation
and channel randomness. However, there are still multifaceted
challenges. Implementation often introduces overhead in band-
width utilization, and energy consumption, necessitating care-
ful consideration of trade-offs between security and system
performance. Moreover, ToSC systems operate in dynamic
and unpredictable environments, characterized by rapid fluctu-
ations in channel conditions. Consequently, it is imperative to
devise mechanisms resilient to adversarial threats and adapt-
able to diverse operational conditions, including variations in
channel quality and eavesdropper locations.

VI. CONCLUSION

This article highlights the significance of transmitting task-
specific essential information efficiently while addressing the
critical issue of privacy preservation. It includes a compre-
hensive analysis of privacy-preserving strategies for ToSC,
comparing feature perturbation methods like differential pri-
vacy and encryption with intrinsic security incorporation ap-
proaches such as adversarial learning and LBVQ. The research
also explores experimental evaluations of these methods, as-
sessing their performance and privacy protection capabilities.
Finally, potential avenues for future study on privacy security
and information trustworthiness are prospected.
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