
A Generic and Executable Model for the Specification and
Validation of Distributed Behaviors.

Dominique Sidou.
Institut Eurécom,

2229 route des cr`etes, B.P. 193,
06904 SOPHIA ANTIPOLIS CEDEX, France.

email: sidou@eurecom.fr

February 27, 1997

Abstract

An executable model based approach to validate distributed behavior specifications is presented. Be-
haviors are simple rewrite rules on data instantiated according to a given information model. They are
triggered by events such as operations invoked on computational interfaces. The model is generic in
the sense that it does not make any assumption about the information and computation models used, i.e.
frameworks such as the OSI Systems Management Architecture, CORBA or SNMP can be adapted. To
ensure usability, the execution environment provides for (i) a visual operational semantics of the pro-
posed behavior specification language, and (ii) for dynamic debugging facilities. In addition, aScheme
programming environment is shown to be a valuable option to support the implementation, in particular
for dynamic debugging purposes.

Keywords : Distributed Behaviors, Data Oriented Executable Specification, Validation, Visual Op-
erational Semantics, Dynamic Debugging,Scheme, ODP.

1 Context and Objectives
The paper describes a generic specification and validation framework for distributed behaviors. A spe-
cial emphasis is put on the genericity and executability of the model, its design and its realization in
Scheme[4]. Distributed Processing Environments (DPE) have become an available distribution technol-
ogy to support current and future distributed applications. Satisfactory solutions exist for communication
oriented aspects based on protocols, services, and on top Interface Definition Languages (IDL) (e.g. RPC
systems, CORBA systems, OSI systems management, SNMP framework). However, behavior aspects
are stillpoorly considered. This inevitably results as inter-working problems between clients and servers.
That is the reason why formal approaches are being envisioned, in particular in the ODP framework [16].
First attempts are being made to try to instantiate this framework, e.g. ITU-USG15 [9] work on ODP and
TMN information models. Another work of interest is the analysis and design task force [14] launched by
the OMG. The proposed model for distributed behaviors aims at a working and usable specification and
validation environment. Therefore, the chosen approach for validation is based on executable specifica-
tions [8], onto which test cases or scenarios can be exercised. This provides for immediate validation, and
can be used directly with the users to confirm that the specification satisfies their initial requirements1.
Thus as in [20, 1] the objective is quite limited to provide better behavior specifications validated with
respect to the informally given original user requirements about a system. As a consequence formal
procurement of implementations through proved consecutive refinements steps is not considered.

A model oriented approach is used, that typically describes a system in terms of data and operations.
Such approaches have also been qualified as Data Oriented Models (DOM) [13], in opposition to Process
Oriented Models (POM), i.e. Process Algebraic notations (CCS) or CSP and FSM based approaches.

1In fact, at the point of setting up a first formal specification from the user requirements, executability and prototyping is probably
a more usable approach in comparison to e.g. proof systems.

1

There is, of course, a direct correspondence between DOMs and POMs : both define an abstract ma-
chine, i.e. a state and the possible transitions between states. The difference is a matter of presentation.
A DOM defines for each action what changes upon state can be expected, whereas, a POM gives for
each state what actions are possible. POMs have been used to check properties about the behavior of the
whole system (safety and liveness). A DOM seems more adapted to the validation of statements about
individual operations, e.g. usingpreandpostassertional conditions. However, it is quite simple (and not
new [13]) to merge the two approaches, e.g. a DOM with an interleaving semantics. The model advo-
cated follows this approach : it enables to specify guarded action behaviors extended with assertions, that
exercise themselves on a notion of Distributed and Shared Memory (DSM). The execution model han-
dles nondeterminism by interleaving the execution of actions. No constraint is imposed about behavior
execution contexts. They may include reference(s) to the piece of the DSM concerned with the execution
of a behavior. Of course, overlapping can occur which result as potential interference between behaviors.
Various notions of execution contexts can be incorporated to the generic kernel by provisioning it with a
DSM model and API.

”Ideal” ODP Perspective : The DSM-API corresponds to simple basic primitives to manipulate
information objects consistently in regard to the underlying Information Model (IM) used. Informa-
tion viewpoint languages allows to specify and organize the data in many ways : flat variables, objects,
object clusters, relationships. . . . Note that, the DSM-API can be viewed as a notion of interface to in-
formation objects. In contrast, at the Computational level signatures of operations are described using
interface specification languages. Operation signatures describe the service primitives that are actually
invoked from clients to servers in the distributed environment. ODP recommends some degree of sepa-
ration and thus different formalisms to be used for information and computation viewpoint specification
languages. TINA-C with quasi-GDMO+GRM [18] and ODL [19]; and ITU-SG15 [9] realize such a
separation. However, in practice the two issues are often merged in existing formalisms e.g. in GRM +
GDMO/ASN.1 and in the SNMP-SMI. In contrast, CORBA-IDL gives only operation signatures, leaving
the information model unspecified. Though GDMO allows the specification of information models2, a
given existing GDMO specification may not be complete from the information viewpoint, e.g. there is no
guarantee that from an existing GDMO specification all the attributes are there in order to fully specify
the behavior of a given action. Therefore, obtaining an information specification may be more complex
than just removing from a GDMO specification the computational or any other unwanted aspects.

Towards a Generic and Usable Framework : The approach taken here is to integrate the existing
information and interface specification models as-is, and to finalize such specifications according to
what would be its projection on the ”ideal” ODP perspective. This process may require to separate
concerns, to complete unspecified parts. . . . Integrating GDMO, GRM, IDL as-is brings extraneous work
at the beginning to customize the generic model. But on the long run, this provides for a much more
usable specification framework. Specifiers/users can write/read specifications close to their universe of
discourse. This results as specifications being more easy to write, read and understand than if a general
common framework was used with the burden to have to convert, all the time, between concepts of a
domain to too general concepts.

Instantiation and validation of the generic model has been done in the context of the Telecommuni-
cation Management Network (TMN) [17]. TMN is based on the OSI Systems Management Architecture
including GDMO, ASN.1 extended with relationships (GRM) and CMIS/P for communication issues.

Plan of the paper :
1. In section 2 the generic behavior specification template notation is introduced along with its con-

stituent clauses.

2. In section 3 the generic operational semantics is presented, emphasis is put on its visual character
because this is a very important factor for the usability of the execution environment.

3. Section 4 presents features about the user environment. The different execution modes are listed.
Basic level debugging is presented and hints towards the provision of improved debugging with
backtracking are also given.

4. Section 5 describes how the main features of the generic model are realized usingScheme.

2In fact GDMO is a super-set of what is actually needed for an information specification language. That is the reason why
ITU-SG15 have defined the GDIO (Guidelines for the Definition of Information Objects) notation and TINA-C have defined the
quasi-GDMO+GRM notation.

2

2 Generic Specification Framework
The generic behavior specification framework is based on Guarded Behaviors. AGuard specifies an
acceptance condition for a Behavior Body to be executed. Both guard and body are clauses of the
proposed behavior template notation. This model provides direct support for nondeterministic behavior
specifications because at a given step nothing prevents from several guard conditions to be fulfilled. Bod-
ies define rewrite pieces of code on a Distributed Shared Memory (DSM). No assumption is made on the
DSM. It can be organized in any suitable way according to the information model used, e.g. flat variables
(SNMP-SMI), Objects (OSI-MIM, CORBA) eventually extended with relationships (GRM [12], OMG
Relationship COS [15]). Behaviors specify the reaction of the system to the occurrence of an event, i.e.
service request from a client, a failure in an equipment. . . . In the following the termtrigger andeventare
used interchangeably. An event is represented in behaviors as a message, this is the reason why the notion
of event-messageis also used below. Event messages typically represent operations that can be invoked
at computational object interfaces. Event messages can naturally be sent in behavior bodies thanks to
well identified primitives. As one would have noticed, analogy is rather obvious with production systems
that can be found in rule based expert systems from the AI field or in Event-Condition-Action (ECA)
rules from the active database field [10, 6]. However, goals are not the same because in such domains,
the production system is used to support actual operation, management, control. . . applications. Here, an
executable specification framework is used to perform validation. As argued by Fuchs in [8], a declara-
tive framework which is exactly what procures a production system is a valuable option for specification
executability.

Data Oriented Models : DOMs describe the data in a system and how actions exercise their behav-
iors onto the data. This is a departure from the process oriented model which have been considered as a
conventional choice for executable specifications [3]. In DisCo project [13] the advantages of data versus
process oriented models are fully justified. This argumentation is valid at least for functional behavior
properties : A DOM avoids thread partitioning, and to determine which thread of control is responsible
for which part of the data. Here, the control flow of executed action behaviors is completely driven by
data dependencies. Thus maximal nondeterminism is implicitly assumed, and if restrictions with respect
to the nondeterminism allowed in the system are to be observed, they have to be given explicitly. Thus
what is explicit is the additional constraints (synchronization, atomicity, sequentiality. . .) to observe, this
is a better approach from the specification point of view because, in some way, it is minimalist and avoids
over-specification. When dealing with functional properties of a distributed system, one is not interested
in modeling how object and processes are distributed. More exactly, one would be interested to make
the less assumption as possible about distribution. The advantage is that all the distribution alternatives
remain implicitly allowed, so that they remain available to all be legitimately examined at the right place,
i.e. when engineering issues are treated.

In contrast, Process Oriented Models (POM) – e.g. Algebraic specifications (Lotos, CCS), CSP and
FSM models (SDL, Estelle) – include engineering issues such as behavior and object partitioning among
processes. This is necessary to deal with non-functional behavior properties like timing and real time
constraints. Thus DOMs and POMs are not to be opposed, they are in fact complementary techniques.
DOMs being more abstract are more likely to be used to treat information and computation viewpoint
issues. POMs allowing to include behavior properties dependent on the actual distribution of objects are
more adapted to deal with engineering issues.

Making Use of Assertions : Finally, the behavior template is extended withpre andpostcondition
clauses. They are conditions specified just like guards but intended to a different goal, i.e. to check for
the correctness of performed executions.

Recap : a behavior template is defined as a tuple with the following clauses :beh� ¡label, when, pre,
body, post¿. The next section defines more in detail its operational semantics, i.e. how behaviors defined
according to this generic template are exercised during execution.

3 Generic Visual Operational Semantics
Because the selected approach for the validation of behavior specifications relies on the execution of
test suites and on the observation of their outcome, a good test execution environment is of paramount

3

importance. To this end, two complementary views are provided to give the user a complete description
of the whole system’s state : theObject View and theExecution View.

3.1 Object View
The execution model is a data oriented model, into which behaviors can be seen as rewriting rules on
a globally available distributed shared memory (DSM). Each time something occurs in a behavior, its
eventual effects can be reflected on the underlying DSM. According to the way the DSM is structured,
e.g. with objects and relationships, it can be visually represented as a graph. Then any change on this
graph can be highlighted to the user which naturally lends to animation. Figure 1 gives an example of an
Object View snapshot3. This example is taken from a TMN case study dealing with service provisioning
in a generic network infrastructure. This object and relationship graph is instantiated according to TMN
information models : GDMO for Managed Objects (drawn as ovals), and GRM for relationships (drawn
as rhombuses) and roles (drawn as rectangles). Parts of the object view are hidden because they have
been cut. However, they can be restored as needed.

da
V

in
ci

V
2.

0.
1

("subNetworkConnectionId" 1)

("subNetworkId" 1)

("adminDomainId" 1)("adminDomainId" 2)

("serviceId" 1)

("adminDomainId" 1)

("systemId" "localhost") role:domain role:service

(("R4" 1))

(("R5" 1))

role:node

role:subnet

(("R6" 1))

(("R2" 1)) (("R5" 2))

(("R6" 2))

(("R2" 2))

role:service

role:connection

("cTPId" 2)("cTPId" 1)("cTPId" 8)("cTPId" 7)

role:nctp

(("R3" 3))

Figure 1: Object View.

3.2 Execution View
This view is defined by the concept of Behavior Execution Tree (BET), which is itself a tree of Behavior
Execution Nodes (BEN). A BEN represents a behavior at a given step of the execution in its body code.
In this code, two kinds of primitives can be used to :

� invoke operations on a computational interface, this is done by sending event messages.

� interact with the underlying information objects, this is done by using the DSM-API.

Behaviors may have been defined to model the required reaction of the system to the emission such event
messages. This new behaviors being executed define new behavior execution nodes that are visually rep-
resented as children of the original parent BEN. The BET can be used to provide for a visual description
of a complex behavior propagation. It can also be seen as a visual representation of the way the opera-
tional semantics of the proposed behavior specification paradigm is exercised. The operational semantics
used is based on the interleaving execution model. That is, execution steps of running behaviors can be
interleaved in any arbitrary order. Atomic execution steps are defined by behavior body code delimited
by interactions with the DSM, i.e. usage of primitives from the DSM-API. Finer grain execution steps
are not needed (e.g. at the level ofSchemeinstructions) because it is assumed that behaviors can interfere
only on the basis of DSM interactions4. Figure 2, gives an example of a behavior execution tree. Each
node is documented with a unique identifier accompanied with the label of its corresponding behavior

3The graph visualization tooldaVinci [5] is used to provide the object view. It is also used to provide the execution view (see
section 3.2).

4Note that this assumption is valid only if access to shared behavior variables is limited to the DSM (whatever the way it is
implemented). Non careful access within behavior code to globalSchemevariables can easily violate this assumption.

4

and its state : ¡i beh-label state . . . ¿. The different values for the BEN state field are explained below.
BEN ids can be interpreted as a birth date. This gives an immediate view about how the BET was de-
veloped. To get a visual representation, BENs can be labeled and colored differently according to their
state. Additional attributes accessible from each BEN can also be added by the user to customize what
is actually displayed for each BEN developed. The BET shown in figure 2,illustrates through a toy
example how the computation of the value of the Fibonacci function for the integer3 is being processed.
In addition, appendix B gives :

� the corresponding behaviors.

� the unique event messagefibmsgused to trigger recursive Fibonacci computations.

Note that, this toy example illustrates only control aspects, that is the reason why there is no use of
underlying information object accessed through the DSM-API.

da
V

in
ci

V
2.

0.
1

(7 "fib−1" wpre "fibmsg (n−1 1) (n−2 0)")

(9 "fib" done "fibmsg (n 0) (res 1)")

(8 "fib−2" ready "fibmsg (n−1 1) (n−2 0)")

(6 "fib" wcr=0 "fibmsg (n 2)")

(3 "fib−1" wcr=0 "fibmsg (n−1 2) (n−2 1)")

(5 "fib" done "fibmsg (n 1) (res 1)")

(4 "fib−2" ready "fibmsg (n−1 2) (n−2 1)")

(2 "fib" wcr=0 "fibmsg (n 3)")

(1 "boot" wcr=0 "fibmsg (n 3)")

Figure 2: Behavior Execution Tree (Execution View).

The different ways into which a BET can be further developed, from a given state, are completely
determined by the state of its constituents BENs and their possible individual evolutions. Thus, at this
point it is worth to describe more precisely a BEN and its transition diagram. BEN properties, are listed
in figure 3.

record Fields
BEN ¡id, state, beh, children, parent, step, wcr=0, bec¿

STEP ¡beh-cont, beh-src-line¿
BEC ¡evt-msg, dsm-context¿
BEH ¡label, when, pre, body, post¿

Figure 3: Behavior Execution Node Properties.

3.3 BEN Fields
the state field defines the operations that are possible at a given step, i.e. that the user can invoke on the

execution node. Its value is one of the list(ready, wcr=0, wpre, wpost, done). A BEN in theready

5

state means that it is ready to execute the next step in its body code. All BENs in this state form the
ready-listof BENs ready to execute. When theready-listbecomes empty, the behavior execution
has completed. A terminating state has been reached. Transitions between BEN state values can
be described as a finite state machine (see figure 4).

wpre ready

check-pre

wpost

end-body

wcr=0

ev
t-

m
sg

^
c
r
>

0

c
r
=

0

cr > 0

done

ch
e

ck-p
o

st

Figure 4: Behavior Execution Node FSM.

the step field represents the current stage of processing in the behavior body code. It is composed of :

� beh-src-linefield references to the line number of a behavior source file, thus enabling source
level debugging.

� beh-contfield is aSchemecontinuation (see section 5) that is called to resume the execution
of this behavior in order to execute its consecutive steps.

the cr field is a decreasing counter. It gives for a BEN that has sent an event message to be propagated,
the child residue, i.e. the number of child BENs currently being executed and that the (parent)
BEN is waiting for completion. As shown on the BEN FSM in figure 4, whilecr > 0 the parent
BEN is not allowed to resume the execution of its body code.

the beh field is the behavior itself that was fetched. It is itself a record with fields values represent-
ing internally what has been defined in the behavior clauses using the generic behavior template
presented in section 2.

the Behavior Execution Context field (BEC) is a completely opaque data for the generic kernel that is
given as argument to each evaluation of behavior clauses. This concerns the guard (whenclause),
pre, bodyandpost. BEC semantics are defined according to the application domain into which
one intends to use the generic kernel, e.g. the information and computation model used. From our
experience in the TMN context, it is typically composed of :

� evt-msgis the message sent that caused this behavior to be fetched. It is, of course, dependent
on the services invocation primitives supported by the underlying computational model. So
values for this field are out of the scope of the generic model.

� dsm-contextrepresents the execution scope of this behavior on the DSM. This field is depen-
dent on the DSM or information model used. This typically references a variable, an object, a
group of objects, a relationship or any other data abstraction of interest for a given information
model.

� . . . any other property required to customize the generic model.

4 Execution Modes and Debugging
The object and execution views are the basis for a powerful debugging tool. The object view enables
the user to inspect that the DSM components are assigned with correct values at any execution step.
The execution view gives a proper representation of the nondeterminism occurring, i.e. concurrency,
choice or unordering along performed executions. Concretely, the user can get a direct feeling of the
nondeterminism by seeing all the BENs in the currentready-listthat are highlighted on the BET. At each

6

step, the user has a full control about which execution branch of the BET should be explored. Other basic
debugging features such as trace and breakpoint facilities are also possible.

This enables the following execution modes to be provided :

� The user driven mode enables the user to develop the BET as wished. At each step, the user
selects the BEN (which belongs to the ready-list) from which its next step is to be executed. In
this mode, it is also possible to terminate the execution of a BEN according to one of the policies
described below. This is a required feature in order to speed up the development of parts of the
BET, e.g. because they are already debugged. . . .

� The random walk policy enables to develop the BET randomly, and reach one of the possible
terminating states.

� Thefixed walk policy develops the BET according with a fixed strategy, e.g. depth or breath first.
This is useful for early stages of debugging, to force the execution to follow always the same path.
This avoids to be annoyed by the other problems caused by nondeterminism that one would prefer
to fight at a later stage.

Improved Debugging Support : Basic source level debugging support do not prevent from wasting
precious debugging time in setting break-points in backward order and re-running the program, or in
stepping over the whole execution flow, until the erroneous code is reached. In contrast, an execution
backtracking facility in interactive source level debuggers allows users to mirror their though processes
while debugging [2]. This enables to work backwards from the location where an error is manifested
and determine the conditions under which the error occurred. Such a facility also allows a user to change
program characteristics and re-execute from arbitrary points within the program under examination (a
”what-if” capability). This very powerfuldynamic debugging facility requires two majorunderlying
mechanisms :control backtracking anddata backtracking. Here are given some hints on how such
mechanisms could be incorporated to the generic meta-model :

� Control backtracking is easy to provide usingSchemecontinuations (see section 5). It is just
needed to store the history of steps in each BEN, rather than only the current one. Because each step
contains a continuation corresponding to each execution stage in the behavior body, it is possible
to go back to any previous execution stage by calling back the corresponding continuation.

� Data backtracking is another issue. This requires to be able to restore the DSM states of each
behavior execution step. Such a mechanism is totally DSM implementation dependent. If the DSM
is implemented on top of database, data backtracking could probably be implemented in terms of
transaction processing5. If the DSM is directly implemented in theSchemeenvironment, another
approach to implement data backtracking is to provide for a data undoing function. However, in
order to avoid to re-implement this mechanism for each DSM model, an idea would be provide
a generic facility on top of which any form of DSM could be realized. This would enable to
define data undoing on the generic storage facility. A notion of generic repository of information
based on hash-tables is already being used for the currently used TMN-based instantiation of the
generic model. Though not yet implemented, data undoing function should not be too difficult to
implement on such generic repositories.

� An execution trace is also needed besides the BET. The backtracking process has to follow this
trace in backward direction. This trace can be simply implemented as a stack of BEN identifiers,
from which execution steps can be retrieved in backward order.

5 Realization inScheme
Why Scheme? It is a simple, clear and sound programming language. Its syntax is reduced to the
very necessary and it should not be long to learn (the standard [4] is less that 50 pages).Schemeprovides
the required programming support for behavior coding (control structures, variable notations. . . that does
not have to be reinvented). In addition, if theSchemeLibrary is used [7], facilities such as quantifiers are
available. This can be used to simplify the specification of logical expressions (guards, pres and posts).

5In effect, a database system offering only a transaction concept is sufficient : Marking a data state is done by starting a new
transaction and using a counter for the number of opened transactions. Backtracking is done by aborting a sufficient number of
transactions. This works, but in some way the transaction mechanism is abused, since transactions are never committed as long as the
behavior propagation is processed.

7

The Macro System : has been used to define the behavior specification template presented in section
2. Schemeprovides high level macros that enables to define expressive language extensions and how they
are to be expanded to pureSchemecode.

Closures or�-expressions : provide a nice abstraction to store the different pieces of executable
specification code present in guards, bodies, pres and posts. All this clauses are expanded and stored as
closures (of one argument) in the behavior repository. At evaluation, such closures are called with the
current behavior execution context (BEC) as argument. The BEC contains all the relevant information
required for the evaluation of such closures.

Behavior Instrumentation : To enable source level debugging behavior instrumentation have to be
performed just before behaviors are loaded in the behavior repository of the execution environment. This
provides during execution references to the original behavior source code.

SchemeContinuations : Though small and simple,Schemeprovides in the language itself a pow-
erful concept (continuations) and an associated construct (call-with-current-continuation
often abbreviated ascall/cc) that enables to set up and store any execution context and the way to
go back to this context, by simply calling it as if it was a usual function. Continuations are used to pro-
vide the basic control mechanisms needed in order to implement basic debugging support (i.e. stepping
and breakpoints). In addition, continuations are extremely useful for implementing a wide variety of
advanced control structures, such as complex forms of backtracking. Therefore, they can also be used
in the realization of the improved debugging with backtracking support to provide for a straightforward
implementation of the control backtracking part. Appendix A gives a quick overview through a simple
example on the way continuations are working.

6 Conclusion and Further Issues
The generic behavior specification and validation environment defines a working and usable generic
model. It is designed with ODP principles in mind, to allow for a clean distinction between information
and computation issues in behavior modeling. The proposed behavior template is based on guarded
action behaviors. This is a quite classical approach, and similar constructs have been used for general
production systems such as rule based expert systems or ECA-rules in active database systems. Such a
declarative framework is also a natural option for executable specifications [8]. In addition, in order to
perform validation, the behavior model is enriched with assertions that can be checked along behavior
execution paths. This also follows the approach advocated by ITU-SG15 work [9]. This generic behavior
model has been first instantiated in the TMN context (GDMO/ASN.1, GRM and CMIS/P) and used in
several TMN-based case studies. Work is being done to customize the model towards CORBA based
systems. This should prove again more effectively the genericity of the approach. This concerns to
reuse and check for the applicability of not only, the specification framework but also, the implemented
operational semantics and execution environment.

A further issue is to effectively implement the improved debugging with backtracking facility. This
may reveal as a very interesting mechanism to base the support for a powerful problem explanation tool.
Though the proposed behavior model can be very useful in order to deliver better distributed behavior
specifications (which is in itself a real win), one would contest that the approach is not so formal. In
effect, providing another specification language, even equipped with an operational semantics and exe-
cution environment, is far from being a sufficient condition towards formality. Without the ability to do
some kind of formal reasoning such as analytical proof or exhaustive search, there is little place for actual
formality. The executable framework is naturally more oriented towards an exhaustive search approach.
In particular, the backtracking facilities can be used to do exhaustive behavior analysis of all behavior
execution paths that can be followed for a given test case. This would enable one to highlight all the
cases where assertions are violated. And, even if no assertion is violated, it may be interesting to exam-
ine all the terminating configurations of the system. May be some of them exhibit unwanted behavior
executions. But as usual when exhaustive search is performed in the context of an interleaving execution
model, the classical state explosion problem occurs. It is worth to see how well known techniques, e.g.
partial order methods [11] could be applied to the generic model considered.

8

Acknowledgments : The author is indebted to the three anonymous reviewers for their helpful com-
ments and suggestions.

References
[1] A CASE Environment for TINA-oriented Applications, 1996. Available at

http://andromeda.cselt.stet.it:8080/ace/ACE.html.

[2] Hiralal Agrawal, Richard A. DeMillo, and Eugene Spafford. An Execution Backtracking Approach
to Program Debugging. Technical Report SERC-TR-22-P, Software Engineering Research Center
Purdue University, September 1990.

[3] J. P. Briand, M. C. Fehri, L. Logrippo, and A. Obaid. Executing LOTOS Specifications.Protocol
Specification, Testing and Verification VI, IFIP 1987, pages 73–84, 1987.

[4] W. Clinger and J. Rees. Revised
4 Report on the Algorithmic Language Scheme.

ACM Lisp Pointers, 4(3), 1991. Available at http://www.cs.indiana.edu/scheme-
repository/doc/standards/r4rs.ps.gz.

[5] The Interactive Graph Visualization System daVinci. Available at http://www.informatik.uni-
bremen.de/˜inform/forschung/daVinci/daVinci.html.

[6] Klaus R. Dittrich, Stella Gatziu, and Andreas Geppert. The Active Database Management System
Manifesto: A Rulebase of ADBMS Features. Technical report, University of Zurich, Dept. of
Computer Science, 1995. Available at http://www.ifi.unizh.ch/techreports.

[7] T.R. Eigenschink, D. Love, and A. Jaffer. SLIB: The Portable Scheme Library, 1994.

[8] Norbert E. Fuchs. Specifications are (preferably) executable. Technical Report 92, University of
Zurich (CS Dept.), 1992. Available at ftp://ftp.ifi.unizh.ch/pub/techreports/.

[9] Management of the Transport Network – Application of the ODP Framework, ITU-T G851-01,
1996.

[10] Andreas Geppert, Stella Gatziu, Klaus R. Dittrich, Hans Fritschi, and Anca Vaduva. Ar-
chitecture and Implementation of the Active Object-Oriented Database Management System
SAMOS. Technical report, University of Zurich, Dept. of Computer Science, 1995. Available
at http://www.ifi.unizh.ch/techreports.

[11] Patrice Godefroid.Partial-Order Methods for the Verification of Concurrent Systems –An Ap-
proach to the State Exploision Problem. PhD thesis, Universit´e de Liège, Facult´e des Sciences
Appliquées, 1995. Available at http://www.montefiore.ulg.ac.be/services/verif/papers/thesis.ps.Z.

[12] ISO/IEC JTC 1/SC 21, ITU X.725 – Information Technology – Open System Interconnection –
Data Management and Open Distributed Processing – Structure of Management Information –
Part 7 : General Relationship Model.

[13] Hannu-Matti Jarvinen and Reino Kurki-Suonio. DisCo Specification Language: Marriage
of Action and Objects. InProc. of 11th International Conference on Distributed Com-
puting Systems, Arlington, Texas, may 1991. IEEE Computer Society Press. Available at
http://www.cs.tut.fi/laitos/DisCo/DisCo-english.fm.html.

[14] Object Management Group : Object Analysis and Design RFI, 1995. OMG TC Document 95-9-35.

[15] OMG Relationship Service Submission, 1994. Revised submission to the Object Services Task
Force RFP2 by Bull, Hewlett-Packard, Olivetti, IBM, SNI, and SunSoft. OMG Document 94-05-
05, available at http://www.omg.org/docs/1994/94-05-05.ps.

[16] Basic Reference Model of ODP – Part 1: Overview and Guide to Use of the Reference Model, ISO
10746-1, ITU X.901.

[17] Dominique Sidou, Sandro Mazziotta, and Rolf Eberhardt. TIMS : a TMN-based Information Model
Simulator, Principles and Application to a Simple Case Study. InSixth International Workshop on
Distributed Systems : Operations & Management, Ottawa - Canada, 1995. IFIP / IEEE. Available
at http://www.eurecom.fr/˜tims/papers/dsom95-paper.ps.gz.

[18] TINA Information Modelling Concepts,1994. Available at http://www.tinac.com.

[19] TINA Object Definition Language (TINA-ODL) Manual, 1995. Available at http://www.tinac.com.

[20] User Manual for the IFAD VDM-SL Toolbox, 1996. Available at
http://www.ifad.dk/products/toolbox.html.

9

A Continuations, a Simple Example
The procedureset-cont-here sets up and returns a continuation at the following statement from
which it is called. As shown below,c1 can be re-called back to redo the threedisplays , c2 for the
two last ones andc3 for the last one.
scm-prompt> (define (set-cont-here)

(call-with-current-continuation
(lambda (c) c)))

#<unspecified>

scm-prompt> (begin ; this executes the "displays" and sets up the continuations.
(newline)
(define c1 (set-cont-here))
(display "Hi 1!!!") (newline)
(define c2 (set-cont-here))
(display "Hi 2!!!") (newline)
(define c3 (set-cont-here))
(display "Hi 3!!!") (newline))

Hi 1!!!
Hi 2!!!
Hi 3!!!

;;; continuations are Scheme objects, whose value can be printed.
;;; This is done here by simply making a list of their values.
;;;
scm-prompt> (list c1 c2 c3)
(#<cont 316 @ 7d390> #<cont 316 @ 77b38> #<cont 316 @ 78070>)

;;; calling back continuation c1
;;;
scm-prompt> (c1 c1)
Hi 1!!!
Hi 2!!!
Hi 3!!!

;;; calling back continuation c2
;;;
scm-prompt> (c2 c2)
Hi 2!!!
Hi 3!!!

;;; calling back continuation c3
;;;
scm-prompt> (c3 c3)
Hi 3!!!

scm-prompt> (quit) ; quitting the scheme interpreter!

B Fibonacci Toy Example : Event Messages and Behaviors
;;; unique event message used, it contains both n, n-1 and n-2 fields,
;;; and the result.
;;; Behaviors use only the field(s) they are interested in.
;;;
(genrec:define fibmsg n n-1 n-2 res) ; this defines the fibmsg record.

;;; fib behavior.
;;;
(define-behavior "fib"

(when (and (fibmsg:isa? (msg)) (specified? (fibmsg:n (msg)))))
(pre)
(body (cond ((< (fibmsg:n (msg)) 2) (fibmsg:res! (msg) 1))

(else (let ((becs (msg-send (fibmsg:make2 ‘(n-1 ,(- (fibmsg:n (msg)) 1))
‘(n-2 ,(- (fibmsg:n (msg)) 2))))))

;; collection of result for fibmsg:n from returned
;; fibmsg:n-1 and fibmsg:n-2
(fibmsg:res! (msg) (+ (val:get becs ’(0 msg res))

(val:get becs ’(1 msg res))))))))
(post))

;;; fib-1 behavior, treats the computation of (fib n-1).
;;;
(define-behavior "fib-1"

(when (and (fibmsg:isa? (msg)) (specified? (fibmsg:n-1 (msg)))))
(pre)
(body (let ((becs (msg-send (fibmsg:make2 ‘(n ,(fibmsg:n-1 (msg)))))))

(fibmsg:res! (msg) (val:get becs ’(0 msg res)))))
(post))

;;; fib-2 behavior, treats the computation of (fib n-2).
;;;
(define-behavior "fib-2"

(when (and (fibmsg:isa? (msg)) (specified? (fibmsg:n-2 (msg)))))
(pre)
(body (let ((becs (msg-send (fibmsg:make2 ‘(n ,(fibmsg:n-2 (msg)))))))

(fibmsg:res! (msg) (val:get becs ’(0 msg res)))))
(post))

;;; function to run the process until some intermediate computation state.
;;;
(define (fib:run-example)

;; sending to the propagation engine the computation of (Fibonacci 3)
;;
(msg-send (fibmsg:make2 ‘(n 3)))
(ben:next 2) (ben:next 2) ; stepping on the BENs.
(ben:next 4) (ben:next 4)
(ben:next 5) (ben:next 5) (ben:next 5)
(ben:next 3) (ben:next 3)
(ben:next 6) (ben:next 6)

10

(ben:next 8) (ben:next 8)
(ben:next 9) (ben:next 9) (ben:next 9)
(bet:view)) ; viewing the BET.

;;; calling fib:run-example.
;;;
(fib:run-example)

11

