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Abstract—In the domain of event-based vision, action recogni-
tion stands as a significant challenge that pushes the boundaries
of advanced computational models. This paper compares three
cutting-edge architectures - Spiking Neural Networks, Graph
Convolutional Neural Networks, and Video Transformer-based
Networks - to determine their effectiveness in this domain. Our
study extends beyond accuracy, focusing on the error nature
of each model and its corresponding complexity. We observed
that these models while achieving comparable accuracies, tend
to make different types of mistakes. Capitalizing on this comple-
mentary error phenomenon, we aim to leverage their strengths by
proposing an ensemble learning strategy, which improves overall
performance. Moreover, we further investigated the Video Trans-
former model, retraining it on subsets of data that the Spiking
Neural Network misclassified. This resulted in higher accuracy
than when trained on subsets correctly classified, highlighting the
Transformer’s ability to learn differently and complement the
Spiking Network’s weaknesses. Our findings challenge the sole
focus on accuracy for model efficacy emphasizing the significance
of error analysis. This research provides a road map for model
selection in event-based vision tasks and introduces innovative
ways to integrate these models.

Index Terms—Event Camera, Action recognition, Ensemble
learning

I. INTRODUCTION

Action recognition has always been a prominent field in
computer vision due to its significant applications in areas
like security and human-computer interaction. It has become
more capable by leveraging the dynamic capabilities of the
new-emerging bio-inspired event sensors. Unlike conventional
cameras that capture static frames at fixed intervals, event
cameras detect changes in light intensity at each pixel in an
asynchronous manner and in order of microseconds. Their
unique ability to record changes in a scene with precise
temporal accuracy and low latency and their high dynamic
range allows us to capture fast and subtle motions without
any blur or being affected by lighting conditions. Moreover,
event cameras offer an enhanced level of security for identity
protection as they only record pixel changes caused by motion,
without capturing static background scenes. This inherent
characteristic is crucial in sensitive environments, ensuring that
individuals’ identities remain obscured, while still providing

detailed movement analysis, which is crucial in high-security
zones.

Despite the advancements in computational models for
event-based vision, accurately recognizing actions remains a
complex task, often hindered by the limitations of current
model architectures. Recent research has mainly focused on
three neural network architectures: Spiking Neural Networks
(SNN), Graph Convolutional Neural Networks (GCNN), and
most recently, Video Transformer-based Networks (VTN).
Each of these models contributes its unique strengths to the
table; however, there is a critical gap in understanding how
these models perform specifically and whether each of these
models builds upon the others’ limitations or just proposes
an independent approach. Our study aims to fill this gap by
presenting a comparative analysis of these three architectures.
Our motivation stemmed from the paradox that, despite the
significant potential of this new emerging technology, its
application is restricted by the limited availability of state-
of-the-art models and public datasets tailored for this type
of data. Besides, we aim to focus our evaluation beyond the
conventional metric of accuracy, and discover the nature of the
errors made by each model, and study the trade-off between
model performance and complexity in action recognition tasks.
Through this analysis, we observed that the three networks,
while achieving comparable accuracies, tend to make different
and often contrasting types of errors. Accordingly, we at-
tempted to complement the strength of our models through an
enhanced ensemble learning approach. We further investigated
the Video Transformer-based model by retraining it on subsets
of data misclassified by the other models, demonstrating
its unique learning pattern. This approach revealed that the
VTN’s accuracy, although lower than that of the original VTN
on these subsets, was still significantly better compared to
training the same model on correctly classified subsets. To our
knowledge, this is the first paper to delve into the specifics of
the errors made by event-based models and aim to compare
and combine their strengths for optimal implementation of
event-based action recognition.

II. RELATED WORK

Initially, few studies focused on action recognition with
event cameras, but recent research has increased due to their
dynamic nature and unique capabilities. The earliest and most979-8-3315-4184-2/24/$31.00 ©2024 European Union



common approach is to transform the events into image frames
such as time surface, histogram image, and two channel image
and use them with traditional convolutional neural networks
(CNNs). In another approach, Plizzari et al. [2] combined
optical flow and event stream data using 3D CNNs to better
capture micro-movements in the event stream. They trained
their model to learn from both data types by freezing the flow
stream and encouraging the event stream features to match
those of the optical flow making the model simpler and faster.

Nevertheless, all these approaches use an image-like rep-
resentation of event data. Another innovative direction in
research is the development of networks specifically designed
to handle event data directly. One straightforward approach,
proposed by Tavanaei et al. [8], involves slicing event data into
time windows and feeding them directly into Spiking Neural
Networks as spike tensors. These networks, based on Integrate-
and-Fire (IF) neurons, process information in the form of
temporal spikes instead of numerical values, and thus, can
handle event-based data without any pre-processing. GCNNs
have been notably studied for action recognition due to their
ability to capture complex spatiotemporal relationships using
graph theory. These networks, such as those proposed by
Schaefer et al. [9], adapt convolutional operations from tradi-
tional CNNs to handle graph-structured data. Key techniques
include Gaussian Mixture Model-based graph convolutions for
irregular data formats and Graph Residual Network layers to
prevent vanishing gradients. These methods enhance spatial
and temporal feature extraction, making GCNNs effective for
action recognition and human tracking [11]. Most recently,
De Blegiers et al. [4] introduced the EventTransAct video
Transformer-based Network (VTN), which excels in handling
the temporal and spatial dynamics of event data using the
latest advancements in vision transformer technology. This
model utilizes a spatial encoder and a LongFormer module
for extracting spatial features from each event frame and
learning global temporal dependencies across these frames,
respectively. The main contribution of this model is the propo-
sition of the Event Contrastive Loss (ECL) which enhances the
model’s ability to distinguish temporal details in event data
by increasing the agreement between differently augmented
versions of the same frame, while simultaneously ensuring that
frames with different timings do not align. Although promis-
ing, the high complexity of this approach requires thorough
comparative studies to determine the most effective model
across various applications. Moreover, Rebecq et al. [10] set
a new benchmark in performance by reconstructing high-
resolution gray-scale frames from event data. While achieving
high accuracy with traditional CNNs, their approach still faces
certain limitations [12].

III. METHODOLOGY

A. Event Data Format

Event data is formatted as a sequence of individual events,
each represented by a tuple e = (t, x, y, p) where t is the
timestamp, (x,y) are the spatial coordinates, and p is the
polarity which is assigned a value of 1 for positive changes

and -1 for negative changes in light intensity. Given the
asynchronous and sparse nature of event data, we will be
using unique representations designed for event-specific neural
networks.
For SNN, we directly slice the event data into discrete time
windows, forming multi-dimensional spike tensors where each
non-zero value element represents a spike at a specific time
and location. For Graph CNN, we construct graph G= (V,E)
from event data where V is the set of nodes and E is the
set of edges or connections between them. For that, we
consider each event to be an independent node with (x,y) as
its spatial coordinates and polarity p as its initial node feature.
Neighboring nodes are then connected with an edge based on
their Euclidean distance in the spatio-temporal space. In the
VTN model, we sample event data to obtain voxel grids that
are later transformed into video clip frames by following the
method proposed in [4]. Accordingly, we create a video V(i)
from each sequence of events having T total frames, and we
randomly pick n of these frames to make a shorter video clip.

B. Model Architectures

SNN. For our Spiking Neural Network (SNN), we utilize
the Spike-Element-Wise-ResNet (SEW ResNet) architecture
proposed in [1]. It is a novel adaptation of the traditional
ResNet framework by substituting ReLU activation layers with
spiking neurons. Moreover, we also use surrogate gradient
learning for the back-propagation problem in SNNs allowing
the network to overcome its limitations and handle more
complex tasks, such as action recognition, and to create deeper
SNNs with more than 100 layers.
Graph CNN. As for the Graph CNN, we rely on the EV-Gait-
3DGraph model architecture originally proposed in [3] for gait
recognition, and we adapt it to the task of action recognition
from event data. This model starts by downsampling event
streams and transforming them into 3D graphs for feature
extraction. The network further applies graph clustering and
MaxPooling to refine these features, leading up to a fully
connected layer and a softmax classifier for final recognition.
Video Transformer Network. In our research, we adapted
the EventTransAct video Transformer-based Network (VTN)
framework as outlined in [4], drawing on the latest ad-
vancements in vision transformer technology. For our VTN
model, we implement SlowFast’s Vision Transformer code
base inspired by [7]. For the Temporal Encoder, we used a
3-layer LongFormer with 8 attention heads. Within the frame-
work of the Event Contrastive Learning (ECL), we utilized a
multilayer perceptron (MLP) featuring a single hidden layer
as the non-linear projection head, and configured it to produce
an output with a feature dimensionality of 128. Moreover,
we use stochastic data augmentation strategies, specifically
implementing random cropping and random event dropping
for a more robust learning process.

C. Criteria for Comparative Analysis

Our main aim is to go beyond the conventional comparative
criteria for model performance and try to understand the types



(a) (b)
Fig. 1. Confusion matrices comparing the performance of Spiking Neural Network (SNN) and Graph Convolutional Neural Network (Graph CNN) on Gait3
dataset. Each image shows the classification results for one model: (a) SNN and (b) Graph CNN.

(a) (b) (c)
Fig. 2. Additional confusion matrices comparing the performance of Spiking Neural Network (SNN), Graph Convolutional Neural Network (Graph CNN),
and Video-based Transformer Network (VTN) on DVSGesture dataset. Each image shows the classification results for one model: (a) SNN, (b) Graph CNN,
and (c) VTN.

of mistakes these models are making. This way, we can ana-
lyze whether the better-performing models fix previous errors
or make different mistakes. In our research, we use accuracy
and confusion matrices as our primary comparison criteria.
Confusion matrices are ideal for multi-class applications like
action recognition because they provide straightforward visual
representations of how the model is classifying each class,
making it simpler to identify which actions are misclassified
as others. Furthermore, we incorporate precision and recall as
additional metrics to gain deeper insights into each model’s
ability to correctly predict and identify instances of each class.
However, to comprehensively evaluate model complexity and
performance, we also consider additional metrics such as the
number of training parameters and the training time. The num-
ber of training parameters provides insight into the model’s
capacity and potential over-fitting risks while the training time
is crucial for understanding the computational resources and
efficiency required to train the model. These additional metrics
offer a more comprehensive view of each model’s complexity
and performance, enabling a thorough comparative analysis.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our three
proposed architectures on three event-based gesture and action
recognition datasets.

A. Datasets

Our study evaluates the three models across four distinct
event-based datasets: our own Gait3 Dataset, the widely rec-
ognized DvsGesture dataset, the TUM Action Recognition
dataset, and most recently DailyAction-DVS dataset.

Gait3 Action Dataset: This dataset is a modification of our
Gait3 Database [5] collected for gait recognition. The original
Gait3 was collected from 56 subjects with 414 recordings.
Each subject walks in three ways: normally, quickly, and
while carrying a backpack. Each recording has two variations:
walking from left to right and from right to left. For action
recognition, we use 276 recordings corresponding to the 2
classes: Normal walking and Quick walking. This way, we
end up with around 9.5 minutes of data per class which allow
us to obtain reliable results and leverage the high quality of
the original Gait3 Dataset. The videos are split into 196 for
training and 80 for testing.
DailyAction-DVS Dataset: This dataset consists of 1447
video clips featuring 15 individuals performing 12 everyday
actions such as bending, climbing, falling, getting up, jumping,
lying down, carrying a box, running, sitting down, standing
up, walking, and picking up objects. The variety of recording
conditions enhances its real-world applicability. Notably, this
dataset has around 12 minutes of data per class which allows
us to obtain reliable results. The videos are split into 1032 for
training and 415 for testing.
DvsGesture Dataset: Comprising 1464 clips, this dataset
captures 29 individuals performing 10 distinct gestures plus
one category for random gestures (11 classes in total) under
three different lighting scenarios. The participants were sta-
tionary while performing these gestures in front of a fixed
DVS camera. Moreover, the average duration per class for
this dataset is 12.2 minutes which allows us to obtain reliable
results. The videos are split into 1176 for training and 288 for
testing.



Action Recognition TUM Dataset: Featuring 291 recordings,
this dataset showcases 15 individuals executing 10 different
actions. The recordings were made using a DAVIS camera
from 3 different points of view. However, this dataset has a
limited duration of around 2.5 minutes of training data per
class which might not be sufficient for having comparative
results. The videos are split into 201 for training and 90 for
testing.
B. Training Details

For the Spiking Neural Network, we use SEW ResNet
architecture based on SpikingJelly. We train the model for 90
epochs at a learning rate of 0.001 for the first 60 epochs then
it decreases until 0.0001 to prevent overfitting. For the Graph
CNN we use MATLAB for data preprocessing then we train
the model for 90 epochs at a learning rate of 0.001. For the
Video Transformer, we use a VIT-based architecture and we
train the model for 100 epochs at a learning rate of 4e-5. We
also use cosine learning schedule for the last 90 epochs. All
the models were trained using PyTorch and Adam optimizer
on a 24 GB NVIDIA GeForce RTX 3090 GPU.
C. Results

We assess the accuracy of SNN and Graph CNN across the
four datasets. The Video Transformer, however, is specifically
trained on the DvsGesture dataset with 11 classes, as this
dataset is well-suited for demonstrating the model’s capa-
bilities and aligns with the implementation presented in the
original paper. As shown in Table 1, SNN achieves higher
accuracy than Graph CNN on all datasets, and both particularly
perform better on DailyAction-DVS and DvsGesture. This is
due to the fact that there is sufficient data per class unlike
ActionTUM, with roughly one-fifth that of the other datasets,
which presents relatively low accuracy. Evidently, the Video
Transformer attains the highest accuracy of 97.91% and it
remains the better-performing model in research until now.
The models display intriguing complementary error patterns
in the confusion matrices presented in Fig.1 and Fig.2 for
both datasets. For the Gait3 Dataset, both the SNN and Graph
CNN models misclassify walking as running at the same rate.
However, the Graph CNN model more frequently misclassifies
running as walking, with 18 false negatives, compared to
only 1 false negative for the SNN model. A similar trend
of contrasting errors is evident in the DvsGesture Dataset;
the SNN model (a) shows a more uniform distribution of
misclassifications, predominantly to the left of the diagonal,
while the Graph CNN specifically struggles with gestures 1
and 7 to the right of the diagonal, showing a higher rate of
false negatives. In comparison, the VTN model (c) exhibits
an uneven distribution of errors, with classes such as 8 and
9 being more prone to misclassification. The variation in
error patterns across these models highlights the strengths
and weaknesses of each model in recognizing complex ac-
tions. This suggests an opportunity for ensemble methods that
could leverage the diverse error tendencies of each model to
complement each model’s errors, thereby improving overall
classification accuracy.

In addition to the confusion matrices, we have also analyzed

Fig. 3. Precision (a) and Recall (b) curves per class for comparing the
performance of SNN, Graph CNN, and VTN on DVS Gesture dataset

the precision and recall values for each class across the three
models as shown in Fig.3. The GCNN model shows lower
recall for Class 7 and Class 8, indicating it misses many
instances of these classes, which is complemented by the
SNN and Transformer models that maintain higher recall for
these classes. The SNN model, while generally strong, exhibits
lower recall for Class 10, which is better handled by the
Transformer model. When examined alongside the confusion
matrices, these variations in precision and recall highlight
the different error patterns of each model, underscoring the
complementary strengths that can be leveraged through an
ensemble approach.

V. ENSEMBLE LEARNING

A. Ensemble Model Description

In order to complement the mistakes made by the
three models, we implement ensemble learning using a
stacking module. We train stacking using LogisticRegression,
GradientBoosting, RandomforestClassifier, and a custom
Stacking neural network to decide which has the best results.
We also analyze whether the ensemble model favors one of
the models when making a decision. The main issue with
implementing such an approach is that the data representations
for Graph CNN, SNN, and VTN are very different so it is
not possible to just feed the testing data into the models.
That’s why, we create a pre-processing pipeline to align
data instances from the three models and then shuffle them
with the same Random seed. After data processing, we train
the best-performing stacking model using the predictions
of the three architectures on the training dataset and their
corresponding confidence levels. Then, we compare the
performance of the ensemble model on the test set.
One challenge with this approach is that the models have
already been trained on the training dataset. So, for ideal
results, we retrain the models using 5-fold cross-validation.
In this method, the dataset is divided into 5 folds, and for
each fold, the model is trained on 4 parts of the dataset
and then validated on the remaining part. We combine the
5 parts of the validated predictions to get a whole run of
predictions on the training dataset as if they were never seen
before by the model and that is then fed to the stacking model.



TABLE I
COMPARISON OF ACTION RECOGNITION ACCURACY.

Method DailyAction-DVS DvsGesture Gait3 ActionTUM

Spiking Neural Network 94.69% 93.40% 95.00% 89.69%
Graph CNN 90.60% 81.94% 73.75% 64.62%
Video Transformer - 97.91% - -

TABLE II
ENSEMBLE LEARNING RESULTS ON DVS GESTURE DATASET.

Model Accuracy Training Time Number of Parameters
Spiking Neural Network 94.31% 24.1 mins 130426 params
Graph CNN 84.46% 36.8 mins 7658159 params
Video Transformer 96.21% 785 mins 113400715 params

Ensemble1 (SNN & GCNN) 96.18% <1 min 5195 params
Ensemble2 (SNN & VTN) 97.34% <1 min 5195 params
Ensemble3 (GCNN & VTN) 97.34% <1 min 5195 params
Ensemble4 (all 3 models) 97.34% <1 min 5323*params
* The ensemble has 5323 parameters, but it requires training the SNN, GCNN, and VTN

models a priori.

B. Evaluation and Analysis

1) Performance
Our research focuses on comparing three cutting-edge mod-

els and evaluating the effectiveness of ensemble learning
in enhancing action recognition accuracy. To this end, we
systematically explored all possible pairings between the three
models, creating a series of dual-model ensembles to fully
assess their combined potential on the DVSGesture dataset.
The results of this table were obtained with different data
shuffles than the ones in Table 1, making them specific to
this particular run.
As shown in Table 2, Ensemble1 (SNN & GCNN) achieved
a 1.87% marginal increase over SNN and a notable 11.72%
increase over the GCNN model. Ensemble2 (SNN & VTN)
shows significant improvement, matching the top accuracy of
97.34%, demonstrating that SNN and VTN work well together.
Ensemble3 (GCNN & VTN) continues to perform well and
match the highest accuracy, outperforming the standalone
VTN by 1.13%. It is noteworthy that the combined application
of all three models in Ensemble4, combining all three models,
did not surpass the accuracy of Ensembles 2 and 3, suggest-
ing that while VTN is crucial for optimal performance, the
combined benefits with SNN and GCNN may not be additive.
The halt in performance could mean that the ensemble has
achieved the highest level of efficacy given the available data
and technique, or it could mean that the models are extracting
features that overlap.
Although the ensemble models generally outperform their
individual counterparts, the improvements are modest. In high-
performance models with accuracies around 90%, even minor
increases are significant. These results highlight the impor-
tance of carefully choosing models for ensemble integration
to achieve optimal performance. To validate this hypothesis,
we calculated p-values between the ensemble and the original

models at a 95% confidence level. For Ensemble1, the p-
value is 0.033 compared to SNN and 7.2e-22 compared
to GCNN, indicating that the differences in accuracy are
statistically significant. For Ensemble2, the p-value is 0.0002
compared to SNN, but 0.12 compared to VTN, suggesting that
while SNN and GCNN complement each other effectively, the
improvement when adding VTN to SNN is not statistically
significant. This could be because VTN’s high performance
leaves less room for noticeable improvements, despite any
complementary error patterns.

2) Complexity
Now we extend our comparative analysis beyond per-

formance and also compare the complexity of the models,
measured in terms of training time and the number of pa-
rameters. As shown in Table 2, the SNN model required a
training time of 24.1 minutes and had 130,426 parameters.
The Graph CNN had a slightly higher training time of 36.8
minutes and 7,658,159 parameters. In contrast, the VTN
model, while achieving the highest accuracy, demanded a
significantly longer training time of 785 minutes and had the
highest number of parameters at 113,400,715. When analyzing
the ensembles, they all showed a reduced complexity with a
training time of less than 1 minute and only 5,195 parameters
for the dual ensembles and 5323 for the ensemble combining
the three models, while achieving improved accuracies of
96.18% for Ensemble1 and 97.34%, for the other combina-
tions. It is important to note that the ensemble models require
prior training of the SNN, GCNN, and VTN models, which
adds to the overall complexity and computational cost. This
additional step is necessary to generate the predictions used
for training the ensemble.
These results underscore the trade-off between accuracy and
complexity. While the VTN model provides the highest indi-
vidual accuracy, it requires significantly more computational
resources. On the other hand, the ensemble models that



include SNN and GCNN maintain lower combined complexity
compared to VTN alone while still achieving high accuracy.
However, when all three models are combined in Ensem-
ble4, the complexity increases significantly, suggesting that
the marginal gains in accuracy may not justify the added
complexity. Overall, combining SNN and GCNN offers a good
balance of performance and manageable complexity, whereas
incorporating VTN, while boosting accuracy, significantly in-
creases complexity. Therefore, careful consideration is needed
when including VTN to ensure the trade-off between accuracy
and complexity aligns with the application’s requirements.

VI. ABLATION STUDY ON VIDEO TRANSFORMER MODEL

A. Description

The Video Transformer model, while demonstrating the
highest accuracy in our analysis, presents certain challenges
in terms of training speed and complexity. To further investi-
gate its performance and complementary nature with Spiking
Neural Networks (SNNs), we conducted an ablation study
using a targeted training approach. This study aimed to analyze
the impact of selectively training the VTN model on subsets
of data identified by the SNN model as challenging and to
prove the fact that both models’ errors are complementary.
Accordingly, We first train the SNN on the entire DVSGesture
dataset to pinpoint a subset of data points that are particularly
challenging, indicated by the model’s low prediction confi-
dence. Then, the VTN model is trained on this challenging
data and tested on the test set.

B. Results

In our approach, we use the DVSGesture dataset comprising
1176 training data points. After training the SNN model, we
obtained 385 data points that we identified as challenging data
based on a confidence threshold of 90%.

TABLE III
COMPARISON OF THREE TRANSFORMER MODELS.

Method Accuracy Time (hours)
Original VTN 97.91% 13.083
VTN trained on Difficult Data 92.01% 3.667
VTN trained on Easy Data 85.41% 3.667

As shown in Table 3, the VTN model trained on difficult
data achieved an accuracy of 92.01% with a training duration
of 3 hours and 40 minutes. Although this accuracy is lower
than the original VTN model’s 97.91%, the training time was
reduced by a factor of approximately 3.57, and the data size
was reduced by about 3.05 times, utilizing only around 32% of
the entire dataset. This indicates a favorable balance between
maintaining high accuracy and addressing the training speed
of the original model.
To further validate our findings, we conducted another ex-
periment where the SNN model selected a subset of data
points with the highest prediction confidence, maintaining the
same size as the previous subset. Under identical training
conditions, the transformer model’s accuracy decreased to

85.41%. This result confirms that the relatively high per-
formance of the VTN model when trained on difficult data
points is due to the strategic selection of challenging data.
This highlights the complementary nature of the VTN and
SNN models, as the VTN model can effectively learn from
the errors identified by the SNN model. This also emphasizes
that different methodologies (ensemble learning vs. targeted
training on misclassified data) reveal different aspects of model
performance and complementarity.

VII. CONCLUSION

In this study, we conducted an extensive comparison of
three model architectures for event-based action recognition.
We also leveraged the strengths of these models by cre-
ating an ensemble learning approach, which demonstrated
promising results. However, despite its superior performance,
the Transformer model proved to be relatively complex. For
further comparison and error analysis, we performed targeted
training of the Transformer on challenging data identified by
the SNN network, demonstrating the complementary nature of
their errors. Our findings emphasize the significance of model
selection based on both performance and complexity, paving
the way for more efficient solutions in event-based action
recognition.
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