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Abstract We experimentally demonstrate the full lifecycle of a multi-OMS network leveraging AI-Agents 
with LLM and a digital twin. We achieve 100% accuracy of management API-calling, 7x speed-up alarm-
log analysis, and 83% reduction in computation resources through LoRA fine-tuning. ©2024 The Au-
thor(s) 

Introduction 

Generative AI, powered by transformer-based 

Large Language Models (LLMs) [1], can auto-

mate a broad spectrum of tasks by comprehend-

ing and generating natural language text. In au-

tonomous optical networks, LLM-based AI-

agents can significantly reshape network man-

agement (e.g., configure network parameters, 

monitor performance metrics, and diagnose is-

sues in real-time…). This level of automation not 

only alleviates the operational burden on engi-

neers but also significantly reduces the risk of hu-

man error, leading to more robust and resilient 

network performance.  

Past research aimed at a) automating network 

configuration by mapping Application Program-

ming Interfaces (APIs) calls based on user in-

tent [2]-[6] and b) alarm log analysis automa-

tion [7]-[9]. LLM-based operation can be seen as 

advanced intent-based networking, but utilization 

of a public cloud for the largest models raises 

concerns about data privacy. Additionally, high-

accuracy calling is yet to be achieved.  

In this paper, we demonstrate the first fine-

tuned LLM for automating an optical network dur-

ing the 4 key steps of its lifecycle: design, deploy-

ment, maintenance (including power re-equaliza-

tion and troubleshooting), and upgrade. By de-

ploying and fine-tuning LLMs locally, we avoid 

using a public cloud and automate a wide range 

of tasks on a testbed based on commercial opti-

cal network products, such that network opera-

tion is automated, secure, accurate, and fast. 

Building AI-Agent for specific domain/task 

Our framework leverages prompt engineering + 

retrieval-augmented generation (RAG) (Fig. 1a, 

top) and fine-tuning (Fig. 1a, bottom). Different 

tasks require different skills, so we implement a 

multi-agent framework where specific tasks are 

allocated to dedicated agents (Fig. 1b).  

Prompt engineering and RAG 

Prompt engineering involves crafting input 

prompts to maximize the effectiveness and accu-

racy of LLMs' responses. RAG leverages exter-

nal knowledge bases (e.g., technical documen-

tation) to combine retrieval-based methods with 

generation-based models to produce more accu-

rate and contextually relevant responses. Our 

demonstration leverages both. 

Fine-tuning the model 

An LLM pre-trained on a generic knowledge base 

can be fine-tuned to learn a new, specific domain 

through model weight adjustment. Here, we em-

ploy Low-Rank Adaptation (LoRA) [10], which 

lowers hardware requirements by re-training only 

a fraction of the LLM parameters.  

  

(a) Building AI-Agent for specific domain or task. (b) Multi-agent framework. 

Fig. 1: (a) Per domain AI-Agent and (b) multi-agent framework. 
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Experimental Setup 

Hardware: Fig. 2 depicts the workflow and pro-

cessing of day-0 to day-N management and au-

tomation based on our testbed [11] with 8 OMS 

(6 THz C band, 25 spans, 1980 km of fiber) and 

1 real-time transponder (used at 400Gb/s PCS-

16QAM, 100 GHz spacing) for SNR measure-

ment. Channel loading is emulated with an Am-

plified Spontaneous Emission (ASE) source. 

Software: We locally deploy open-source Mistral 

AI LLMs (7B-Instruct [12], 8x7B-Instruct [13]) on 

a multi-GPU (256G) server. Then, we build two 

task-specific AI-Agents: A1 for network automa-

tion, fed with API descriptions for interaction with 

our AI-Light digital twin [14], and A2 for network 

management, which embeds product documen-

tation for system design and log analysis,Fig. 3.  

D-0: Network design 
With RAG, we integrate the documentation of our 
optical products, AI-Agent A2 then becomes an 
expert in commercial products, who knows all 
their specifications. We use A2 to select the avail-
able devices based on digital twin-designed net-
work configurations to build a 5-OMS network; 
see Fig. 2a, which illustrates AI-assisted optical 
amplifier selection.  

D-1: Network deployment: service establish-

ment and commissioning 

We then perform service commissioning. The 

agent for network automation A1 translates ser-

vice human language requests into valid prede-

fined APIs in JSON format (compliance to stand-

ards is possible, but is out of the scope of this pa-

per). The SDN controller then calls the APIs to 

implement the intent.  

Specifically, we use our custom SDN API 

add_och(source, destination, path, frequency, 

bandwidth, board_mode) to add a (possibly multi-

OMS) service in our testbed. The “path” and “fre-

quency” may be explicit, or assigned to names as 

“shortest-path” and “first-fit” of allocation algo-

rithms implemented in our digital twin. Channel 

bandwidth and modulation format can also be ex-

plicit (e.g., “PCS-16QAM” for 400Gb/s in 100GHz) 

or set to “auto” (i.e., chosen by the digital twin).  

We load a new batch of 20 services each (see 

slot occupation in Fig. 2b) at T1, T2, T3, T5, T6; 

we measure SNR for 20% of the services.  

AI-Agent A1 should call the correct APIs with 

100% accuracy. However, there is a trade-off be-

tween performance and general LLM size, which 

relates to computation resource requirements. 

For instance, quantizing the LLM parameters is a 

strategy for reducing the model’s size and infer-

ence costs. [2] achieved 80% accuracy by using 

Mixtral-8x7B-Instruct with 4-bit quantization. 

Based on PoliMi’s dataset (limited to 50 que-

ries [2]), we test the model accuracy with different 

levels of quantization. Fig. 4 depicts the obtained 

model size/accuracy trade-off in blue.  

To improve accuracy with smaller model size, 

we perform LoRA fine-tuning on Mistral-7B-In-

struct for 5 APIs including add/delete service, es-

timate/measure quality of transmission (QoT), 

and equalization. We generate an augmented 

dataset with a general purpose LLM of 10k/API 

for fine-tuning; all 50000 queries are available 

in [15]. The loss curve is shown in Fig. 5. 

We reduce the model size by 83% from 

90.4 GB to 14.5 GB while maintaining 100% ac-

curacy in API calls, as shown in Fig. 4(red). Multi-

 
Fig. 2: Lifecycle management and automation. 

Fig. 3: Proposed AI agents. 

 
Fig. 4: API-calling accuracy of different models and da-

tasets. The different quantization precisions are used for Po-

liMi’s datasets (blue). Models without quantization are used 

for Huawei Paris Research Center (HW PRC) datasets (red). 



  

language support is shown in Fig. 6. We test the 

model for syntax errors and mixing of multiple 

languages in the same query; Fig. 7 shows such 

robustness can be achieved with fine-tuning. 

D-2: Network maintenance: re-equalization, 

troubleshooting and re-configuration 

During the network lifecycle, the power profile 

varies due to the gain variation of amplifiers after 

loading new services. To avoid the resulting SNR 

margin degradation, we use periodic service 

launch power re-equalization as in [16].  

By chatting with AI-Agent A1, we add services 

with “set & forget” fixed channel power (5 batches 

of 20 services). We periodically re-equalize to im-

prove SNR (up to 1dB margin improvement is 

measured at T6). The measured network SNR 

margin before and after re-equalization for each 

of the 5 batches is shown in Fig. 2b (jumps in the 

red dashed line), and the digital twin predicted 

SNR gains for all services over network life in 

Fig. 8(inset). Some services may degrade but the 

network margin always improves.  

The digital twin performs prediction and esti-

mation of SNR before and after re-equalization, 

the pdf of the digital twin SNR prediction accuracy 

(prediction–measured) is shown in Fig. 8 

(RMSE=0.3dB). Additionally, link failures may oc-

cur over time, requiring troubleshooting and 

network reconfiguration. As a natural language 

processing (NLP) technique, the LLM is highly ef-

fective in alarm log analysis. We unplug a con-

nector to emulate a link failure on OMS1 (thereby 

16 services dropping) at T4 and collect the logs, 

which are then analyzed by Agent A2. As shown 

in Fig. 9, by comparing with the reading speed of 

human beings [17], Agent A2 performs alarm log 

reading AND analysis 7x faster than a human 

would parse the logs (let alone analyze them).  

D-N: Network upgrade 

To avoid blocking at end-of-life (T7), we add 3 

OMSes and use Agent A1 to automate the addi-

tion of 20 services in the 8-OMS network, using 

the same method as in D-2, reaching a total of 

120 services established, see Fig. 2b (right).  

Conclusion 

This is the first experimental demo of a fine-tuned 

LLM for digital twin optical network automation to 

enable non-specialists to operate a network. We 

present use cases for lifecycle management and 

automation that are 7x faster, 100% accurate, 

and decrease hardware memory usage by 83%.  

 
Fig. 6. Multi-language requests for adding a service. Based on the fine-tuned Mistral-7B-Instruct model, the Agent responds to 

the requirements in different European languages and calls the correct API of our network controller. 

 
Fig. 7 “Please add a service from A to D at 400G”: Accurate answer even asking questions with typos (mixing of languages). 

Top: no fine-tuning; bottom: with fine-tuning. 

 

 
Fig. 5: Loss curve of fine-tuning Mistral-7B-Instruct. 

 
Fig. 8: SNR margin gain and digital twin prediction accuracy. 

 
Fig. 9: Log analysis speed-up with AI agents. 



  

References 

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kai-
ser, and Illia Polosukhin, "Attention Is All You Need," 
arXiv, 2017. DOI: 
https://doi.org/10.48550/arXiv.1706.03762  

[2] Nicola Di Cicco, Memedhe Ibrahimi, Sebastian Troia, 
Francesco Musumeci, and Massimo Tornatore, 
"Open Implementation of a Large Language Model 
Pipeline for Automated Configuration of Software-De-
fined Optical Networks," 50th European Conference 
on Optical Communication (ECOC), Frankfurt, Ger-
many, 2024. 

[3] Anni Zhou, Yuchen Song, Yao Zhang, Min Zhang, 
and Danshi Wang, "Large Language Model-Driven AI 
Agent in SDN Controller Towards Intent-Based Man-
agement of Optical Networks," 50th European Con-
ference on Optical Communication (ECOC), Frank-
furt, Germany, 2024.  

[4] Daniel Adanza, Carlos Natalino, Lluis Gifre, Raul 
Muñoz, Pol Alemany, Paolo Monti and Ricard Vilalta, 
" IntentLLM: An AI Chatbot to Create, Find, and Ex-
plain Slice Intents in TeraFlowSDN," 2024 IEEE 10th 
International Conference on Network Softwarization 
(NetSoft), Saint Louis, USA, 2024. DOI: 
https://doi.org/10.1109/NetSoft60951.2024.10588917  

[5] Vignesh Karunakaran, Carlos Natalino, Behnam 
Shariati, Piotr Lechowicz, Johannes Karl Fischer, 
Achim Autenrieth, Paolo Monti, and Thomas Bausch-
ert, " TAPI-based Telemetry Streaming in Multi-do-
main Optical Transport Network," Optical Fiber Com-
munications Conference and Exhibition (OFC), San 
Diego, USA, 2024. DOI: 
https://doi.org/10.1364/OFC.2024.M3Z.9  

[6] Ehsan Etezadi, Carlos Natalino, Vignesh Karu-
nakaran, Renzo Diaz, Anders Lindgren, Stefan Melin, 
Achim Autenrieth, Lena Wosinska, Paolo Monti, Ma-
rija Furdek, "Demonstration of DRL-based intelligent 
spectrum management over a T-API-enabled optical 
network digital twin," 49th European Conference on 
Optical Communications (ECOC), Glasgow, UK, 
2023. DOI: https://doi.org/10.1049/icp.2024.1801  

[7] Xiaotian Jiang, Min Zhang, Yuchen Song, Yao 
Zhang, Yidi Wang, Cheng Ju, and Danshi Wang, 
"OptiComm-GPT: a GPT-based versatile research 
assistant for optical fiber communication systems," 
Optical Express (OE), vol. 32, no.12, p.p. 20776-
20796, 2024. DOI: https://doi.org/10.1364/OE.522026  

[8] Yidi Wang, Chunyu Zhang, Jin Li, Yue Pang, Lifang 
Zhang, Min Zhang, and Danshi Wang, "AlarmGPT: 
an intelligent alarm analyzer for optical networks us-
ing a generative pre-trained transformer," Journal of 
Optical Communications and Networking (JOCN), vol. 
16, no. 6, p.p. 681-694, 2024. DOI: 
https://doi.org/10.1364/JOCN.521913  

[9] Danshi Wang, Yidi Wang, Xiaotian Jiang, Yao Zhang, 
Yue Pang, and Min Zhang, "When Large Language 
Models Meet Optical Networks: Paving the Way for 
Automation," arXiv, 2024. DOI: 
https://doi.org/10.48550/arXiv.2405.17441  

[10] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 
Weizhu Chen, " LoRA: Low-Rank Adaptation of Large 
Language Models," arXiv, 2021. DOI: 
https://doi.org/10.48550/arXiv.2106.09685  

[11] Chenyu Sun, Reda Ayassi, Xin Yang, Gabriel Char-
let, Photios A. Stavrou, and Yvan Pointurier, "Demon-
stration of LLM-based AI-Agent for Optical Network 

Management and Automation," 50th European Con-
ference on Optical Communication (ECOC), Frank-
furt, Germany, 2024. 

[12] Mistral AI, Mistral-7B-Instruct-v0.3, https://hugging-
face.co/mistralai/Mistral-7B-Instruct-v0.3 

[13] Mistral AI, Mixtral-8x7B-Instruct-v0.1, https://hugging-
face.co/mistralai/Mixtral-8x7B-Instruct-v0.1 

[14] Alessio Ferrari, Venkata Virajit Garbhapu, Dylan Le 
Gac, Ivan F. de Jauregui Ruiz, Gabriel Charlet, and 
Yvan Pointurier, "Demonstration of AI-Light: an Auto-
mation Framework to Optimize the Channel Powers 
Leveraging a Digital Twin", Optical Fiber Communica-
tions Conference and Exhibition (OFC), San Diego, 
USA, 2022. DOI: 
https://doi.org/10.1364/OFC.2022.M3Z.14  

[15] ECOC2024_LLM_API_Demo, GitHub, 
https://github.com/csun19/ECOC2024_LLM_API_De
mo  

[16] Xin Yang, Alessio Ferrari, Dylan Le Gac, Gabriel 
Charlet, Massimo Tornatore and Yvan Pointurier, 
"Experimental Impact of Power Re-Optimization in a 
Mesh Network", Journal of Optical Communications 
and Networking (JOCN), vol. 15, no. 7, p.p. C20-C28, 
2023. DOI: https://doi.org/10.1364/JOCN.482298  

[17] Marc Brysbaert, "How many words do we read per 
minute? A review and meta-analysis of reading rate," 
Journal of Memory and Language, vol.109, 2019. 
DOI: https://doi.org/10.1016/j.jml.2019.104047  

https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/NetSoft60951.2024.10588917
https://doi.org/10.1364/OFC.2024.M3Z.9
https://doi.org/10.1049/icp.2024.1801
https://doi.org/10.1364/OE.522026
https://doi.org/10.1364/JOCN.521913
https://doi.org/10.48550/arXiv.2405.17441
https://doi.org/10.48550/arXiv.2106.09685
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://doi.org/10.1364/OFC.2022.M3Z.14
https://github.com/csun19/ECOC2024_LLM_API_Demo
https://github.com/csun19/ECOC2024_LLM_API_Demo
https://doi.org/10.1364/JOCN.482298
https://doi.org/10.1016/j.jml.2019.104047

