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Abstract: We introduce 2D-Malafide, a novel and lightweight adversarial attack designed to deceive
face deepfake detection systems. Building upon the concept of 1D convolutional perturbations ex-
plored in the speech domain, our method leverages 2D convolutional filters to craft perturbations
which significantly degrade the performance of state-of-the-art face deepfake detectors. Unlike tra-
ditional additive noise approaches, 2D-Malafide optimises a small number of filter coefficients to
generate robust adversarial perturbations which are transferable across different face images. Exper-
iments, conducted using the FaceForensics++ dataset, demonstrate that 2D-Malafide substantially
degrades detection performance in both white-box and black-box settings, with larger filter sizes
having the greatest impact. Additionally, we report an explainability analysis using GradCAM which
illustrates how 2D-Malafide misleads detection systems by altering the image areas used most for
classification. Our findings highlight the vulnerability of current deepfake detection systems to con-
volutional adversarial attacks as well as the need for future work to enhance detection robustness
through improved image fidelity constraints.

Keywords: deepfake detection, adversarial attacks, lightweight adversarial attacks, convolutional
filters, image perturbations.

1 Introduction

In recent years, deep learning-based image recognition systems have achieved remarkable
success across various applications, from face recognition to autonomous driving [Op24,
Ja20]. However, these systems are vulnerable to adversarial attacks, namely deliberate ma-
nipulations designed to deceive the model [GJ20, VNR21]. Adversarial noise can typically
be applied with subtle or seemingly insignificant perturbations to pixel values [GSS15], in-
volving even only small portions of the image. The perturbations are specially crafted to
exploit model vulnerabilities and provoke erroneous outputs. Even if the perturbed image
is indistinguishable to the eye from the original image, there can be drastic influences upon
the model output.

Most adversarial attacks involve additive noise, where image-specific perturbations are
learned and directly added [Am23]. Fortunately, these approaches are unsuitable for real-
time implementation and exhibit high sensitivity to the specific input image. Typically,
these methods are trained and tested using the same set of deepfake data, with no assur-
ances of effectiveness against unseen deepfakes — a property often referred to as general-
isability. Some adversarial attacks, whether additive [SSP23] or involving spatial transfor-
mations [Zh20], have partially solved the problem of generalisation but come at the cost
of high complexity.
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In this work, we propose the first adversarial attack which attempts to fulfil the general-
isability property through convolutive noise while still being computationally lightweight.
The former goal is met by optimising the adversarial perturbation over multiple samples.
The latter is achieved by reducing the number of learnable parameters thanks to simple,
yet effective modelling choices.

Building on a previous work, named Malafide [Pa23] which explored adversarial pertur-
bation attacks against voice anti-spoofing solutions, we have tailored and implemented a
novel adversarial attack named 2D-Malafide against image deepfake detection systems.
This technique allows the attack to be mounted independently to the specific input image,
and requires the optimisation of only a small number of filter coefficients. While the attack
is agnostic to the type of classifier and image, e.g. be they face, fingerprint, or iris images,
etc, in this paper we report its application specifically to face images and face deepfake
detection.

Our experiments demonstrate that 2D-Malafide significantly degrades the performance of
recent face deepfake detectors. The attack remains effective in both white-box settings,
where the filter is specifically trained to manipulate a particular detector model, as well as
black-box settings, and hence poses a substantial threat to the reliability of such detection
systems.

2 Related Work

The concept of adversarial attacks against neural networks was originally introduced
in [Sz14, GSS15] in the context of image classification tasks. The term usually refers to
the introduction of perturbations to the input image of a neural network so as to manipulate
the output or decision. Such perturbations can be crafted by optimising the pixel values of
the input image via a gradient descent-based technique to maximise the output probability
of an arbitrary, incorrect class.

Adversarial attacks have since been explored in a wide variety of different domains, in-
cluding deepfake detection. Early investigations showed that deepfakes can be rendered
undetectable by deepfake detection algorithms using specially crafted adversarial pertur-
bations [CF20, GJ20, Hu21, Ji22]. However, these studies focused on crafting individual
adversarial perturbations for each deepfake sample, a computationally intensive process.

More recent adversarial attack techniques have since been proposed to overcome this issue.
The authors of [FHD24] proposed the use of generative adversarial networks (GANs) [Go20]
to produce adversarial attacks for arbitrary deepfake samples. In [Ho23], adversarial per-
turbations are modelled as a linear combination of image transformations whose weights
are optimised across multiple deepfake images in order to minimise the chances of de-
tection. Using a similar objective function, the work in [Ne21] demonstrates how a video
deepfake detection system can be manipulated by using a single layer of additive noise
with bounded amplitude applied to each image frame.
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Fig. 1: The training procedure of the 2D-Malafide filter m for face images generated with the attack
a = FaceShifter against the face deepfake detector (FDD).

To the best of our knowledge, the only work that explores the generation of generalisable
adversarial perturbations against deepfake detectors is [Li24]. The authors propose a GAN-
based technique to produce shadows which are introduced to an image deepfake to conceal
generated artefacts. Nonetheless, this technique involves the training of two generative
neural networks and requires considerable computing capabilities.

3 2D-Malafide

In this section we describe the adaptation and implementation of 2D-Malafide for adver-
sarial attacks against face deepfake detection (FDD) systems.

Let P(a) = {p(a)
1 ,p(a)

2 . . .p(a)
N } be a set of deepfake/spoofed images generated by algo-

rithm a. Each image is designed to deceive a deepfake detection system to increase the
likelihood of false accept decisions. Let FDD(I) = s(y | I) be a deepfake detector model
which assigns a score y to image I, where higher scores reflect greater support for the bona
fide class and lower scores for the deepfake class. For spoofed images p(a)

i , FDD(p(a)
i )

should hence produce low scores. 2D-Malafide attacks involve the optimisation of a 2D
linear time-invariant (LTI), non-causal filter. The coefficients are optimised to provoke the
misclassification of deepfake images as bona fide. The 2D LTI, L×L filter m(a) is designed
to maximise FDD(p(a)

i ∗m(a)), where ∗ denotes the 2D convolution operator. In the case
of several different deepfake algorithms a1 . . .aK , an attacker can optimise an equivalent
number of filters m(a1) . . .m(aK). The filter should then be tuned to counter the reliance of
the FDD system upon attack-specific artefacts. Filter coefficients m(a) can be optimised
with conventional gradient descent using the set of spoofed images P(a). The objective
function is given by

max
m(a)

∑
i

FDD(p(a)
i ∗m(a)) (1)
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A graphical depiction of the training procedure is shown in Fig. 1 for an attack a =
FaceShifter. The filter is optimised independently for each attack so as to manipulate the
behaviour of a common FDD.

Without constraints, 2D-Malafide filtering can cause excessive image degradation. For de-
tection settings in the absence of a human observer, this may have little consequence.
However, where the FDD system is deployed alongside other systems, the distortion intro-
duced to compromise the FDD system might also interfere with the behaviour of any other
auxiliary system, e.g. an automatic face recognition system. In this case, for instance, it
might even improve its resistance to attack, e.g. if image quality is significantly degraded.

Accordingly, m(a) should be constrained to balance the maximisation of (1) and the preser-
vation of image fidelity, e.g., clarity, detail, or key features. This can be achieved by tuning
the filter size L×L. Larger filters allow for greater manipulation and stronger attacks but
can also introduce greater distortion. Conversely, smaller filters can be configured so that
they introduce less distortion at the expense of a weaker attack. We apply image normal-
isation after filtering in order to ensure that pixel values do not surpass the maximum
quantisation level.

4 Experimental Setup

All experiments were conducted using the FaceForensics++ (FF++) dataset [Ro19]. It con-
tains 1000 bona fide videos in addition to 5000 corresponding fakes generated with 5 dif-
ferent algorithms. The first two are computer graphics-based approaches. Face2Face [Th18]
is a facial reenactment system which transfers expressions from a source video to a target
video while retaining the target face identity. FaceSwap [Ko24] transfers the face region
from a source to a target video using facial landmarks to fit a 3D model which is then back-
projected, blended, and colour corrected. There are three deep learning-based approaches.
The first, Deepfakes, was implemented using the open-source implementation deepfakes
faceswap3 and requires training with a pair of videos of source and target subjects. The
second, NeuralTextures [TZN19], learns a neural texture of the target person using a pho-
tometric reconstruction loss combined with an adversarial loss for training. The last is the
two-stage face-swapping method FaceShifter [Li20] which uses a pair of input images
(a source for identity and a target for attributes like pose and expression) and a two-stage
framework (AEINet and HEARNet) for high-fidelity face swaps.

Although the FF++ dataset contains videos, the selected FDD systems operate on indi-
vidual frames hence, in the remainder of this paper, mentions of the dataset refer to the
collection of frames extracted from FF++ videos. The attacker is assumed to have access
only to the test partition of the dataset. Thus, the FF++ test partition was used for training
and testing 2D-Malafide attacks. Attack-specific filters were trained according to (1), using
subsets of FF++ for each deepfake method. The FF++ test partition was split into 70% for
training (Part 1) and 30% for testing (Part 2), with 1399 images in Part 1 and 599 images
in Part 2. 2D-Malafide filters were trained using Part 1 and tested using Part 2. This setup

3 https://github.com/deepfakes/faceswap
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simulates offline filter training and online attacks. 2D-Malafide filters were trained using
only deepfake images.

Each attack-specific 2D-Malafide filter is trained using the Adam algorithm [24]. The
learning rate and weight decay are tuned separately for each FDD system. The maximum
number of epochs is set to 100 since, for all but a single experiment, training reaches the
stop condition before 100 epochs, where the stop condition is defined by an equal error
rate (EER) in excess of 50%. The resulting filter is then applied to Part 2 for evaluation.
A batch size of 32 was chosen because it was suitable for the GPUs used for our exper-
iments. During optimisation of 2D-Malafide, the weights of the FDD pre-trained models
are frozen. We explored different filter sizes L = (3,9,27,81) in order to analyse the im-
pact on performance. Our implementation is available as open-source and can be used to
reproduce our results.4

To determine the effectiveness of the adversarial filter attack we used the following two
FDD systems.

CADDM [Do23]5 is a deepfake detection system developed to address the problem of Im-
plicit Identity Leakage. The authors observed that deepfake detection models supervised
using only binary labels are sensitive to identity. Thus, they propose a method, termed an
ID-unaware Deepfake Detection Model, to reduce the influence of the identity represen-
tation. This is achieved by guiding the model to focus on local rather than global (whole
image) features. Intuitively, by forcing the model to focus only on local areas of the image,
less attention will be paid to global identity information.

Self-Blended Images (SBIs) [SY22]6 is a deepfake detection system which leverages
training data augmentation to improve generalisability. The key idea behind SBIs is that
the use of more general and barely recognisable fake samples encourage classifiers to learn
generic and robust representations without overfitting to manipulation-specific artefacts.
Fake samples are generated by blending pairs of pseudo source and target images, obtained
using different image augmentation transformations, thereby increasing the difficulty of
the face forgery detection task and encouraging the learning of more generalisable models.

The implementations of both CADDM and SBIs used in this work support the use of differ-
ent backbone architectures. For our experiments, both methods use EfficientNet convolu-
tional neural networks, the only difference being that we use efficientnet-B3 for CADDM,
but efficientnet-B4 for SBIs. Models pre-trained using the FF++ training dataset are used
for both methods and are available on the respective GitHub repositories.

5 Experimental Results

Results presented in Table 1 show EER values for CADDM and SBI FDD systems with
and without the application of 2D-Malafide filters under white-box (tested using the same

4 https://github.com/eurecom-fscv/2D-Malafide
5 https://github.com/megvii-research/CADDM
6 https://github.com/mapooon/SelfBlendedImages
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Tab. 1: Comparison in terms of EER [%] of the baseline performance without filtering and the
performance of different sizes of 2D-Malafide filters under white-box (trained and tested on the
same FDD) and black-box (tested on different FDDs) settings. The results are shown for five attack
types.

Baseline Deepfake Detection System - CADDM (C) / SBI (S)
Attack type Deepfakes Face2Face FaceShifter FaceSwap NeuralTextures

FDD C S C S C S C S C S
No filter 0.00 0.71 1.34 1.43 1.34 7.14 0.67 1.43 2.50 5.00

2D-Malafide trained on CADDM and tested on CADDM / SBI - (W)hite box / (B)lack box
Filter size W B W B W B W B W B

3x3 3.17 6.51 2.83 5.33 2.83 6.34 4.34 9.68 4.84 6.34
9x9 3.17 7.34 7.50 8.84 6.49 4.66 8.68 9.02 6.68 7.68

27x27 46.41 8.01 49.83 7.16 50.17 7.16 46.41 7.68 51.92 6.01
81x81 47.08 7.34 55.50 10.33 64.00 2.16 48.08 7.68 62.10 4.51

2D-Malafide trained on SBI and tested on SBI / CADDM - (W)hite box / (B)lack box
Filter size W B W B W B W B W B

3x3 6.18 3.17 13.17 2.83 11.00 2.83 8.01 3.67 13.86 4.51
9x9 13.86 1.34 28.83 1.50 34.17 0.67 31.39 2.00 33.06 2.84

27x27 6.85 2.01 40.17 2.83 43.34 0.67 39.40 3.34 45.24 3.50
81x81 29.05 3.17 26.67 2.83 45.99 2.83 30.05 5.01 29.22 3.84

countermeasure used for 2D-Malafide training) and black-box (tested using an unseen
countermeasure) settings. Results are shown separately for the baseline FDD system (top
block), then 2D-Malafide attacks trained using CADDM (middle) and SBI (bottom). Base-
line FDD results show detection error rates for the five different attack types.

For the CADDM white-box setting (denoted W in Table 1), the application of 2D-Malafide
filters leads to a significant increase in EER, especially with larger filter sizes (27×27 and
81×81). This indicates a substantial degradation in FDD performance, demonstrating the
effectiveness of the adversarial filters in deceiving the detection system. For the corre-
sponding black-box setting, for which the model is trained using CADDM but tested using
SBI, results show that most filters provoke an increase in the baseline EER. However, in
some cases (highlighted in red), filtering instead reduces the EER, indicating that they
made it easier for the FDD system to detect the underlying attack.

For the SBI white-box setting the 2D-Malafide filters again lead to notable increases in
the EER, particularly for the 27× 27 filter size. We note that, for the 81× 81 filter, the
EERs decrease slightly, showing that the largest filter size is less effective for SBI than
for CADDM. For the corresponding black-box setting, filtering generally increases the
baseline EER. However, the impact is less pronounced compared to CADDM, indicating
that adversarial training performed using SBI does not generalise well.

Overall, results indicate that FDD systems are vulnerable to 2D-Malafide attacks, with
the greatest impact observed under white-box settings. The impact varies with filter size.
Larger filters (27× 27 and 81× 81) tend to cause the most significant degradation in de-
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Fig. 2: Examples of bona fide, baseline attack and four configurations of 2D-Malafide filter for the
five deepfake attacks. Results are taken from training based on CADDM system.

tection performance, particularly for CADDM. Under black-box settings, while filtering
generally provokes an increase in error rates, there are instances where detection perfor-
mance improves, suggesting that adversarial filtering does not always generalise well to
unseen detectors.

Last, Fig. 2 shows a comparison of bona fide images, the corresponding attacks and then
after application of four different 2D-Malafide filters, for the CADDM FDD system. For
smaller filter sizes, the face is still recognisable even if the colours are unnatural. For
larger filters, the face is significantly distorted or even unrecognisable. This finding in itself
highlights a critical limitation in face deepfake detection in that they can be compromised
so easily with images which do not even resemble natural faces. This raises concerns
about the robustness of such systems when dealing with altered or degraded images, with
obvious implications for both the security and reliability of the technology.
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Fig. 3: GradCAM explainability results for Deepfakes 3×3 and FaceShifter 81×81 image samples
classified with CADDM and SBI FDD systems applied on bona fide (a), baseline attack (b), and
2D-Malafide attacks processed with GradCAM label bona fide (c) and spoof (d).

6 Explainability Analysis

In order to gain deeper insights into the impact of 2D-Malafide filtering upon the deep-
fake detectors, we also report an explainability analysis. We report the GradCAM [Gc21]
heatmaps for a pair of different attacks and filter sizes when using the CADDM and SBI
detectors, specifically Deepfakes 3× 3 and FaceShifter 81× 81. GradCAM is applied to
each image in the test set and for each category: bona fide, spoof, spoof + malafide. The
resulting heatmaps are averaged to show predominant activation patterns.

The heatmaps in Fig. 3 indicate the areas of the face images where the model focuses its
attention according to the input label, hence revealing features relevant to either bona fide
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or spoof classes. The first row of Fig. 3 shows results for CADDM and the Deepfakes
3×3 attack. The left-most heatmap in column (a), shows that significant facial landmarks
which correspond to the contours of the face are most informative for the classification
of images as bona fide. In constrast, in the case of fake images, shown in column (b),
facial landmarks corresponding to areas of the eyes and eyebrows are most informative.
Visual inspections reveal that these areas often correspond to visible artefacts, e.g. double
eyebrows, resulting from the application of Deepfakes.

Heatmaps in columns (c) and (d) display results after application of 2D-Malafide and for
fake face images when using bona fide and spoof labels respectively. Whereas heatmaps
(a) and (c) exhibit similar patterns, heatmaps (b) and (d) are notably different. 2D-Malafide
hides fake image artefacts upon which the detector relies, namely those in the central part
of the face. There are no obvious activations in this area in heatmap (d), hence why the
model is misled into classifying the fake as bona fide.

The second row of Fig. 3 shows results for FaceShifter 81×81 attacks, again for CADDM.
The heatmap in column (c) shows that the CADDM model focuses on the sides of the face
image, but with greater intensity than for bona fide images. Heatmap (d) remains similar
to that for the Deepfakes 3× 3 attack. Not only does 2D-Malafide hide fake artefacts, it
also provokes a greater rate in the misclassification of fake images by causing the detector
to focus more on sides of the face. This finding accounts for results reported in Table 1, in
particular cases for which 2D-Malafide is more efficient the largest filter size. The domi-
nant spot to the upper right might be due to the Multi-scale Detection Module (MSDM)
of the CADDM architecture. The MSDM uses predefined anchor boxes which are tiled
across the image. The level of activations in this area might correspond to the location of
the last analysed anchor box.

Heatmaps in rows 3 and 4 of Fig. 3 show results for the SBI detector. For the Deepfakes
3×3 attack, the detector focuses on small parts of bona fide images at different positions,
hence the seemingly flat heatmap. In contrast and in the case of fakes, the model focuses
predominantly on central areas of the face, albeit in a less localised manner compared to
CADDM. After application of 2D-Malafide filtering, there are few differences between
results for bona fide images (a) and filtered bona fide images (c), and also between those
for fakes (b) and filtered fakes (d). However, a closer look revels how attention for attacks
without filtering, shown in column (b), is more concentrated to the bottom left of the
central part of the face. Instead, for fake images processed by 2D-Malafide, attention is
concentrated more to the top right, and more so for FaceShifter 81×81 attacks.

7 Conclusions

In this article we introduce 2D-Malafide, an adversarial attack which uses 2D convolu-
tional filtering to deceive face deepfake detection systems. The attack significantly in-
creases the EER of state-of-the-art deepfake detectors in both white-box and black-box
settings and highlights the vulnerability of current FDD systems to such attacks. Larger
filters (27× 27 and 81× 81) cause substantial performance degradation. Moreover, the
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generalisability of 2D-Malafide ensures robustness across various image inputs, making
for a versatile threat. Colour information is the first to be impacted by the application of
2D-Malafide showing that the FFDs considered in this work fail to recognise simple, even
unnatural changes in colour.

GradCAM explainability analysis reveals that 2D-Malafide misleads FDD systems by al-
tering the areas of an image they use for classification, thereby increasing false acceptance
rates. Attack success varies across different FDD systems, indicating some level of gener-
alisability but also a dependency on the specific architecture.

The results emphasise the need for comprehensive and diverse training datasets to improve
FDD robustness. Future research should focus on enhanced image fidelity constraints,
including colour consistency, to counter such adversarial attacks. Overall, 2D-Malafide
demonstrates the critical need for ongoing advancements in FDD technology to ensure the
security and reliability of deepfake detection systems.
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