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Threat modeling (TM) is essential to manage, prevent, and fix security and privacy issues in our society. TM
requires a data model to represent threats and tools to exploit such data. Current TM data models and tools
have significant limitations preventing their usage in real-world scenarios. For example, it is challenging to
TM embedded devices with current data models and tools as they cannot model their hardware, firmware, and
low-level software. Moreover, it is impossible to TM a device lifecycle or security-privacy tradeoffs as these
data models and tools were developed for other use cases (e.g., software security or user privacy).

We fill this relevant gap by presenting the AttackDefense Framework (ADF), which provides a novel data
model and related tools to augment TM. ADF’s building block is the AD object that can be used to represent
heterogeneous and complex threats. Moreover, ADF provides automations to process a collection of AD
objects, including ways to create sets, maps, chains, trees, and wordclouds of AD objects. We present ADF, a
toolkit implementing ADF composed of four modules (Catalog, Parse, Check, and Analyze).

We confirm that the data model and tools provided by ADF are useful by running an extensive set of
experiments while threat modeling a crypto wallet and its lifecycle. Our experiments involved seven expert
groups from academia and industry, each using the ADF on an orthogonal threat class. The evaluation
generated 175 high-quality ADs covering ISA/IEC 62433-4-1 SecDev Lifecycle, side-channels, fault injection,
microarchitectural attacks, speculative execution, pre-silicon testing, invasive physical chip modifications,
Bluetooth protocol and implementation threats, and FIDO2 authentication.
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1 INTRODUCTION
Threat Modeling (TM) is essential to manage our society’s security and privacy risks. In short,
TM allows systematically listing, prioritizing, and addressing digital threats [111, 121, 127], thus
providing tangible security benefits compared to other more common but potentially less effective
practices, such as compliance with security standards [52, 87, 124]. TM includes data formats to
represent threats, tools to process them, and methodologies to identify, prioritize, and address them.

Current TM data formats and tools cannot cover critical aspects of real-world (embedded) devices.
For instance, there is no way to accurately represent and process threats related to hardware (e.g.,
invasive physical attacks), firmware (e.g., bootloader), hardware-software interface (e.g., specu-
lative execution and microarchitectural issues), and communication protocols (e.g., protocol- or
implementation-level threats). Moreover, they focus on security or privacy attacks on products, ne-
glecting possible security-privacy tradeoffs. Other shortfalls are that they cannot model the products’
lifecycle (e.g., supply chain attacks) and the defenses associated with the attacks. Finally, current
TM data formats and tools try to be human and machine-friendly, but they usually lack the latter,
not allowing for automation and optimization of TM exercises. Hence, the TM community tends
to focus on specialized classes of threats (e.g., software security or user privacy) and has limited
tooling available.
We fill this gap by presenting the AttackDefense Framework (ADF), a novel framework to

enhance TM coverage, effectiveness, automation, and (re)usability. ADF’s building block is the
AttackDefense Object (AD), a new data structure for representing threats. The AD object satisfies
seven requirements that we set based on the state of the art. In particular, it covers attacks and
defenses, security and privacy, hardware and firmware, product and lifecycle, and fine- and coarse-
grained threats. Moreover, it is developed to be reusable and updatable (i.e., future-proof), friendly
to machines and humans, and compatible with any TM methodology (e.g., STRIDE, LINDDUN, and
ATree). An AD object can be written in any serialization language. We recommend using YAML
or JSON. Moreover, we implement valuable automations on the AD objects, unlocking novel TM
capabilities. For example, we show how to create flat AD sets or maps or hierarchical AD chains,
trees, or wordclouds. These capabilities significantly increase TM’s effectiveness, coverage, and
speed.
We implement the ADF design in the ADF toolkit that contains four modules: Catalog, Check,

Analyze, and Parse. A high-level overview of the ADF is shown in Figure 1. Catalog contains the
ADs that we develop in our case studies. Parse can extract ADs from YAML, JSON, TOML, and XML
files and can be easily extended to parse other file types. Check automatically validates the syntax,
semantics, and content of the ADs using a combination of checkers such as yamllint and Python
schema. Analyze provides functions to automatically process ADs to generate, among others, ADs’
sets, maps, trees, wordclouds, and chains. We will open-source our toolkit with a permissive license
to let other individuals take advantage of ADF and provide feedback.

We describe the results of seven case studies run by industrial and academic expert groups covering
a broad spectrum of threats using a crypto wallet and its life cycle as a reference. In particular, we
evaluate attacks and defenses related to ISA/IEC 62433-4-1 SecDev Lifecycle, side-channels, fault
injection, microarchitectural attacks, speculative execution, pre-silicon testing, invasive physical
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Figure 1. ADF high-Level Overview

chip modifications, Bluetooth protocol and implementation, and FIDO2 authentication. As a result
of our evaluation, the seven experts created and used 175 ADs and provided invaluable feedback to
improve the ADF. Our toolkit is open-source and available at https://github.com/francozappa/adf.

We summarize our contributions as follows:

• We present the ADF, the first TM framework to model real-world product and lifecycle threats
using a new data format called AD object and automations built around it. ADF satisfies
seven requirements to achieve maximum coverage, usability, and compatibility with the state
of the art.

• We describe ADF, a toolkit implementing the ADF in four modules: Catalog, Parse, Check,
and Analyze. For each module, we discuss the relevant technical implementation details.

• We evaluate ADF in a real-world case study on a crypto wallet and its lifecycle. We involved
seven expert groups that developed AD objects for different relevant threat classes. Our
evaluation generated 175 high-quality AD objects covering lifecycle and product threats. We
evaluated overlooked but critical threats such as side-channels, fault injection, microarchitec-
tural attacks, speculative execution, and invasive physical attacks.

2 BACKGROUND
This section provides background information on threat modeling and its methodologies, catalogs,
and tools.

2.1 Threat Modeling
Threat modeling (TM) is an approach to identify threats to a target, prioritize them, and develop
appropriate countermeasures. It consists of four sequential phases: (1) system and attacker mod-
eling, (2) threat identification, (3) threat ranking, (4) building a defense strategy. From a top-down
perspective, the four phases map to four questions (Q1, Q2, Q3, and Q4) [138]:

Q1: What are we working on? First, we build a system model including the system’s components,
interconnections, and security boundaries. Software systems are typically modeled with a data
flow diagram (DFD), while communication protocols with sequence diagrams (SD). Usually, a DFD
represents the system’s components with solid lines, the trust boundaries with dotted lines, and
the data flows with numbered arrows across components and boundaries. An SD represents the
parties involved in a protocol and the messages they exchange.
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Q2: What can go wrong? The second phase is about performing threat identification (TI) on our
target. We define our attack surface, which is the set of components that we want to protect. Then,
we consider different attacker models targeting our surface to achieve some goals using one or
more techniques. TI is a laborious and mostly manual process. TI methodologies differentiate
according to the threat domains and their relation. Common TI methodologies include STRIDE [73]
for software security, LINDDUN [23] for system privacy, and Attack Trees (ATree) [114] for attacker
goals. More TI techniques are discussed in [118, 119].

Q3: What are we going to do about it? The third phase involves risk or severity scoring. In this
phase, we score the threats identified in the previous phase using metrics usually based on the
attack’s impact, cost, and scalability. The most common threat scoring scheme is the Common
Vulnerability Scoring System (CVSS) [93] that is employed by the US National Vulnerability Database
(NVD) to score the severity of all currently known vulnerabilities. A CVSS score has three metrics:
Base, Temporal, and Environmental. The Base metric provides a score from zero to ten and can
be adjusted by scoring the Temporal and Environmental metrics. The Temporal metric takes into
account the severity of a threat over time. The Environmental metric enables re-weighting the
severity according to the target. The most widely used CVSS scores are v2 and v3, while v4.0 was
released recently [96]. The scores can be computed using the NVD calculator web pages [94, 95].

Q4: Did we do a good enough job? The fourth phase of TM starts with the creation of a defense
plan, which typically is a document containing a summary of the first three phases and a section
explaining which threats are fixed, mitigated, and accepted as risks. Such a document also provides
a list of countermeasures or fixes based on the identified threats. Following the development of
the defense plan, the phase proceeds with its delivery, management, and refinement, involving
active system monitoring for incidents. Ideally, the defense plan should be regularly reviewed and
updated based on feedback from various channels, such as security logs, bug bounties, security
advisories, and user input.

2.2 TM Methodologies
STRIDE. STRIDE was developed by Kohnfelder et al. in 1999 and adopted by Microsoft in

2002 [121] as part of its Secure Development Life Cycle (SDLC) [72] and Threat Modeling Tool
(TMT) [74]. STRIDE focuses on identifying threats violating software security, emphasizing net-
worked systems (e.g., web and cloud applications). It covers Spoofing (i.e., lack of authentication),
Tampering, Repudiation, Information disclosure (e.g., data breaches), Denial of service, and El-
evation of privilege threats. A STRIDE user takes a DFD (or other system models) and for each
element in the attack surface lists possible threats in each STRIDE category. The threat listing can
be semi-automated using an attack library. Microsoft has documented its STRIDE threat modeling
approach since 1999 and provided some useful lessons learned, such as the lack of threat modeling
training, complexity in real-world scenarios, and the importance of the people factor [120].

LINDDUN. LINDDUN is a privacy-focused TM methodology developed by Deng et al in 2010.
LINDDUN complements STRIDE as it uses the same reference system model (i.e., a DFD). But
it produces a list of privacy threats other than software security ones. Specifically, LINDDUN
targets seven threat classes: Linkability, Identifiability, Non-repudiation, Detection, Data disclosure,
Unawareness, and Non-Compliance. Note that Data (Information) disclosure and Non repudiation
overlap with STRIDE, hence the two might produce similar threats. The LINDDUN developers
also provide a reference LINDDUN threat catalog extracted from empirical experiments [140] and
LINDDUN GO, a lightweight LINDDUN version for newcomers [141].
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ATree. ATree is a TM methodology proposed by Schneier in 1999. Each attack tree has the
attacker goal as the tree’s root. The sub-trees are the attacker’s sub-goals and can be logically
linked (e.g., sub-goal1 AND/OR sub-goal2) and annotated (e.g., sub-goal feasibility, requirements,
and monetary cost). An ATree differs from STRIDE and LINDDUN. It focuses on goals other than
threat classes, produces a hierarchical representation of threats rather than a list, and is scalable
as a tree addresses multiple threats. On the flip side, an Atree is difficult to create and maintain
because of its hierarchical structure. For example, a tree might become useless by missing just one
sub-goal (sub-tree).

2.3 Threat Catalogs
Threat modeling methodologies and tools rely on threat catalogs (i.e., collections of known threats).
For example, STRIDE and LINDDUN have bundled catalogs of high-level security and privacy
threats [140]. Additionally, the three relevant catalogs – all maintained byMITRE – are the Common
Attack Pattern Enumeration and Classification (CAPEC) [81], Common Weakness Enumeration
(CWE) [83], and Common Vulnerabilities Exposures (CVE) [82].

CAPEC. CAPEC is a catalog of attack patterns extracted from real-world threats. An attack
pattern describes the adversary’s approach to exploit known weaknesses. Each CAPEC entry
has the following fields: unique ID, description, likelihood, severity, relationship, execution flow,
prerequisites, skills required, consequences, mitigations, related weaknesses (CWE), taxonomy
mappings, and content history.

CWE. CWE is a collection of known software and hardware weakness types. A CWE entry
has the following attributes: UID, description, relationship, modes of introduction, consequences,
demonstrative examples, observed examples (CVE), membership, notes, taxonomy mappings,
related attack patterns (CAPEC), references, and content history. CWE entries are organized in a
tree hierarchy of multiple levels of abstraction.

CVE. CVE is a standard format to store, discover, analyze, and correlate vulnerabilities. Each
CVE has a unique ID in the form of CVE-YYYY-NNNNNN, description, references, assigner, creation
record, and other fields.

2.4 Tools
Among the various open-source threat modeling tools, we focus on those that provide a custom
and extensible threat catalog [67] and a data representation structure to represent the threats, i.e.,
pytm [126] and threagile [113].

pytm. Pytm is a Python-based framework developed by the OpenWorldwide Application Security
Project (OWASP). It introduces the paradigm of threat modeling as code, simplifying TM integration
into the development process. The framework has some pre-defined and extendible classes for
constructing a system model. In particular, the user writes a script instantiating Python objects for
each system component and specifies how the components are connected. Then, the tool generates
a visual system diagram (e.g., DFD or SQ) and automatically identifies potential threats using a
threat library built upon a custom data representation model that uses JSON. The threat library
contains approximately 100 entries at the time of writing.

Threagile. Threagile is a tool following threat modeling as a code paradigmwritten in Golang. The
tool provides a catalog with 41 threats in the form of hardcoded rules. Each rule is also associated
with its STRIDE category, allowing it to be easily integrated with TM exercises requiring adherence
to the STRIDE taxonomy classification. The user is required to build a system model using YAML.
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The tool tries to apply the rules to the system model and then automatically generates DFDs and
other outputs (i.e., Excel and JSON).

3 ADF DESIGN
This section motivates the need for ADF and presents its seven requirements, the AttackDe-
fense (AD) object and related automations, and ADF’s compatibility with the STRIDE and LINDDUN
TM methodologies.

3.1 Motivation
We started working on ADF because we could not find threat data models to TM real-world
(embedded) devices and lifecycles. CWE, CVE, and CAPEC (introduced in Section 2) represent the
state-of-the-art data formats to model devices’ weaknesses, vulnerabilities, and attack patterns.
However, they are problematic for several reasons. Studies demonstrated that they are challenging
to use in scenarios requiring automation [10, 70]. Other work showed their limited precision for
vulnerability management [102] and even wrong entries in the CVE database [39, 59]. There is no
threat data model to represent risks associated with a device lifecycle, such as supply chain attacks.
Let’s take as an example CAPEC-668 [80], which models the Key Negotiation Of Bluetooth

(KNOB) attack technique presented in [5, 7]. And use CAPEC-668 and the associated CWEs and
CVEs to TM a crypto wallet supporting Bluetooth. What can we achieve? Very little, since we get
generic information from the entries, such as high-level description of the KNOB attack, related
patches, and links to external resources. But, we miss essential threat modeling data, like KNOB
attack surface, vector, technique, and defensive fixes and mitigations.
A second issue that motivates the need for ADF is the lack of tools capable of TM real-world

(embedded) devices and lifecycles. Pytm and Threagile are industrial and open-source TM tools
offering machine-readable threat representations, catalogs, and automation. But, they target specific
TM domains, such as securing web applications, and are not suited to TM devices with hardware,
firmware, software, and communication protocol issues. For instance, we cannot TM a crypto
wallet with a microcontroller, a secure element, a secure bus connecting them, a USB stack, and
a Bluetooth wireless interface. Moreover, we know no tool that can TM a device lifecycle, e.g.,
pre-deployment issues with its design and implementation. Returning to the crypto wallet example,
we would like to TM hardware and software supply chain risks (i.e., device lifecycle threats), but
there is no capable tool.

3.2 Requirements
Based on the two issues presented in Section 3.1, we set seven requirements for ADF to enable TM
real-world (embedded) devices and their lifecycles. We now describe each requirement.

R1: Attacks and Defenses. Current TM frameworks focus on the attacker. We want to focus on the
attacker and the defender at the same time. This approach enables reasoning about fine-grained and
coarse-grained mitigation strategies, identifying critical attacks with and without known defenses,
exploring alternative defensive strategies for a specific attack, evaluating defense-in-depth options,
and determining the minimum number of defenses required to address an attack.

R2: Security and Privacy. Existing TM frameworks treat security and privacy separately, leading
to issues like overlooked security-privacy trade-offs. We want to consider security and privacy
simultaneously to capture their unavoidable joint benefits and trade-offs. For instance, we could
model a scenario to explore the competing goals of confidentiality and integrity (security) vs.
repudiability and traceability (privacy).
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R3: Hardware and Firmware. There is a need to broaden the scope of threat modeling to cover
hardware and firmware threats, which are relevant but often neglected during TM. Besides tradi-
tional TM areas, we want to cover novel hardware and firmware threat classes, including invasive
and non-invasive physical attacks like side-channels, fault injection, and physical chip manipula-
tions. Furthermore, we want to address threats at the intersection of hardware and software, such
as microarchitectural and speculative execution attacks.

R4: Product and Lifecycle. Existing TM frameworks focus on analyzing devices or systems,
not their development lifecycle. For instance, current frameworks cannot model hardware and
software supply chain attacks. We want to include lifecycle threats in our framework to enable TM
practitioners to manage critical process risks such as SolarWinds [137] and Supermicro [115].

R5: Fine- and Coarse-grained Threats. While current TM frameworks focus on generic classes
of threats, we want to support threats at different levels of abstraction. For instance, we model
coarse-grained threats (e.g., generic attack techniques), such as buffer overflows, and fine-grained
ones (e.g., real-world attack instances), like Heartbleed on OpenSSL. By doing so, we enhance our
TM analysis capabilities. For instance, we can automatically generate hierarchies of threats based
on abstraction levels, including trees, chains, and graphs.

R6: Reusable and Updatable. Present TM frameworks are difficult to combine, update, and au-
tomate. We want to prevent duplication of the same TM exercises by providing reusable data
formats and tools. We want to interoperate with existing TM methodologies such as STRIDE and
LINDDUN. Additionally, the framework must be updatable, allowing new attacks and defenses to be
incorporated as they become available. We aim to consistently and incrementally add threats over
time to cover situations where new threats are identified or old threats are patched or reintroduced.

R7: Machine- and Human-friendly. Current TM frameworks are either machine- or human-
friendly. We want a framework that minimizes friction between humans and machines. Users
should be able to read, write, analyze, and share attack and defense strategies. The framework
should accommodate users with varying expertise in TM, including developers and threat modeling
experts. The framework should enable machines to automatically generate valuable TM outputs
such as interactive and portable reports and visualizations. It should also facilitate intelligent
storage of these outputs, leveraging techniques such as version control, CI/CD pipelines, and
machine-checkable data formats.

3.3 AttackDefense Object (AD)
Starting from the seven requirements outlined in Section 3.2, we developed the AttackDefense
Object (AD), our threat data model for ADF. We indicate an AD Object as AD and multiple ones
as ADs. AD is a programming language agnostic data structure representing a threat (i.e., attack,
defenses, and useful metadata). We use AD objects to model real-world threats on devices and
lifecycles, such as the design, implementation, evaluation, and shipment of a crypto wallet.
Listing 1 shows how to write an AD using YAML, but note that other serialization languages,

including JSON, TOML, or XML can be used. Each AD has a unique name (ad_name), six primary
fields, and optional fields. A field is a key-value pair and supports various data types, including
dictionaries, lists, strings, and integers.

The AD has six primary fields:

• a contains a string describing an attack with an arbitrary level of abstraction (e.g., coarse-
grained or fine-grained).
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Listing 1. AttackDefense (AD) Object written in YAML

ad_name:
# Primary fields
a: attack
d:

policy1: [mech1 , mech2]
policy2: [mech1 , mech2]
...

surf: [surf , subsurf , subsubsurf , ...]
vect: [vector1 , vector2 , ...]
model: [model1 , model2 , ...]
tag: [tag1 , tag2 , ...]
# Optional fields
risk: [score1 , score2 , ...]
year: 2023
cve: ["123" , "456", ...]
cwe: ["123" , "456", ...]
capec: ["123" , "456", ...]
vref: ["vendor -ref1", ...]
...: ...

• d stores sub-dicts to model different defense strategies for an attack. In particular, each sub-
dict encodes a high-level policy string (e.g., policy1) and a list of concrete mechanisms strings
(e.g., [mech1, mech2]) satisfying such policy. The sub-dicts could be ordered according to
some criteria (e.g., from the most effective to the least effective).

• surf is an ordered list of strings describing the attack surface (i.e., target). The list is ordered
such that each element narrows down the attack surface from the broadest to the most specific.

• vect is a list of strings containing the attack vectors (i.e., techniques) related to the attack.
• model stores the adversary models capable of performing the attack in a list of strings.
• tag is a list of strings storing useful metadata, such as the AD type, security-privacy trade-offs,
and other technicalities.

Additionally, there are some optional fields to enhance the AD:
• risk is a list of strings storing risk scores associated with the attack (e.g., CVSS).
• year is an int storing the year when the attack was first discovered.
• cve, cwe, and capec are lists of strings storing identifiers from those catalogs related to the
attack.

• vref is a list of vendor reference strings associated with the attack, including security advisory
identifiers from Linux [38] or Android [48].

Recall that in Section 3.1, we showed that the CAPEC entry for KNOB misses many details
about the attack. In Listing 2, we show how we modeled the KNOB attack using the knob_ble
AD. KNOB involves an adversary with a man-in-the-middle (MitM) position in the BLE proximity
range (model) targeting the entropy negotiation phase of the BLE pairing protocol (narrowing
down surf). The attack involves downgrading the pairing key entropy and brute-forcing the key
(vect). KNOB is a protocol-level attack involving BLE’s Security Manager Protocol (SMP) (tag).
The attack was discovered in 2019 (year). It is associated with CVE-2019-9506 (cve), CWE-310 and
CWE-327 (cwe), and CAPEC-668 (capec). It has high CVSSv3 risk and medium CVSSv2 risk (risk).
We can defend against KNOB either by mutually authenticating the entropy negotiation protocol
or by forbidding low entropy values for the BLE pairing key (d).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: October 2024.



AttackDefense Framework (ADF): Enhancing IoT Devices and Lifecycles Threat Modeling 9

Listing 2. knob_ble AD

knob_ble:
a: KNOB entropy downgrade attack on BLE pairing
d:

Mutually auth entropy negotiation: [Auth entropy with BLE pairing key]
High key entropy: [Disallow entropy values lower than 16]

surf: [BLE , Pairing , Entropy negotiation]
vect: [Entropy downgrade , Key brute force]
model: [Proximity , MitM]
tag: [Protocol , SMP]
risk: [cvss3_high , cvss2_medium]
year: 2019
cve: ["9506"]
cwe: ["310" , "327"]
capec: ["668"]

The AD threat data model satisfies the seven requirements we set in Section 3.2. It stores informa-
tion about an attack and its associated defenses (R1). It can cover relevant threat domains, including
security, privacy, hardware, firmware, product, and lifecycle threats (R2, R3, R4). Furthermore, the
AD allows for different abstraction levels (R5), and its simple structure is straightforward to update
and reuse (R6). ADs are human and machine-friendly as they are representable with programmable
and human-readable serialization languages, such as YAML [143] or other serialization languages
(R7).

3.4 Flat and Hierarchical ADs
We design ways to manipulate ADs in flat and hierarchical ways to enhance TM (e.g., better threat
selection, identification, visualization, and report). Specifically, we create functions to produce flat
and hierarchical combinations of ADs from a collection.

Flat (set, maps). By filtering ADs based on relevant AD field values, we can create AD sets
(i.e., unordered lists). A set allows selecting ADs based on any combination of fields, such as
attack surface or technique. Additionally, we can create AD maps to link them to known threat
taxonomies such as CIA (Confidentiality, Integrity, Availability), STRIDE, and LINDDUN. Hence,
ADs are compatible with existing TM methodologies. For instance, information from STRIDE or
LINDDUN TM exercises can be easily encoded and exploited using ADF. Our mappings support 11
taxonomies and can be extended. See Table 2 in Appendix A for more details.

Hierarchical (chains, trees, wordclouds). We can represent complex threats using hierarchical
collections of ADs. This representation is relevant when modeling exploits involving a chain of
attacks exploiting multiple vulnerabilities. For example, we can model the Pegasus Remote Code
Execution (RCE) exploit on iOS from 2021 [55] using a chain of four ADs, where the first three
represent the Trident iOS vulnerabilities CVE-2016-4655, CVE-2016-4656, and CVE-2016-4657 to
get root privileges (see boxed ADs in Figure 2), and the fourth represents the remote privileged
read exploit for iMessage CVE-2019-8646 (see ellipse AD in Figure 2).

We can represent fine-grained and coarse-grained ADs using a tree structure. This visualization
is useful because it allows placing the attack surface (surf field) as the tree’s root, building the
ramifications based on sub-surfaces. For instance, Figure 3 depicts a tree of ADs related to protocol-
level threats in BLE pairing. Each BLE pairing phase, such as entropy negotiation and CTKD
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Trident CVE-2016-4655 Trident CVE-2016-4656 Trident CVE-2016-4657 iMessage CVE-2019-8646

Figure 2. iOS Pegasus RCE chain from 2021. Each chain element is an AD.

BLE

BLE Pairing

BLE Pairing Entropy negotiation BLE Pairing CTKD BLE Pairing Association BLE Pairing Key agreement

knob_ble blur_ble bluemirror_ble nino_ble invcurve_ble

Figure 3. ADs attack surface tree for BLE Pairing. The tree leafs are the ADs.

Figure 4. Wordcloud of the attack surfaces covered by our bt.yaml catalog

(Cross-Transport Key Derivation), is represented as a sub-tree, with the ADs being the leaves of
the tree.
We can show the coverage of a specific AD using wordclouds created from ADs. A wordcloud

represents a text string by displaying words in varying sizes, proportional to their frequency within
the string. For instance, we can generate a wordcloud (Figure 4) to examine the attack surface of a
Bluetooth AD catalog, considering both protocol-level and implementation-level aspects. In the
generated wordcloud, the size of each word corresponds to its frequency. Consequently, surface-
level words (e.g., BC and BLE) have a larger size than sub-surface words (e.g., Pairing, Session), and
sub-surface words than sub-sub-surface words (e.g., Entropy negotiation, CTKD), aligning with
our expectations.

4 ADF IMPLEMENTATION
We describe the implementation details of the ADF toolkit introduced in Section 3. The toolkit
is organized in four modules: Catalog, Parse, Check, and Analyze (shown in Figure 1). We now
describe each toolkit module in detail. The files and folders mentioned below are relative to the
repository root folder.
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Listing 3. sw_orion AD

sw_orion:
a: SolarWinds Orion codesign auth bypass
d:

Auth software supply chain: [Update and revoke code signing certs]
surf: [Windows , SolarWinds , Orion Platform]
vect: [Software mod , Malware distr]
model: [Remote]
tag: [SChain , SUNBURST , SUPERNOVA]
risk: [cvss3_critical , cvss2_high]
year: 2020
cve: ["10148"]
cwe: ["287" , "288"]

4.1 Catalog
The catalog module contains the developed ADs and is located within a dedicated subfolder in our
GitHub repository. To write these ADs, we used YAML, a language that extends JSON and supports
various convenient data types, including integers, strings, lists, dictionaries, and objects. YAML
provides features such as auto-indentation, compliance with backward-compatible versioning,
and the ability to include comments. Moreover, YAML is developer-friendly, supported by all
popular programming languages, and has various integrations with developer tools. For instance,
the most popular IDEs provide automated YAML completion, linting, checking, and formatting. In
the following paragraphs, we show selected ADs from the catalogs.

One of the unique features of ADF is its capability to establish security and privacy requirements
for a device lifecycle in addition to the ones for the device itself. The sw_orion AD shown in
Listing 3 models a severe and known process supply chain attack on theWindows SolarWinds Orion
Platform. This attack involves a remote attacker circumventing signature checks to disseminate
malicious software updates to a vast number of Windows PCs, and it can be addressed by properly
authenticating software updates with valid certificates.

Another useful feature of ADF is the possibility to integrate new threats into a catalog effortlessly.
Let us assume that in 2030, we are notified about a newly disclosed and critical vulnerability
affecting the Linux kernel and want to include it in our catalog. The new threat enables privileged
and proximity-based code execution (PPCE), exploiting a kernel-space stack-based buffer overflow
(BoF) in the RFCOMM module of the Linux Bluetooth stack. It was scored as critical with CVSSv3
and assigned CVE-2030-0007. How can we add this threat to our AD catalog?

Listing 4 shows how we model the new threats with an AD called linux_new_bof. We describe
a short and self-contained attack in a. In d, we list two defenses: (i) we recommend employing a
memory-safe programming language (a policy) and we select Rust [31] (a concrete mechanism)
because Linux supports it; (ii) we suggest sanitizing kernel-space memory (policy) with the Kernel
Address Sanitizer (KASAN) [27], a dynamic memory testing tool for the Linux kernel, aiming to
find out-of-bounds and use-after-free bugs.

We set surf to a list of strings progressively narrowing down the attack surface: from Linux to
its Bluetooth RFCOMM (Radio frequency communication) subsystem. The vect is a stack-based
BoF to achieve privileged code execution in kernel space from user space. The model is proximity-
based as the adversary needs to be in Bluetooth range. We tag the AD with BT (Bluetooth), Impl
(implementation-level flaw), and Linux414 (affected Linux version). The remaining AD fields are
self-explanatory.
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Listing 4. linux_new_bof AD

linux_new_bof:
a: Linux kernel PPCE via stack -based BoF on Bluetooth stack
d:

Memory safe PL: [Rust]
Sanitize memory: [KASAN]

surf: [linux , net , bluetooth , rfcomm]
vect: [Stack BoF]
model: [Proximity]
tag: [BT , Impl , Linux414]
risk: [cvss3_critical]
year: 2030
cve: ["0007"]

Listing 5. linux_bof AD

linux_bof:
a: Stack or heap based BoF on Linux
d:

Memory safe PL: [Rust]
Sanitize memory: [KASAN]
Hardened memory allocator: [musl]
Randomized memory layout: [KASLR]
Non executable stack: [NX]

surf: [Linux]
vect: [Stack BoF , Heap BoF]
model: [Proximity , Remote]
tag: [Impl]

A catalog can also include coarse-grained ADs, which can represent threats’ classes (e.g., an
attack technique) in a single object. In Listing 5, we show how to implement a coarse-grained
AD, named linux_bof, to represent a generic BoF attack on the Linux kernel. The a field states a
high-level attack description, d lists the defense mechanisms that we combine to protect the Linux
kernel stack and the heap against BoFs. Here, other than recommending using Rust and KASAN,
we add other defenses such as the Kernel Memory Sanitizer (KMSAN) [28] to find uninitialized
values, musl [88, 89] to reduce libc’s attack surface and use a hardened memory allocator, Kernel
Address Space Layout Randomization (KASLR) which requires a Position Independent Executable
(PIE) kernel built, and CPU NX bit to avoid executing code on the stack. Since it is a coarse-grained
and thus a generic AD, the defenses are not ordered by effectiveness. For the same reason, optional
fields, such as risk, year, and cve are not considered as an attack class applies to multiple threats
and not a specific one. The AD attack surface is Linux. The vectors are stack or heap-based BoFs.
The attacker model is proximity or remote, and the tag is Impl.

4.2 Parse
The parse module, implemented in the parse.py file, contains the functions to parse ADs from
YAML, TOML, JSON, and XML files into Python dictionaries. For instance, the YAML AD presented
in Listing 1 converts into the AD dictionary in Listing 6. The module can be easily extended to
handle other file formats, such as XLS and CSV. However, we recommend using YAML, JSON, or
TOML due to their enhanced writability and readability.
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Listing 6. Python dictionary parsed from the YAML AD in Listing 1

ad_name = {
# Primary fields
"a": "Attack␣1",
"d": {"policy1": ["mech1", "mech2"], "policy2": ["mech1", "mech2"]},
"surf": ["surf", "subsurf", "subsubsurf"],
"vect": ["vector1", "vector2"],
"model": ["model1", "model2"],
"tag": ["tag1", "tag2"],
# Optional fields
"risk": ["score1", "score2"],
"year": 2023,
"cve": ["123", "456"],
"cwe": ["123", "456"],
"capec": ["123", "456"],
"vref": ["vendor -ref1"],
...

}

We implemented the parser as a high-level function that invokes specialized parsing functions
based on the file extension specified in the path argument. These functions generate a dictionary
representation of the ADs. For instance, the _parse_yaml function receives a YAML file containing
ADs (as illustrated in Listing 1), parses the file using PyYAML [30] with CSafeLoader, which
is a secure and efficient parser from LibYAML [26]. The output is a dictionary with nested sub-
dictionaries, as demonstrated in Listing 6. Similarly, we implemented other specialized parsing
functions to handle TOML, JSON, and XML files.

To ensure the correctness of the parsers, we implemented a series of tests using the pytest library.
The testing code, contained in parse_test.py, verifies the flawless operation of all specialized
parsers and confirms that they produce the same Python dictionary representation (AD_PARSE_TEST
from ad.py) when parsing identical sets of ADs. The testing files are in the template folder. The
tests can be executed with the command make test-parse.

4.3 Check
The check module, implemented in check.py, automatically validates the syntax and semantics of
the ADs. It uses syntax-based checkers on the file containing the ADs, and semantic-based ones
on the parsed Python dictionary. The module is designed with a top-level function (check(path;
Path, words=None) -> dict) that calls the relevant syntax and semantics checkers based on the
path file extension. The parse module presented in Section 4.2 performs the parsing.
The validation is performed in two main steps: (1) syntax checking using yamllint [144] with

its default configuration to avoid duplicate ad_names and wrong indentations, and (2) semantic
checking using a custom function that enforces a particular schema with specific types and allowed
values on the parsed dictionary.

Listing 7 shows an excerpt of our AD dict schema implemented using the schema [62] Python
package. ad_name is a lowercase alphanumeric regex, a is a non-empty string, d is a dictionary of
dictionaries where the top level keys are strings (policy), and the bottom values are lists of strings
([mech1, mech2]). surf is a list of strings with specific values that we enforce with a lambda
checking that the strings are inside the words["surf"] list. Using a wordlist is useful to keep ADs
consistent, especially when different teams work on the same ADs. Moreover, it helps to track what
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Listing 7. AD dict schema excerpt

Regex(r"^[a-z0 -9_]*$"): {
# Primary fields
"a": And(str , lambda a: len(a) > 0),
"d": And(Schema ({str: [str]})),
"surf": And(Schema ([str]),

lambda surf: (len(surf) > 0) and
len(set(surf) - set(words["surf"])) == 0,

),
...
# Optional fields
Optional("year"): And(int ,

lambda year: (1980 <= year <= 2030) or year == 0),
...

}

is covered (e.g., the surf wordlist contains all the surfaces covered by our ADs). Finally, year is an
int between a sensible range.

We can automatically test the module with check_test.py. This script runs the check function
on the YAML, TOML, JSON, and XML template AD files in the template folder. The command to
run the tests is make test-check.

4.4 Analyze
The analyze module, implemented in analyze.py, provides various automation to process a
(checked) dictionary of ADs. Internally, it uses pandas [29], matplotlib [37], and graphviz [24, 25]
to produce its outputs. These are free and powerful open-source libraries. Currently, Analyze can
generate sets, maps, trees, wordclouds, and chains of ADs to perform flat and hierarchical analyses,
and now we describe how.
Analyze’s entry point is get_dataframe, a function loading ADs from a file and returning an

AD DataFrame, a table-like data structure. Each row of the DataFrame contains an AD, with the
index corresponding to the ad_name, and the columns containing the AD fields such as a, d, and
surf.

The function get_set generates collections of ADs using key-value filters. It allows the creation
of sets based on attributes such as surf, model, and tag, which can be used to identify ADs of
interest based on high-level requirements, such as retrieving all ADs related to a specific technology
or attack technique. The get_set function is also used internally to perform other set-based
analyses.
The get_map function returns sets of AD based on known security and privacy taxonomies.

Table 2 lists the 11 taxonomies that we currently support, including those related to security (e.g.,
STRIDE, CIA), privacy (e.g., LINDDUN, UIT, and PMD), web (e.g., OTT17, OTT21), software and
hardware Weaknesses (e.g., CWETH21, CWETS22, and CWETS23). For example, given an AD
file properly tagged with STRIDE categories, we can automatically extract six tables of ADs, one
for each category, by filtering them using the AD tag column (field). We note that adding a new
taxonomy is straightforward, i.e., extending the taxonomies dictionary.
The module can also generate trees of ADs based on the surf and tag fields. For example,

Figure 3 shows a tree of protocol level (tag = Protocol) ADs related to BLE (surf = [BLE, ...]).
As Section 3.3 explains, surf is an ordered list of strings narrowing down the attack surface. The
get_surf_tree uses this ordering to build a tree automatically. In particular, it roots the tree to
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surf and creates branches for sub-surf and sub-sub-surf. Then, each AD appears as a leaf according
to its surf list.
The get_wordcloud function outputs AD wordclouds based on a field using Python’s word-

cloud [36] and matplotlib [37] packages. For example, Figure 4 shows an attack surface wordcloud
computed from the bt.yaml file discussed in Section 4.1. Internally, the function takes an AD
dataframe and a column key, collects all the column values in a list, and then uses a Counter data
structure from the collections library to count the occurrences of each value. This approach is
better than counting each string as a word, as some words in the cloud contain multiple strings
(e.g., “Feature exchange” counts as a single word in the cloud).

The get_chains function generates a chain of ADs, given an AD dataframe and a target AD
using graphviz. For instance, Figure 2 shows the iOS Pegasus RCE from 2021 represented as a chain
of four ADs. Internally, the function creates a Digraph with strict=False to avoid double edges
and rankdir = LR to draw from left to right. Then, it selects from the dataframe the ADs with the
same attack surface and sub-surface of the target AD via the surf column. Next, it tries to build a
chain by attack vector looking at the vect column. In particular, if an AD vect field is a subset of
another, it means that the two are chainable.

5 ADF EVALUATION
We evaluated the ADF with a case study where we involved seven groups of IoT security and
privacy experts, and we asked them to develop dedicated AD object catalogs and use them to TM a
crypto wallet and its lifecycle. Our evaluation shows that the ADF covers the seven requirements
presented in Section 3.2 in a real-world use case. Next, we present our evaluation setup, results
summary, and details.

5.1 Setup
Figure 5 shows a simplified block diagram of our target crypto wallet. At its core is a Secure
Element (SE) linked to a general-purpose microcontroller (MCU) through a secure bus. The SE runs
a real-time operating system (RTOS) and performs all the security and privacy-sensitive operations,
such as generating and storing cryptographic keys and signing and verifying transactions. The
MCU, which is separate from the SE, employs secure boot via a boot ROM and operates on a
Linux-based OS to provides all the other functionalities. The crypto wallet supports Bluetooth Low
Energy (BLE) for wireless connectivity, USB for wired connections, and Fast IDentity Online (FIDO)
for two-factor and single-factor (i.e., passwordless) authentication [2].

The crypto wallet development process relies on a new seven-phase lifecycle shown in Figure 6
that we call trusted lifecycle (TLC). In the Threat Modeling and Risk Assessment (TM & RA) phase,

Figure 5. Crypto wallet block diagram (simplified)
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Figure 6. Trusted Life Cycle (TLC) used to develop the crypto wallet. TLC has seven phases connected by
solid lines. Dotted lines represent mitigations pre- and post-deployment feedback.

we outline the security and privacy requirements for both the product and process. In the Design
phase, we design the hardware, software, and protocol aspects of our crypto wallet based on
functional requirements and the ones set in the TM and RA phase. The wallet is then concretely
realized in the Implementation phase. Successively comes the Evaluation phase, where we perform
extensive hardware and software testing (e.g., fuzzing, side-channel analysis, and fault injection
experiments). The first four phases are pre-deployment, and each can provide feedback to the others.
For example, fuzzing experiments can find implementation bugs that we can fix by updating our
implementation. The crypto wallet is deployed during Installation, managed during Maintenance,
and disposed of during Retirement. Maintenance includes secure firmware updates and provides
post-deployment feedback that informs the design and implementation of the next-generation
crypto wallet.

5.2 Results Summary
Table 1 presents a summary of the results. The columns show, in order, the TM domain, a pointer to
the relevant section, the covered aspects (e.g., hardware, software, process, and product), the number
of produced ADs (for a specific domain), and their related YAML files in the toolkit directory. We
note that ADs from different domains are independent, while ADs belonging to the same domain
may intersect at different granularity levels (e.g., a specific attack technique may be part of a

Table 1. Evaluation results from our case studies where seven expert groups TM a crypto wallet (Figure 5)
and its TLC (Figure 6). We covered hardware (HW), software (SW), firmware (FW), protocols (PT), life cycles
(LC), product (PO), security (SE), and privacy (PR) threats. We developed a total of 175 ADs. The AD YAML
files are available at https://anonymous.4open.science/r/adf-anon-CC3F/ in the yaml folder.

TM domain Sec Coverage ADs Files

ISA/IEC 62443-4-1 SecDev Lifecycle 5.3 LC, SE 40 62443-4-1/*.yaml

Physical Side-Channel and Fault inj. 5.4 PO, HW, SE, FW 20 sc-fi.yaml

Microarch. and Speculative Execution 5.5 PO, HW, SW, SE 14 microa.yaml

Presilicon RISC-V SE Testing 5.6 PO, HW, SW, FW, SE 8 presil.yaml

Invasive Physical IC Attacks 5.7 PO, HW, FW, SE, PR 26 physical.yaml

Bluetooth Protocol and Impl. Attacks 5.8 PO, SW, FW, PT, SE, PR 46 bt.yaml

FIDO2 Authentication Attacks 5.9 PO, HW, SW, FW, PT, SE 21 fido*.yaml
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broader attack class). Overall, we evaluated traditional TM domains, such as software and protocol
security, but also original ones, including the TLC, pre-silicon testing, invasive physical attacks,
and microarchitectural threats.
We conducted field testing of the ADF from various perspectives, involving users with diverse

backgrounds. This heterogeneous testing allowed us to assess its effectiveness and usability across
different scenarios. Our threat modeling activities covered many threats, including specific vul-
nerabilities affecting individual software components and generic attacks and attack techniques
applicable to multiple components.

During the evaluation of the ADF, we identified some limitations, whichwe successfully addressed
by reviewing the AD object data model. For instance, we enhanced the capabilities of the ADF
by introducing the ability to specify multiple entries in the d field, enabling the modeling of
complementary or alternative defense strategies.

Our evaluation generated high-quality ADs that serve as blueprints and are publicly available.

5.3 ISA/IEC 62443-4-1 SecDev Lifecycle
The ISA/IEC 62443 standard is divided into four tiers, each having multiple work documents.
ISA stands for International Society for Automation, and IEC for International Electrotechnical
Commission. The requirements for the Secure Development Life Cycle are described in the work
document ISA/IEC 62443-4-1 (tier 4, part 1), and are divided into eight practices, i.e., categories for
grouping requirements:

(1) Security management
(2) Specification of security requirements
(3) Secure by design
(4) Secure implementation
(5) Security verification and validation testing
(6) Management of security-related issues
(7) Security update management
(8) Security guidelines

In total, we developed 40 ADs that map to the requirements described in the eight practices,
and our AD files are in the 62443-4-1 folder. We named each AD according to the requirement
it maps to (e.g., sm-1-development process). We directed our primary effort toward rewriting the
requirements as combinations of threats and mitigations, so we leveraged the AD primary a and d
fields. Additionally, we enriched the description of the requirements by using the surf, vect, and
tag fields.

The lack of threat modeling applied to process requirements means that even consolidated sets
of process requirements (such as the ones coming from the ISA/IEC 62443-4-1 standard) are not
mapped to threat models. Instead, they are fixed in their specification and not flexible depending
on their application context. Some requirements are derived from a threat model, like the best
practices described by Good Practices for Security of IoT from the European Union Agency for
Cybersecurity (ENISA). However, while more justified, they still lack the flexibility to evaluate only
a subset of the requirements, depending on the context.

With the logical structure of ADs, it is possible, when modeling process requirements, to reveal
hidden hierarchical structures and uncover links and references among individual requirements. In
the context of ISA/IEC 62443-4-1, while the Practice already enables requirements grouping, it is
likely to find requirements from different Practices that reference common themes. Additionally,
some requirements may contain directives that are later more precisely specified in other require-
ments. Utilizing the AD data structure enables us to highlight these connections and relationships

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: October 2024.



18 Sacchetti et al.

Listing 8. sm_1_dev-proc AD excerpt

sm_1_dev -proc:
a: Undefined development/maintenance/support processes
d:

Implement config mgmt with change control and audit logging: [" Redmine "]
Require product desc and reqs def with req traceability:: [" Redmine "]
Define design practices: [Addressed in @sd -4-secure -design -best -practices]
Define implementation practices: [Addressed in @si -2-secure -coding -standards]
Implement repeatable testing and validation processes: [Addressed in @svv -*]
Enforce review and approval of all development process records: [Addressed in
@sm -12-process -verification]
Implement life-cycle support: ["..."]

surf: [Processes]
vect: [Unclear definition]
tag: [Processes , Requirements , Design , Implementation , Testing , Review ,

Vulnerability management , Maintenance]

among requirements, allowing for a comprehensive understanding of the requirement set and
facilitating better specification and organization.

As an example, consider the SM-1: Development Process requirement:
A general product development/maintenance/support process shall be documented and
enforced that is consistent and integrated with commonly accepted product develop-
ment processes that include, but are not limited to: a) configuration management with
change controls and audit logging; b) product description and requirements definition
with requirements traceability; c) software or hardware design and implementation
practices, such as modular design; d) repeatable testing verification and validation
process; e) review and approval of all development process records; and f) life-cycle
support

The SM-1 is the first requirement of ISA/IEC 62443-4-1. It lays the foundation to establish
a Secure Development Life Cycle. However, most of its sub-points are later better specified by
other requirements. For example, the d directive (i.e., repeatable testing verification and validation
process) is covered by the specific requirements of Practice 5, which is dedicated to testing. The
AD model allows us to highlight this hierarchical connection. Listing 8 shows a possible AD object
for the SM-1.

We have decided to link other requirements explicitly when appropriate. For instance, we have
specified "Addressed in@𝑠𝑣𝑣 − ∗" as our response to point d cited above. We use the notation@ to
indicate a reference to another AD item and the ∗ symbol as a wildcard, so @𝑠𝑣𝑣 − ∗ translates
to “all the ADs starting with the prefix 𝑠𝑣𝑣−”, which are all ADs mapping to the requirements of
Practice 5.

5.3.1 Practical use case: advanced search on process requirements. As a practical evaluation of the
AD framework on the process requirements of ISA/IEC 62443-4-1, we tried to search the knowledge
base of ADs based on real-world needs. The multiple ways of categorizing ADs allow us to perform
this kind of operation more precisely than with the grouping by Practice. For example, if we are
searching all the requirements to produce a “threat model”, relying on the tags field allows us to
immediately identify the following 17 requirements throughout ISA/IEC 62443-4-1: sr-1, sr-2, sr-3,
sr-4-*, sr-5 dm-1, dm-2, dm-3, dm-4, dm-5, dm-6 sg-1, sg-2, sg-3, sg-4, sg-5, sg-6. We can observe that
although the grouping by Practice maintains a certain degree of cohesion among requirements,
some scattering may still be present when searching for high-level concepts. This extraction proves
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very helpful in situations where adopters of a standard such as ISA/IEC 62443 are interested in
gathering all requests from the standard about specific processes and procedures. Other similar
searches in which the AD model has proven effective have been:

• identifying all requirements about the management of cryptographic secrets within two
different standards

• search for all process requirements mitigating the presence of a malicious insider

5.4 Physical Side-Channel and Fault-Injection Attacks
A crypto wallet secure element could be susceptible to physical side-channel [65] and fault-
injection [13] attacks. Side channel attacks use side information, such as timing or power measure-
ments, to break security mechanisms, while fault injection attacks inject software or hardware
faults to achieve the same goal.
A crucial aspect to consider when analyzing these attacks is the threats’ abstraction level. For

example, a possible implementation of elliptic curve cryptography (ECC) scalar multiplication is
the double-and-add method. In this implementation, the sequence of operations depends on the
key bits, making it vulnerable to Simple Power Analysis (SPA) [65] attacks.

We can look at SPA from different levels of abstraction: SPA attacks on non-constant time/flow
implementations, SPA attacks on ECC scalar multiplication, and SPA attacks on ECC scalar multi-
plication with the double-and-add implementation. A broader description allows us to describe
more generalized attacks, covering a broader attack surface but making it more difficult to define
specific countermeasures. Conversely, a detailed description allows for more fine-grained defense
descriptions but requires more ADs. For example, with a generic AD about SPA attacks on non-
constant time/flow implementations, we could cover both ECC and RSA (e.g., square-and-multiply
algorithm), but it would provide less relevant countermeasures.
A higher abstraction level is favorable for certain classes of threats. For instance, we can apply

Differential Power Analysis (DPA) [65] to constant-time/flow implementations of various crypto-
graphic primitives (e.g., ECC, AES, Kyber, . . . ). The most popular countermeasure to counter DPA
is data randomization, which is agnostic to the specific cipher, allowing for a high abstraction level.
For symmetric key primitives, data randomization is typically achieved through masking [18, 49].
Binding instead is used to randomize public key primitives [22].

Another specific property of physical side-channel and fault-injection attacks is that it is possible
to perform analogous attacks through different attack vectors. For example, we can do side-channel
attacks with both power [65] or EM measurements [46, 106]. Similarly, we can cause an instruc-
tion skip using various fault injection techniques (e.g., voltage fault injection [112], laser fault
injection [123], EM fault injection [86], . . . ). While the outcome is often similar, different injection
techniques may require unrelated countermeasures. Moreover, in practice, some attack vectors may
be excluded from the analysis when deemed out-of-scope due to their associated cost or required
sophistication.

5.4.1 Threat modeling using ADF. Suppose our crypto wallet’s SE uses an ECC-based signature
scheme to sign transactions. We now TM a naive implementation of ECC scalar multiplication used
for signing. As for the threat model, we consider a passive physical attacker who wants to extract
the signing private key. We created 20 ADs, contained in the sc-fi.yaml file.
By filtering fields "surf" on “Cryptographic algorithm implementation→ ECC” and filtering

“model” on “Physical→ Passive”, we can find threats specific to ECC. We find two ADs specific to
ECC, and both describe a SPA attack on the double-and-add scalar multiplication method using
either the power consumption of the embedded device or its EM emanations. We observe that
both the ADs mention implementing the scalar multiplication in a constant-time fashion by using
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the Montgomery ladder as a countermeasure. That would be the preferred choice since it allows
solving two problems simultaneously.

As a second step, we consider ADs one level of abstraction higher by filtering "surf" on “Crypto-
graphic algorithm implementation” and “model” on “Physical→ Passive”. Here, we find 7 ADs. For
instance, we find that the secret key of our now-constant-time ECC implementation can be extracted
using DPA, using both power consumption and EM emanations (respectively, sca-power-dpa, and
sca-em-dpa). The suggested countermeasure in both cases is to apply blinding [22]. Additionally,
we find that an implementation with blinding may be vulnerable to higher-order DPA attacks.
However, in this example, we consider higher-order DPA attacks out-of-scope.

The resulting implementation is a constant-time/flow implementation with blinding, resistant to
SPA and first-order DPA attacks. This methodology can be applied to other cryptographic primitives
implemented in software or hardware, allowing them to be threat-modeled in the context of physical
attacks. If active attacks are in scope, we proceed by filtering fields "surf" on “Cryptographic
algorithm implementation” and filtering “model” on “Physical→ Active”.

5.5 Microarchitectural and Speculative Execution Attacks
Microarchitectural attacks exploit vulnerabilities in a processor microarchitecture (i.e., the imple-
mentation of an instruction set architecture (ISA)). Meanwhile, speculative execution threats abuse
processors capable of speculatively executing instructions to gain performance, which can lead to
information leakage on incorrect speculations.

While early microarchitectural attacks typically targeted desktop and server environments, small
embedded devices are also vulnerable to microarchitectural attacks. These attacks target either
the same microarchitectural components that are found on high-end devices, or implementation
aspects that are specific to these devices [12, 131]. As a result, developers of embedded applications
and devices, such as a crypto wallet, also need to consider these attacks when threat modeling and
apply mitigations accordingly.

To demonstrate the process in our case study, we developed AD objects for an abstract Spectre
attack [64] and specific sub-variants [14] to allowmodeling at different abstraction levels. As Spectre
attacks use a microarchitectural side-channel to transmit secret information, we also developed
several AD objects that represent potential microarchitectural leaks [12, 50, 98, 103, 131, 142, 145].
We have a total of 14 ADs in the microa.yaml file. Listing 9 shows an AD representing the Spectre-
BTB variant, in which an attacker can leak information from transient instructions executing due
to the mistraining of the branch target buffer (BTB).

5.5.1 Threat modeling using ADF. Considering microarchitectural attacks in a threat modeling
exercise is a challenging exercise. As the name implies, microarchitectural attacks heavily depend
on the given CPU’s internal design and optimization features. In an ideal scenario, the threat
modeling of the device is performed by the manufacturer, or the relevant ADs are provided with
the device’s datasheet. Threat modeling an existing CPU as an outsider is a complicated exercise
requiring sizeable reverse engineering and attack experimentation efforts [108], as the hardware
features that enable the microarchitectural attacks are often undocumented.
The threat modeling process proceeds as follows. As microarchitectural attacks aim to extract

secret information from a CPU, we narrow down which system elements process secret information
directly. In our case, it is the SE only, meaning that we can exclude the MCU. Then, we can filter
the relevant ADs based on the SE, its microarchitectural features, and the attacker model, searching
for all relevant hardware optimization features. For example, if the SE features a branch target
buffer (BTB), we would search for this in the "surf" field of ADs and find that this microarchitec-
tural optimization can enable the Spectre-BTB variant. Spectre-BTB also requires a shared covert
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Listing 9. AD object for Spectre-BTB

spectre -btb:
a: Transient execution resulting from mispredicted indirect branches can cause

persistent changes in the microarchitecture , which can be used to
intentionally leak secrets from a victim process using a covert channel.

d:
"preventing speculation altogether" : [ "Inserting fence instructions at every
indirect jump", "Disabling speculation in the hardware" ]

"preventing speculation on secrets" : [ "Implementing a secure speculation
scheme in the hardware , such as ProSpeCT" ]
"removing the covert channel": [ "Cache partitioning", "Disabling
hyperthreading", "(more depending on the microarchitectural side channels)" ]

surf : [ "Shared resource enabling a covert channel between the victim and the
attacker", "Shared branch target buffer (BTB) between the victim and the
attacker" ]

vect : [ "Controlling a shared resource leading to the covert channel", "
Poisoning the BTB" ]

model : [ "code execution", "remote" ]
tag : [ "transient attack" ]
year : 2018
cve : [ "CVE -2017 -5753" , "CVE -2017 -5715" ]

channel between the victim and the attacker process. However, if the device also features a shared
cache across processes, and we search for this among the ADs, we will find that this can enable
Prime+Probe cache attacks, which can function as the covert channel for Spectre.

5.6 Presilicon Testing
Pre-silicon verification mainly targets logic design errors or unauthorized modifications of an
integrated circuit. During this phase, the attack vectors tested are limited compared to a complete
System-on-Chip (SoC) with precisely specified hardware and software components. For instance,
the pre-silicon stage testing omits physical defenses (e.g., shields and sensors) since they cannot be
tested without a silicon die.

Starting from a CV32E40S RISC-V secure core [97], we generated 8 ADs shown in presil.yaml.
Successively, we added more components and specified a SoC sample featuring RAM, non-volatile
memory storing a firmware image, ROM containing code of a secure bootloader and cryptographic
keys, a serial interface, a peripheral bus, and the CV32E40S secure core. While it remains a generic
SoC, it can be the starting point for designing other SoC. New defensive policies arose from
introducing new critical components to the design, and thanks to the framework’s flexibility, it is
possible to specify different abstraction levels for them.

The SE stores sensitive data for various applications, including:
(1) Cryptocurrency private keys
(2) BLE communication keys
(3) Firmware verification keys
(4) User authentication data
(5) FIDO authentication data

The MCU communicates securely with the SE over a dedicated bus, enabling the execution of the
following functions:
(1) Transaction signing
(2) SE/MCU firmware image verification and update
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(3) BT key generation
(4) BT packet encryption/decryption
(5) User authentication
(6) FIDO challenge-response generation

The bootloader stage is crucial during pre-silicon testing, as it resides in ROM and is not easily
updatable. The MCU and SE boot simultaneously, the MCU’s bootloader initiates the SE to verify the
Micro’s firmware image. In this generic system design, we have identified attack scenarios applicable
during pre-silicon testing, with measures aimed at prevention. While general countermeasures
overlap with those derived from complete threat modeling, we highlighted specific attacks mitigated
in the pre-silicon testing stage. For example, a firmware verification skip attack, described in the
provided AD object, bypasses the firmware verification process by physically introducing faults.
Multiple defensive means can be implemented and tested during pre-silicon testing, including
software-implemented fault tolerance and fault injection emulation. Although the actual silicon is
not available, it is possible to simulate the potential effects of a fault injection on the bootloader
execution determine concrete suitable defenses. Then, before manufacturing the final product,
software techniques for fault tolerance and control flow attestation can be implemented. However,
given the common threat of fault attacks, installing physical defenses on the chip is necessary to
ensure the SE bootloader’s control flow integrity (fault protection).
Given the fixed hardware components of the SE and MCU, a significant challenge is ensuring

the security of chosen cryptographic algorithms and the software components implementing them
in the SE and MCU firmware. Although pre-silicon testing has limitations compared to a fully
defined system design, we have successfully identified crucial application-agnostic attack vectors.
An example of such an attack would be a sensitive data extraction through a side-channel leakage.
Consequently, we listed several countermeasures that can be preemptively applied during different
TLC stages, particularly in the Design, Implementation, and Evaluation stages. These include noise
introduction, power balancing, or constant-time implementation, which can be considered and
tested without a physical device.
The level of system abstraction was not problematic, as many pre-silicon testing techniques

address a broad range of attacks. The concrete impact of more specific designs on threat modeling
in the pre-silicon phase primarily lies in tailoring test cases to cover different software features.
Most AD objects remain generic, applicable to any system design with high-security requirements,
allowing for their reuse during the modeling of concrete products where more detailed information
about hardware and software is available.

5.7 Invasive Physical IC Attacks
We employed ADF to TM invasive physical Integrated Circuit (IC) attacks on our crypto wallet.
An invasive attack focuses on a specific IC target, like a ROM or RAM. It uses specialized instru-
ments and techniques such as lasers, optics, and micro-probing to achieve a goal. Despite being
impactful, these attacks are not typically covered by TM. We built 26 ADs, and we provide them in
physical.yaml.
For example, we modeled a focused ion beam (FIB) attack, which was never done before, as in

Listings 10. In a FIB attack, the adversary shoots an ion beam at the IC to achieve different goals,
including skipping or modifying an instruction by physically overwriting some bytes in ROM. We
recommend packing signals of interest (i.e., chip regions we want to protect) as a defense.

5.7.1 Threat modeling using ADF. The ADF offers a systematic approach to documenting properties
related to attacks and their mitigations, serving as a valuable resource for design teams, evaluators,
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Listing 10. attack_4 AD

attack_4:
a: FIB modification
d:

Modifying or accessing internal signals should be rendered difficult.:
- Packing the signals of interest.

model:
- invasive

surf:
- instruction skip
- instruction modification
- execution flow modification
- counter -measure deactivation
- read internal signals

vect:
- FIB editing

and design reviewers. A comprehensive AD catalog of known attacks and guidelines becomes
highly advantageous with physical attacks, where public information is limited.

Designers can utilize ADs to architect their designs effectively, enabling them to create targeted
guidelines for various aspects of their designs. The ADsmight be developed in-house or incorporated
from state-of-the-art catalogs produced by hardware security experts. This facilitates easy access
to information for the different teams involved in a project.

In the case of physical attacks, ADs can assist in assessing the required protections based on the
elements that need safeguarding and the types of attackers to be defeated. During threat modeling
tasks, the policy and attack surface are primary indicators for IC designers. Identifying what needs
protection is insufficient. Understanding the attack type and vector is what describes the attacker’s
capabilities. With this information, known attacks can be identified, and appropriate mitigations
can be implemented.
For instance, in ROMs and boot ROMs, preventing access to physical adversaries (e.g., probing

and imaging attacks) is crucial. The AD database contains four entries showcasing different attack
types and their mitigations. By extracting information from the policy and attack surface, design-
ers can determine the expertise attackers should possess. Less capable attackers may attempt to
extract binary data using images of physical bits, which can be mitigated by implementing proper
scrambling schemes within the ROM. More advanced attackers may be capable of reverse engi-
neering the ROM’s scrambling circuit. We can employ encryption to enhance security against such
attackers. Correct encryption implementation will force attackers to use fully invasive techniques,
significantly reducing the pool of potential attackers. Other dedicated countermeasures can be
implemented if the application needs protection against highly skilled invasive attackers (e.g., for
long IC lifetimes). This example highlights the need for a comprehensive attacker classification
system that could be incorporated as an additional tag within the framework. The database’s
flexibility in adding tags addresses the evolving nature of security considerations.

The database also describes attack techniques such as FIB modifications, which should ideally be
prevented altogether. These techniques represent attack paths that can lead to various possibilities
depending on the target. In the case of FIB modification, multiple mitigations are presented.
Furthermore, listing potential attacks and attack vectors based on the attack surface proves

valuable. For instance, instruction corruption corresponds to several unique ADs linking to different
attack vectors and mitigations. Suppose semi or fully-invasive attacks are not feasible due to

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: October 2024.



24 Sacchetti et al.

Listing 11. nino_ble AD

nino_ble:
a: MitM on BLE SSP
d: Out -of -band pairing: [Use NFC as OOB channel]
surf: [BLE , Pairing , Association]
vect: [No IO downgrade]
model: [Proximity , MitM]
tag: [Protocol , SMP , LESC]

restricted access to the IC. In that case, the circuit needs protection only against Voltage Fault
Injection (VFI), which might require the implementation of power filtering and glitch detectors.

5.8 Bluetooth Protocol and Implementation Level Attacks
Bluetooth is a wireless communication protocol for low-power devices to establish short-range
connections. It operates in the 2.4 GHz frequency band and is optimized for low-energy consumption
applications. It enables efficient data transfer between devices, balancing transmission range, data
rate, and power consumption. It provides reliable and secure communication while minimizing
energy usage. Bluetooth has two flavors: Classic (BC) and Low Energy (BLE). We focus on BLE as
it is supported by real-world crypto wallets (e.g., Ledger Nano X).
We built 46 Bluetooth ADs covering relevant protocol and implementation level Bluetooth

threats [42]. We present our ADs in bt.yaml. Currently, our file has 18 ADs specific to BLE: nine
related to the protocol and nine related implementations. Table 3 in Appendix A, lists our BLE ADs
and more information.

Using ADs, we can cover implementation-level and protocol-level threats on BLE, regardless of
their level of abstraction. For example, we can model a MitM attack on BLE Secure Simple Pairing
(SSP) like No Input No Output (NINO), as shown in Listing 11. In the nino_ble AD, we specify the
BLE-specific protocol phases and security mode involved in the attacks (i.e., association during
LESC pairing) and a high-level policy and concrete mechanism to prevent the attack (i.e., use of
out-of-band pairing with Near Field Communication (NFC)). As a result, a designer might consider
adding NFC to the design of the crypto wallet to defend against NINO and other BLE attacks related
to a weak association phase.

Another relevant example is BLUR, shown in Listing 12, which models an attack on Bluetooth’s
Cross-Transport Key Derivation (CTKD). The AD structure allows us to model some of Bluetooth’s
specific aspects, such as attacking BC from BLE and vice versa or adopting concrete mitigation
strategies. For example, we can include disabling weak key overwriting, tracking the associations
with paired devices, and preventing role switching by tracking asymmetries in the roles.

5.9 FIDO2 Authentication Attacks
FIDO2 [3] is an authentication protocol designed to allow online services to offer multi-factor
and single-factor authentication. A new and unique cryptographic key pair is created for each
service credential in the initial registration phase. The public key is sent to the service, while the
private key remains on the authenticator, which, in our case, is a hardware token. The application
authenticates a user through a cryptographic challenge to the token via a client API. After the user
authenticates by pressing a button on the token, the client device proves possession of the private
key by signing a challenge. Then, it sends it back to the application, which can verify it using the
corresponding stored public key.
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Listing 12. blur_ble AD

blur_ble:
a: Bluetooth Cross -Transport Key Derivation (BLUR)
d:

Prevent cross-transport key tampering: [Disable key overwrite with weaker keys
]
Enforce strong association mechanisms: [Track associations for paired devices
and abort on downgrade request]
Prevent role switching: [Track asymmetries in roles between BT and BLE]

year: 2020
surf: [BLE , Pairing , CTKD]
vect: [Cross -transport pairing , SC downgrade , No IO downgrade]
model: [Proximity , Impersonation , MitM , Unintended session]
tag: [Protocol , SMP , LESC]
cve: ["15802" , "20361"]
cwe: ["287"]

Figure 7. FIDO2 DFD

The FIDO2 authentication process is depicted in Figure 7. The main actors are the hardware
authenticator, the client, and the online service (i.e., the relying party). In addition, the relying
party database contains the credentials and public keys. As the focus was on the authenticator, we
considered the involved entities (i.e., the client and relying party) as internal processes. Moreover,
we did not include the user as its only interaction with the system is the press of a button. The data
flows are numbered following the FIDO2 message order [134] to capture the time dimension of the
protocol.
We built a catalog of 21 ADs for FIDO2 and focused on system and device-level threats. As an

extra, we also covered SoloKeys [33] related threats. The ADs are provided in fido_device.yaml,
fido_system.yaml, and fido_solokey.yaml.
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5.9.1 System-level threats. System-level threats are high-level attacks concerning the FIDO2 ecosys-
tem where a hardware authenticator, a client, and a relying party interact. Such threats come from
FIDO security references and the generalization of specific attacks. Some mentions of identified
ADs:

(1) A MitM attack between the client and the authenticator, and between the relying party
and the client. Corruption/spoofing of the client, or related to the relying party app, on the
user device. For certain policies, we specified concrete mechanisms implemented by certain
authenticators to mitigate these risks, such as a transaction confirmation message allowing
the user to identify the relying party correctly.

(2) Side-channel attack on the authenticator. This high-level AD presents defense policies such as
robust device or secure microcontroller, for which concrete mechanism specifications
depend on the specific token. We associated this AD with various attack vectors describing
the possible types of side-channel analysis.

(3) Malicious relying party mounts a cryptographic attack on key handles.
(4) Manipulations of the device occur during the supply or distribution chain.

We attempted to link these generic attacks with one or more CWE and CAPEC while maintaining
high-level attack surfaces (authenticator, client, and relying party). For instance, some of the
previously listed threats can be mapped to the STRIDE categories, such as man-in-the-middle
attacks and spoofing issues.

5.9.2 Device-level threats. Device-level threats refer to actual vulnerabilities discovered in one
or more models of hardware tokens, coming from reported CVEs and other online articles and
documentation. The majority are side-channel or fault-injection attacks to the token device, which
exploit vulnerabilities in microcontrollers, secure elements, and other components, the communica-
tion among them, or generic implementation issues specific to a model of the token. Other threats
concern WebAuthN [134] implementation vulnerabilities and bugs, which is the communication
protocol between the client and the relying party.

5.9.3 SoloKeys threats. Solo is an open-source FIDO2 token.We reported physical threats associated
with a CVE or documented in the SoloKeys online blog [32]. By leveraging the AD structure,
we assessed whether some previously documented threats applied to the token. The policies of
the generic side-channel AD can now have a concrete mechanism. For instance, under “secure
microcontroller”, we specified the name of the microcontroller used by SoloKeys and the security
measures it implements. Concerning the specific threats, many of them target components not
present in the token design, and in one case, we found that the token employs a time-insensitive
key derivation function to mitigate timing SC attacks.

6 RELATEDWORK
TM Methodologies. Fault trees can be considered the first TM methodology, where each threat

represents a failure, and failures are hierarchically represented in a tree [132]. ATree were extended,
among others, with attack-defense-trees [66], profiles [69], and case-study driven methodologies [8].
STRIDE was also extended with STRIDE per element and per interaction [127]. ATree were aug-
mented with formal methods [136]. Another popular methodology is called PASTA (Process for
Attack Simulation and Threat Analysis) that combines threat identification, modeling, scoring,
remediation, and simulation using a seven-stage approach [130].
There have been industrial efforts to standardize threat modeling across platforms such as

the OTM (Open Threat Model) format by IriusRisk [58] and MITRE’s ATT&CK, an adversary-
centric framework designed to threat model post-compromise enterprise security, including lateral
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movement, and privilege escalation [78, 79]. The framework is constantly growing and includes
attack techniques and sub-techniques for enterprise, mobile, and industrial systems. Recently, the
US Cybersecurity and Infrastructure Security Agency (CISA) released Decider, an open-source web
application to help map a threat to ATT&CK [20]. MITRE also published D3FEND [60, 84, 85], the
defensive counterpart of the ATT&CK framework. Best practices related to TM methodologies
were also created, such as OWASP’s threat modeling project [100], and collections of survey and
comparison of different TM methodologies [118, 119]. Recently, we have seen attempts to use a
large language model (LLM), like Generative Pre-trained Transformer 4 (GPT-4), and Pathway
Language Model (PaLM), to aid threat modeling with moderate success [91, 122, 128].

Vendor-specific TM Methodologies. Vendors also tend to implement their own TM methodologies.
Intel proposed TARA (Threat Agent Risk Assessment) [116], an attack-centric methodology based
on seven phases. While currently unmaintained, TARA is still used, for example, in the automotive
sector. Lockheed Martin proposed the Cyber Kill Chain (CKC) [71] to model cyber intrusion
activities, like advanced persistent threats (APTs), also based on seven phases: reconnaissance,
weaponization, delivery, exploitation, installation, command and control, and actions.

TM automation tools. There are several open-source TM automation tools [125]. These tools
allow, among others, to parse threats from code comments (e.g., Threatspec [35]), build system
models and threats catalogs from code or configuration languages (e.g., Pytm, hcltm [44], threagile,
and Threat Dragon [101]), and speed up TM using agile best practices, e.g., Rapid Threat Model
Prototyping (RTMP) [53]. Moreover, there are commercial TM tools, such as the ones provided by
IriusRisk [57] and Tutamantic [129]. The most popular closed-source but free TM tool is Microsoft’s
Threat Modeling Tool (TMT) [74] that natively supports STRIDE.

Domain-Specific TM. Prior work also performed domain-specific threat modeling using (and
extending) one or more TM methodologies. For example, in [61] the authors show how to adapt
STRIDE and TARA to threat model a connected car adhering to the AUTOSAR standard [45]. The
NCC Group extended the MS TMT with a template for automotive TM [90].
Other domain-specific areas of TM extension are cyber-physical system (CPS) [63], industrial

control systems (ICS) [4], Internet of Things (IoT) [1] and mobile (cellular) networks [107]. Recently,
six popular end-to-end messaging applications were evaluated with STRIDE and LINDDUN along
the space and time dimensions [19].

Threat intelligence. Actual incidents are collected using threat intelligence platforms that can
help threat modeling with real-world data. The Malware Information Sharing Platform (MISP)
is an open-source threat intelligence platform born out of an academic effort and now used by
the industry [105, 135]. MISP enables, among others, to store, share, collaborate on cyber security
Indicators of Compromise (IoC), malware analysis, and also to use IoCs to detect and prevent attacks.
There are other useful free and open-source projects related to threat intelligence, such as Open
Cyber Threat Intelligence (OpenCTI) [104], Structured Threat Information Expression (STIX) [56],
Threat Report ATT&CK Mapper (TRAM) [43], and TheHive incident response platform [34].

Process security. Process security mostly focuses on the hardware and software supply chains.
Researchers extensively analyzed vulnerable dependencies from package repositories for interpreted
programming languages, e.g., Node package manager (npm), Python Package Index (PyPI), and
RubyGems [40] and extracted valuable security lessons from the software supply chain [41]. Other
works developed attack taxonomies for open-source software via attack trees [68] and uncovered
new attack techniques via the software supply chain, such as the GitHub fork attack vector [15].
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Recently, some works started exploring automated ways to analyze the security of closed-source
software supply chains [9].

7 CONCLUSION
We presented ADF, a new framework to augment TM with a novel threat data format (AD object)
and related automations (flat and hierarchical representations). ADF satisfies seven requirements,
the combination of which is not provided by other TM frameworks (e.g., pytm or threagile). As a
result, ADF has comprehensive coverage (attacks, defenses, security, privacy, hardware, firmware,
product, and lifecycle) and is (re)usable by humans and machines. We implemented the ADF in
the ADF toolkit, consisting of four modules: Catalog, Parse, Check, and Analyze, and described its
salient technical details. We ran a large-scale evaluation to confirm ADF’s usefulness empirically.
We involved seven expert groups from academia and industry. We asked them to threat model
a crypto wallet in their area of expertise (e.g., hardware, firmware, software, protocol, security,
privacy, and lifecycle). They generated 175 ADs spanning heterogeneous and valuable threat classes,
like invasive IC manipulations, physical side-channel, fault injection, and secure development
lifecycles. The ADF toolkit includes the developed AD objects, it is open-source and available at
https://github.com/francozappa/adf.

We discovered that using ADF offers a new way of thinking about process requirements, such as
the ISA/IEC 62443-4-1. Specifically, it forces us to think of requirements in terms of threats that the
requirement mitigates, thus uncovering the threats themselves. We modeled pre-silicon attacks
and defenses on a RISC-V SE for the first time. The ADs’ hierarchical structure helped build trees
and attack chains, therefore enabling the individuation of defenses against more sophisticated
attacks with multiple stages. We built several ADs covering invasive physical attacks, which no
documented TM library does. We also managed to model physical SC and FI attack techniques
even in cases where no defenses exist, all due to the AD object flexibility.
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Table 2. The 11 taxonomies supported by ADF’s get_map

The 11 taxonomies currently supported by ADF’s get_map. UIT refers to a privacy taxonomy from
International Association of Privacy Professionals (IAPP) [51], PMD to a privacy taxonomy from
NISTIR 8062 [92], OTT to the OWASP Top Ten Web Application Security Risks [99], CKC to the

Cyber Kill Chain by Lockheed Martin [71], CWETH21 to the top ten hardware CWE from
2021 [75], and CWETS22 to the top twenty-five software CWE from 2022 [76] and 2023 [77]
Taxonomy Keywords

STRIDE Spoofing, Tampering, Repudiation, ID, DoS, EoP
CIA Confidentiality, Integrity, Availability
UIT Unlinkability, Intervenability, Transparency
PMD Predictability, Manageability, Dissassociability
LINDDUN Linkability, Identifiability, Non repudiation, Detectability, ID, Unawareness, Non compli-

ance
OTT21 Broken access control, Cryptographic failure, Injection, Insecure design, Security mis-

configuration, Vulnerable and outdated component, Identification and authentication
failure, Software and data integrity failure, Security logging and monitoring failure,
Server-side request forgery

OTT17 Injection, Broken authentication, Sensitive data exposure, XML external entities, Broken
access control, Security misconfiguration, Cross-site scripting, Insecure deserialization,
Using components with known vulnerabilities, Insufficient logging and monitoring

CKC Reconnaissance, Weaponization, Delivery, Exploitation, Installation, Command and
control, Actions on objectives

CWETH21 1189, 1191, 1231, 1233, 1240, 1244, 1256, 1260, 1272, 1274, 1277, 1300
CWETS22 787, 79, 89, 20, 125, 78, 416, 22, 352, 434, 476, 502, 190, 287, 798, 862, 77, 306, 119, 276, 918,

362, 400, 611, 94
CWETS23 787, 79, 89, 416, 78, 20, 125, 22, 352, 434, 862, 476, 287, 190, 502, 77, 119, 798, 918, 306, 362,

269, 94, 863, 276
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Table 3. List of 18 BLE ADs from our catalog of 46 Bluetooth ADs

ad_name a tag

sco_ble Downgrade attacks on BLE
SCO [146]

Impl

sweyntooth_ble_1 Link Layer Length Over-
flow [47]

Impl

sweyntooth_ble_2 Link Layer LLID Deadlock [47] Impl
sweyntooth_ble_3 BLE Crafted packet buffer over-

flow [47]
Impl

sweyntooth_ble_4 Key Size Overflow [47] Impl
sweyntooth_ble_5 Zero LTK Installation [47] Impl
blesa_ble BLE reconnection spoof-

ing [139]
Impl

bleedingbit_ble_1 Malformed packet BoF in BLE
beacons parsing [117]

Impl

frankenstein_ble_1 Heap overflow in BLE PDUs
parsing [109]

Impl

knob_ble Key Negotiation of Bluetooth
(KNOB) [5]

Proto

blur_ble BLUR Cross-Transport Key
Derivation attacks [6]

Proto

nino_ble MitM on BLE SSP [54] Proto
bluemirror_ble Reflection attack on passkey en-

try [21]
Proto

invcurve_ble Invalid Curve Attack [11] Proto
pairing_meth_conf_bleMethod confusion attack [133] Proto
crackle_ble BLE Key Derivation [110] Proto
injectable PHY packet injection [16] Proto
gatt_fp_ble GATT Fingerprinting and

Tracking [17]
Proto
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