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Abstract

Content distribution on the Web is moving from an architecture where objects are placed on a single, designated server to an architecture
where objects are replicated on geographically distributed servers and clients transparently access a nearby copy of an object. In this paper we
study how the different redirection schemes used in modern content distribution networks affect the user-perceived performance in normal
Web page viewing. Using both simulations and experiments with real Web servers we show that redirection schemes that require clients to
retrieve different parts of a Web page from different servers yield sub-optional performance compared to schemes where a client accesses
only one server for all the parts of a Web page. This implies that when replicating Web pages, we should treat the whole page (HTML and
images) as a single entity.q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Content distribution on the Web is moving from an archi-
tecture where objects are placed on a single, designated
server to an architecture where objects are replicated on
geographically distributed servers and clients transparently
access a nearby copy of an object [1,2,6,11,12]. The new
architectures are constructed from a set of servers, which we
call content servers that contain copies of the objects. These
copies can be created statically using some pre-determined
rules, or dynamically on-demand depending on the load and
client request patterns. When a client wants to retrieve an
object, it contracts a mapping service that provides the client
with an address of a content server that has a copy of the
requested object. There have already been some proposals
for such architectures [4,10,15] and several companies have
started to offer dynamic content distribution services over
their own networks [1,2,6,11].

A vital component of a content distribution architecture is
a method for redirecting clients to the content servers. What
is common to most of the proposed architectures is that the
client is redirected to the content serverby the system. This
means that the system must contain mechanisms for deter-
mining what is the best content server for each client. On the
other hand, the proposed architectures are transparent to the
client, i.e. they do not require modifying the clients or
installing new software at client-side. We will discuss the
details of different redirection methods in Section 2.

In this paper we study how different redirection schemes
affect the user-perceived performance. As the measure for
performance we use the total time to download all objects
on a Web page, i.e. both the HTML and embedded images.
Some redirection schemes require that the client retrieves
some part of a Web page (e.g. the HTML-part) from one
server, and other parts (e.g. embedded images) from another
server. If the client is using persistent connections of HTTP/
1.1 [7], this means that the client cannot benefit from
previous requests that have opened the underlying TCP-
congestion window; instead the client must open a new
connection to another server and this connection will
initially suffer from a small congestion window. Of course,
if the new server is significantly closer than the old server,
the client can retrieve the remaining objects faster from the
new server.

Using simulations and experiments on the Web we will
evaluate the performance of different redirection strategies
and how they affect the download time of the whole Web
page in different situations. We will evaluate the perfor-
mance of redirection strategies using both multiple parallel
connections and persistent connections with pipelining.

1.1. Related work

Nielsen et al. [14] studied the performance of persistent
connections and pipelining and their results show that pipe-
lining is essential to make persistent connections perform
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better than multiple, non-persistent connections in parallel.
Although, modern browsers implement persistent connec-
tions, they do not implement pipelining [18]. For this reason
the popular browsers open several persistent connections in
parallel to a server.

Recently several companies [1,2,6,11] have begun to
offer content distribution services. In their services, the
content is distributed over several, geographically dispersed
servers and clients are directed to one of these servers using
DNS redirection. We will discuss DNS redirection in more
detail in Section 2.

Rodriguez et al. [16] study parallel access schemes where
the client requests different parts of one object from
different severs. Their scheme is designed for large objects
and is not well suited for typical web page viewing; also it
requires modifications to client software. In our work we
study the performance of currently employed redirection
schemes, which redirect the client to a single server but
require no modifications to client software.

This paper is organized as follows. Section 2 presents
the different redirection schemes used in real world
systems. Section 3 describes the model used in our
simulations and Section 4 presents the results obtained
in the simulations. Section 5 presents the results
obtained in experiments on the real network. Section
6 discusses the implications of our results. Finally,
Section 7 concludes the paper and presents directions
for future work.

2. Redirection of servers

Clients can be redirected to servers with several different
methods. For example, the origin server could redirect
clients using the appropriate HTTP-reply codes, the clients
could be given a list of alternative content servers, or the
system could use other mechanisms, such as DNS redirec-
tion. These different mechanisms have all different over-
heads on the user-perceived performance which we will
discuss in Section 6. For the remainder of this paper we
assume that the system uses DNS redirection (or a similar
method) because of its widespread use in the real world.

Currently the content distribution companies redirect
clients using DNS redirection in two different ways. In
both redirection schemes the client sends a DNS query to
the authoritative DNS server of the content distribution
company which replies with an IP-address for a content
server that the authoritative DNS server deems to be the
best for the client. (The reply can include IP-addresses of
multiple servers but modern clients use only one of them.)
The client then contacts the content server and requests the

object from it. The advantage of using DNS redirection is
that it does not require any modifications to the client soft-
ware because typically URLs identify hosts by their names.

The two different schemes are as follows. In the first
scheme, which we callfull redirection, the content distribu-
tor has complete control over the DNS mapping of the origin
server. When a client requests any object from the origin
server, it will get redirected to a content server. This scheme
requires that either all content servers replicate all the
content from the origin server, or that the content servers
act as surrogate proxies for the origin server. A major
advantage of full redirection is that it adapts dynamically
to new hot-spots because all client requests are redirected
geographically dispersed content servers.

The second scheme, which we callselective redirection,
goes as follows. The references to replicated objects are
changed to point to a server in the content distribution
networks. When the client wants to retrieve a replicated
object, it resolves the hostname, which redirects it to a
content server. In this scheme, the replicated objects appear
to be simply objects that are served from another server. An
advantage of this scheme is that the content servers only
need to have the content that has been replicated. In modern
content distribution networks that use selective redirection,
the burden of deciding which objects to replicate is placed
on the content provider. A system using selective redirec-
tion is slower to adapt to hot-spots because it must first
identify them, change the references to the new hot objects,
and possibly replicate the objects to content servers. In addi-
tion, clients that have cached references to the new hot
objects (e.g. caching the HTML-page referencing a hot
image) would not be redirected, but would instead go to
the origin server thus negating the benefits of using a content
distribution network.

3. Simulation model

For the simulations we used the NS network simulator
[13]. We used a very simple network topology and it is
shown in Fig. 1. In Fig. 1,C is the client,S is the server,
and L is the link between the two. To represent different
network conditions we varied the delay, bandwidth, and loss
rate on the linkL. We used FullTCP-agents at both the client
and server and we set the MSS to 1460 bytes. This is the
MSS that an Ethernet-connected machine would obtain and
we have obtained the same MSS on real connections to
distant servers from our local Ethernet. As suggested in
Ref. [14], we disabled Nagle’s algorithm on the server’s
TCP-agent.

In all of our simulations, the client first sent a request to
the server, the server replied with one of file (the HTML-
file). When the client had received all of these files, it
requested the images from the server.

We observed that because all our HTTP-connections
were short, the underlying TCP connection never
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progressed beyond slow-start. Therefore, the bandwidth of
the link had only minimal effect on the overall download
time. This is also shown by the graphs in Fig. 2 which
indicate that the total download time stays almost constant
once the bandwidth is greater than 1 Mbit/s. This is also true
in the case when the loss rate on the link is high (Fig. 2b,
averaged over 3000 simulation runs).

Because of the negligible effect of the bandwidth, we
compared the different redirection schemes only by varying
the round-trip times and loss rates. Our simulation model
does not account for server loads or how the client obtains
the redirection; we will discuss these issues in Section 6.

3.1. Redirection Schemes

We compared the redirection schemes for two different
clients. The first one was a client that does not implement
pipelining and opens several persistent connections in parallel
and the second client implemented pipelining. Given the
typical number of embedded images on a page (see Section
3.2) and the number of persistent connections opened by
popular browsers (2 or 6, see Ref. [18]), we assumed that the
client opening parallel connections cannot retrieve all images
with one set of connections. Instead, it first sends one batch of
requests and when it receives the replies, it requests the second
batch; this matches the behavior of a client implementing
persistent connections without pipelining.

The baseline for our comparisons was a scheme where the
client retrieves all object from the origin server. We
compared this baseline scheme to other schemes where
the client retrieves the HTML from the origin server and
is redirected to another server for the images. To model the
second server, we simply used to models from Fig. 1 in
parallel and the only connection between them was when
the first model had completed its download and it triggered
the second model. We used six different round-trip time
values for the servers, 10, 20, 60, 100, 120 and 160 ms.
We have observed that the value of 160 ms is quite typical
from Europe to popular web sites in the US, and the smaller
values reflect conditions within the US.

Our model does not account for the delay caused by a
potential DNS lookup to get the address of the second
server. We also assume that the parallel connections do
not interfere with one another and represent them by one
connection, which retrieves one fifth of the image data on
the page. In reality, the download time of the parallel client
would be dictated by the largest image because the client
could not divide the images equally between all the parallel
connections. Modern clients also start requesting embedded
images as soon as they have seen the references to them
instead of waiting for the whole HTML-page download.
Our model does not take this fully into account, but the
behavior of our model is appropriate for images that the
referenced near the end of the HTML-page.

3.2. Files

To estimate the size of a Web page, we downloaded all
the homepages of the most popular sites from Hot100.com
[8]. We found that the mean file size is 20 KB. This only
includes the actual HTML for the page and does not include
any embedded objects. The mean amount of embedded
image data on a page is 40 KB, the mean number of
embedded images on a page is 15.5, and the mean size of
a single embedded image is 2.5 KB. Most of the HTML-
pages are at least 5 KB and almost none of the HTML-pages
are larger than 45 KB. To retrieve a typical homepage with
all the embedded images we need to transfer around 50–
60 KB and the total amount of data (HTML and images) can
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Fig. 2. Effect of bandwidth on download time.

Table 1
Different pages used in simulations

Page HTML (KB) Images (KB) Parallel (KB)

Small 5 10 2
Medium 10 20 4
Large 20 40 8
X-Large 40 80 16



be as high as 250 KB. We constructed four different sized
pages in order to cover as many different real pages as
possible. Table 1 shows the different pages and the amount
of HTML and image data on each of them. We also show the
amount of image data retrieved by the parallel client which
was equal to one fifth of the total image data.

4. Simulation results

In this section we will present the results from our simu-
lations. We ran simulations for all the different parameter
values (RTT and loss rate) but because of space limitations
we only show some of the combinations here. The results
for the simulation runs not shown here were similar.

4.1. Loss free conditions

We first simulated retrievals under completely loss free
conditions. In Fig. 3 we show the performance of the base-
line scheme, i.e. retrieving everything from one server. We
plot one curve for each different origin server (RTTo), and a
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Fig. 3. Performance of the baseline scheme.

Fig. 4. Download times with parallel connections.

Fig. 5. Download times with pipelining.



point on a curve shows the download time relative to the
download time from the origin server if we had used a server
with RTT given by thex-axis value for all the objects. The
plot shows the download times for a client using parallel
connections. We observed only very small differences
between different file sizes.

In Fig. 4 we show the relative download time of the
selective redirection scheme for a client using parallel
connections and for the Medium and Large pages. We
plot one curve for each different origin server (RTTo). A
point on a curve shows the download time relative to the
baseline that a client would obtain if the origin server had a
round-trip time of RTTo and the new server had the RTT on
the x-axis. The baseline in these graphs refers to retrieving
all objects from the origin server with round-trip time RTTo.
As we can see, typically we need the RTT to the new server
to be less than 75% of RTTo in order for it to worth it to
switch to the new server. In Fig. 5 we show the results for a
client using pipelining. We can see that in this case, the RTT
to the new server should be less than 50% of RTTo.

Comparing Figs. 4 and 5 we see that for parallel connec-
tions the slope of the curves is smaller, meaning that a small
reduction in RTT only gets small reductions in total down-
load time. For pipelining the slope is larger meaning larger
gains for small reductions in RTT. Overall, we see that the
maximum gain in download time is around 30% of the base-
line. This is achieved when the new server is extremely
close (RTT around 10 ms).

As we can see in Fig. 3, if the origin server is slow
(100 ms or more), we can get impressive gains if we were
able to access a nearby server for all of the page. By choos-
ing to go to a nearby server instead of the origin server for
all the of the page we can download it in 10% of the time it
would have taken to get the page from the origin server. The
possible gains of going to a nearby fast server are much
greater than the achievable gains obtained with schemes
where the client must switch servers during the download.
This holds for both parallel persistent connections and pipe-
lining connections. We also see that the schemes which
switch servers (Figs. 4 and 5) can obtain at maximum
only a 30% reduction in download time. In the same situa-
tion, by going directly to the nearby fast server, the client
would reduce the download time by 90%. In other words,
even if the new server would be fast enough to warrant
switching to it, the client would be much better off by
going to that fast server already for all the objects. We
can conclude that under good network conditions, switching
servers during downloadwill give sub-optimal performance
compared to a scheme which redirects the clients to a good
server for all the objects.

4.2. Simulations with loss in network

We then ran the same simulations using a 2% loss rate on
all the links in the simulation. The results in all cases were
similar to the ones obtained under loss free conditions. Fig.
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Fig. 6. Performance of the baseline scheme with loss.

Fig. 7. Download times with parallel connections with loss.



6 shows the performance of the baseline scheme, i.e. retriev-
ing everything from the origin server with round-trip RTTo.
As with the no-loss situation, the differences between differ-
ent file sizes were very small.

When we compare Figs. 3 and 6, we see that in the no-loss
situation, the maximum gains are larger than in the situation
where there is loss on the link. We believe this is because the
underlying TCP connection is still in slow-start and there-
fore its RTT-estimate has not yet adapted well enough to the
link RTT. Hence, the RTT-estimates for the links with small
RTTs are too high and discovering a lost packet takes more
time than it would if the TCP connection knew the RTT
better.

In Fig. 7 we show the relative download times of the
selective redirection scheme for a client using parallel
connection and Medium and Large pages averaged over
3000 simulation runs.

As we can see, the general from of the curves matches
those obtained in loss free conditions (Figs. 4 and 5). The
only difference is that the point where switching servers
would become useful is lower than in the loss free case.
Furthermore, the maximum gain in download time is less
than 20% and for Small pages switching servers always
resulted in a slower download. We believe that the reason
for the stricter RTT requirement for the new server is due to
the possibility of losing TCP SYN packets when opening the
connection to the new server. Most of the downloads took
less than 2 s from start to finish, but a lost SYN packet
caused a 6 s timeout. This slows down the connection to
the new server considerably and gives a substantial advan-
tage to using the persistent connection to the old server. In
addition, the TCP connections are in slow-start and do not
therefore have an accurate estimate of the RTT and dis-
covering lost packets will take longer on the new connec-
tion. If a packet on the persistent connection is lost, it will be
discovered faster, either because of duplicate ACKs or
because the TCP-agents have an idea of the connection
round-trip time and know when to expect packets.

The results confirm our conclusions from the loss free
case. It is preferablenot to switch serversduring download
of a single page. Switching servers greatly limits the gains in
performance obtained from using a nearby server for all the
objects. This means thata system which forces clients to
switch servers during the download of a single page will

provide clients with sub-optimal service; either the new
server is not fast enough, or even if it is, the client should
have been redirected to the fast server for all the objects.

5. Experiments

To validate the results obtained from our simulations, we
ran several experiments in which we retrieved objects from
real, replicated web sites. We used three different sites,
Apache [3], Debian [5], and Squid [17], and chose several
mirror servers of those sites for our experiments. From each
of the three main sites we selected some files that matched
the files in our simulations as closely as possible. For
Apache and Squid our files were close to the Small page
in Table 1, and for Debian they were similar to the Medium
page.

Our goal was to have our client run like a modern
browser, i.e. no pipelining. We chose one HTML-file and
one image file from each site and divided the servers in
pairs. The client would first request both the files from
both servers in the pair and then request the HTML from
the first server and the image from the other server in the
pair. Before requesting the objects we performed a DNS
query on the hostnames in order to eliminate the effects of
long DNS lookups. We ran our experiments several hundred
times during different times of day and on several days.

We show the results from seven of our experiments in
Table 2. In each experiment we used a different pair of
servers to get as many different combinations as possible.
The RTTs to the two servers shown in column RTTA and
RTTB reflect typical RTT values from our client machine to
the servers in the experiment. We used server A as the base-
line and show the relative download time for two other
download schemes in columns AB and BB. Column AB
refers to experiments where the client retrieved the HTML
from server A and the image data from server B. In column
BB we show the relative download time when the client
retrieved everything from server B.

The results we obtained in our experiments closely match
those we obtained in our simulations. In fact, for all the
experiments shown in Table 2, our simulations correctly
estimated whether switching servers would result in a gain
in relative download time or not.

6. Discussion

Our results show that the client can download a whole web
page fastest if it is using persistent connections to a nearby
content server (possibly using parallel persistent connections
for embedded images). Of the two redirection schemes, full
and selective redirection, full redirection achieves this goal
easily since all requests to the origin server are redirected to
a nearby content server.

With selective redirection it is possible to achieve the same
effect by ensuring that all objects on a web page are replicated
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Table 2
Results from experiments

Experiment RTTA (ms) RTTB (ms) AB BB

Apache-1 80 25 0.77 0.14
Apache-2 60 50 1.34 0.58
Debian-1 100 40 0.98 0.25
Debian-2 180 90 0.97 0.72
Debian-3 80 65 1.26 0.79
Squid-1 200 45 0.73 0.20
Squid-2 70 45 1.03 0.59



in the same way and thus client requests for the objects would
be redirected to the same content server. This puts the burden
of ensuring efficiency on the party deciding the replicated
objects. Some modern systems put this responsibility on the
content providerby allowing the content provider to tag indi-
vidual objects for replication. We feel that ensuring efficient
delivery of content to the clients should be theresponsibilityof
thecontent distributor; in fact, efficient delivery of content is
exactly the reason why content providers enlist the services of
content distributors.

Our work is based on the assumption that the client is able
to open persistent connections to all servers, although we do
not assume pipelining of requests. Even though, the content
provider may run a web server that does not implement
persistent connections, the content distributor can imple-
ment persistent connection in its own content servers. If
the content provider’s web server does not implement
persistent connections then the RTT threshold for switching
servers would be higher (because new connections to the
origin server would go though slow-start again). If a suitable
content server exists, the client would be better off using that
server for all objects.

Our simulation model does not account for two important
factors, namely server loads and redirection costs. A major
reason for distributing content on several servers is to take
off load from the origin server and distribute it among the
content servers. Increasing the load on the origin server in
our model would have the effect of making it more attractive
to switch servers, i.e. it would make the RTT-threshold for
switching lower. On the other hand, our model assumes that
the client knows the address of the new content server. In
reality, the client would have to obtain this address some-
how before contacting the server. This would make switch-
ing servers less attractive, i.e. raise the RTT-threshold.

The cost of getting the redirection depends on the redir-
ection technique used. If the system is using DNS redirec-
tion, then the client can expect to spend at least 200 ms for
getting the address of the content server [9]. In the worst
case, the DNS lookup can take several seconds to resolve. In
our simulations and experiments all the downloads took
only a few second at maximum and a long DNS lookup
would have caused a significant slow-down for switching
servers. If the client needs to contact the origin server to get
the redirection, this would add at least one round-trip to the
origin server.

7. Conclusions

In this paper we have evaluated the performance of the
different client redirection schemes used in modern content
distribution networks. Using both simulations and experi-
ments on the real network, we have found that redirection
schemes, which force clients to retrieve objects on a web
page from multiple servers, always yield sub-optimal
performance in terms of the overall client download time

compared to schemes which allow the client to retrieve all
objects from one, good server. This implies that when repli-
cating web pages, we must treat the HTML-page and the
embedded images as a single entity and replicate either all
or none of them. Full redirection achieves this goal and
yields superior performance compared to selective redirec-
tion which may split the web page among several servers.

In our future work we will expand our simulation models
to include several clients and explore the effects of different
network topologies on the results. We will improve our
simulation models by including other parameters, such as
server load. We will also do a more extensive set of
experiments to validate our conclusions.
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