Insitut Eurécom
2229 route des Crétes, B.P. 193
06904 Sophia-Antipolis

France
Research Report N. RR-02-067

Account of an experimental implementation of a completely automatic camera
calibration framework based on the Deriche-Giraudon corner extractor and
Zhang’s calibration algorithm.

Emmanuel Garcia, Jean-Luc Dugelay
March 2002

E-mail: garciae@eurecom.fr, dugelay@eurecom.fr

1 Introduction

1.1 Context

For many purposes in computer vision (e.g. recon-
structing 3-D objects, and in particular realistic faces,
as is one of our concerns) there is a need for camera
calibration. Here we focus exclusively on the prob-
lem of calibrating a single camera (that is, estimating
its intrinsic parameters). While the theory of this
problem is well-known, it is still not easy to solve
in practice. We wanted an algorithm as simple as
possible from the practical point of view (i.e. from
the point of view of the eventual end-user that would
have to do the calibration). Many tools exist on in-
ternet that can achieve such calibration, using some
more or less sophisticated patterns to be shown to the
camera. But we have not found any completely auto-
matic tool (i.e. where the user has no points to click
after having acquired calibration images). We do not
claim that such tools do not exist but we have not
found any. Thus we had to implement one. We used
Zhang’s implementation of his own calibration algo-
rithm [3, 4] and we implemented what was lacking to
have a completely automatic calibration program.

1.2 Zhang’s calibration algorithm

Zhang’s calibration algorithm is an easy algorithm
from the practical point of view since it requires only
to take a few pictures of a pattern attached to a plane
surface. An implementation of this algorithm is even
provided as a microsoft windows executable file which
takes as inputs the location of features detected in the
calibration images, and which outputs the intrinsic
parameters of the camera [4].

However what is lacking here is the preliminary
detection of features in the images. In the example
presented on [4], those images consist of black squares
aligned in rows and columns (figure 1), and the fea-
tures to be detected consist in the corners of those
squares.

In [3] Zhang gives a hint as to how he detected the
corners of the squares in those images: he fitted lines
to the edges of the squares and computed the corners
as the intersection of those lines. Yet no details are

given concerning this basic but crucial operation and
no fully automatic software is provided.

We chose to use the same pattern as in Zhang’s
experiments, and thus we had to cope with two tasks:

e Automatically locate the corners in the calibra-
tion images

e Refine the location of those corners with a sub-
pixel precision

After that, the calibration itself is simply carried
out by feeding Zhang’s calibration program with the
detected corner locations.

Figure 1: Set of 5 calibration images used: one front
view of the calibration pattern, and four other views
where the pattern is shifted and rotated in the four
directions (up, down, left, right), so as to have an
extensive coverage of the camera’s field of view.

1.3 Preliminary approximate corner
detection

We have separated the problem of detecting corners
in two steps because the problem of refining the loca-
tion of a corner with sub-pixel accuracy is mostly a

mathematical problem that depends little on the spe-
cific configuration of corners in the images, whereas
the problem of roughly locating those corners is more
an algorithmic problem that depends on the particu-
lar configuration of corners in the images used (each
corner must be identified within this configuration,
e.g. must be identified with its row and column in-
dices in our case).

The rough detection of corners could be made man-
ually, or partially manually. But we aimed at a
fully automatic extraction of corners, and a signifi-
cant part of this article is devoted to explaining the
algorithms we developped.

1.4 Sub-pixel corner detection

The sub-pixel localization of corners can be done
starting from a rough estimating, and using various
algorithms. For instance, we could try to fit lines to
the edges of a square and compute the corners as the
intersections of those lines, as Zhang did, which takes
advantage of the particular configuration of corners,
or we could refine the location of corners indepen-
dently.

We have tried both types of algorithms. As for the
line fitting, we have fitted a gaussian line profile to an
edge-detected image. As for the independent refining
of the location of each corner, we have used the the-
oretical results developped by Deriche and Giraudon

in [1].

1.5 Results
The output of those experiments consist in:

e A fully automatic algorithm to roughly detect
corner in images featuring a specific pattern of
black squares used for camera calibration

e An actual implementation and evaluation of the
Deriche-Giraudon theory of corner localization
outlining practical details of utmost importance

e A comparison between our implementation of
the Deriche-Giraudon algorithm and our imple-
mentation of the algorithm used by Zhang (fit-
ting lines to the edges of the squares)

2 Approximate feature local-
ization

The images provided as an example with the im-
plementation of Zhang’s calibration algorithm that
we used feature a white background on which are 64
identical black squares regularly arranged in 8 rows
and 8 columns (figure 1).

The features in those images are the 4 corners of
each of the 64 squares. No software to extract those
features robustly, accurately and completely auto-
matically was provided, so we implemented such an
algorithm in three parts:

e Finding black regions of the image that are can-
didates for the black squares and representing
their boundary as a chain

e Rejection of all black regions that are not images
of the squares of interest and localization of the
four corners of the remaining black regions

e Ordering of the squares’ images (within the 8 x 8
grid structure) and subsequent ordering of the
corners

2.1 Location and representation of

black regions

In order to locate the candidates for the images of
black squares, we find the black connex regions of
the image and represent them as chains of pixels ac-
cording to the following operations.

2.1.1 Binarization

In order to locate black squares on the white back-
ground, we first do a simple binarization of the image
using the mean of the minimum and maximum grey
level values present in the image as a threshold (fig-
ure 2). Depending on the level of noise present in the
image it might be useful to do a low-pass filtering
before that. In our case it was not necessary.

2.1.2 Labeling connex components

The next step consists in labeling the connex compo-
nents of the binary image, assuming that the black

Figure 2: Binarized image.

squares are some of those components. This is done
assuming a 4-connexity of black pixels. The aim of
the following operations is to decide whether a given
connex component is the image of a black square.
We first discard non-convex then, non-quadrilaterals,
non-parallelograms, and then possible parallelograms
that are not the image of an observed square of the
calibration pattern.

2.1.3 Computing boundary

“““

‘

‘
[ellellellelle}e}e]}e]
[ellellellelle}e}e]}e]
[ellellelellelele}e]
BERERREE
FEENEEER
EENREEEE

o

BENAREEER

|
I
EEERE

Figure 3: Distance map and boundary.

In order to manipulate the connex components of the
binary image more easily, we represent them as a
more abstract data than a set of pixels. At first we
compute the boundary of a given connex component
as a set of pixels, which defines it completely. To do

this we compute a distance map of pixels with respect
to the outside of the current connex component and
we keep the pixels that are at distance 1.

2.1.4 Expressing boundary as a chain

An easier representation of the boundary (for our
purpose) is as a chain of pixels. We chose to start
with the left-most pixel on the top of the boundary of
the current connex component and start running the
boundary to the right. This operation discards the
knowledge of possible holes inside the connex compo-
nent. So we only keep the outer boundary.

1. set the initial pixel P to the
left-most pixel on the top of the
boundary

2. set the initial direction D to be E

3. do until all boundary pixels are marked

(a)
(b)

mark the current pixel P

find the first unmarked pixel P’
around P begining with the pixel
in direction -D and counting
clock-wise

(c)

set the current direction D to the
direction from P to P’

(d)

set the current pixel P to P’

2.2 Keeping only images of the black
squares of interest

Once the black regions that could be images of the
black squares of the calibration pattern are identi-
fied, we proceed by successively discarding regions
that do not satisfy an increasing number of condi-
tions until only images of squares remain. For this
we make use of the fact that those images of squares
should roughly be parallelograms (assuming that in
the neighbourhood of a square, the perspective pro-
jection of the camera is close to a parallel projec-
tion). Since they should be parallelograms, they
should be quadrilaterals, and before that they should
be convex. Thus we first discard non-convex black

[] wE [P

g

l l

Initialisation Beginning of step 3
7

NW N NE e W

SW S SE

End of step 3

Figure 4: Representing a contour as a chain.

regions, then non-quadrilateral ones, and then non-
parallelograms (figure 5).

test 2 test 3

AN

test 1

=
< g
¥ = <
< g g
>
g = S
S ‘g 15
o -~ —
L = =
g < <
o = =
= = <
= &
g g
=
rejected rejected rejected ok

Figure 5: Step-by-step rejection of non-parallelogram
shapes.

2.2.1 Discarding non-convex regions

We compute the convex hull of the boundary of a
connex component by discarding the pixels that are
inside it. This can simply be done by considering
the pixels immediately before and after a given pixel
in the chain representing the boundary assuming
we know the orientation of chain (which we know).
When removing a pixel, we examine whether it was
far from the boundary of the convex hull or not. If

it was we discard the current connex component. If
it is very close (we have chosen 4 pixels at most) we
don’t discard the connex component assuming it is
almost convex and the apparent non-convexity may
be due to noise or the discrete nature of the image.

Initial contour

Error measurement

Final contour

Figure 6: Computing convex hull.

2.2.2 Discarding non-quadrilaterals

Initial contour

14
Node removal

Four-vertex contour

Figure 7: Keeping 4 vertices.

After discarding non-convex chains, we discard those
that are not quadrilaterals, i.e. those that do not
contain exactly four points. Actually, some chains
that contain more than four points can be seen as
quadrilaterals if, for example, one extra point is al-
most on the line joining two other points. So, to
decide whether a chain represents a quadrilateral or
not we first delete all those points that may be on a
line joining their two neighbours. We have decided
that one point is on a line when it is at most 4 pixels
away from it. Note that this automatically discards
all connex components that are 4 or less than 4 pixels

wide which is a good thing since there might be small
components due to noise for example.

2.2.3 Discarding non-parallelograms

The images of the observed squares should roughly
be quadrilateral assuming that the perspective pro-
jection of the camera can locally (i.e. around a given
square) be seen as a parallel projection. Therefore we
discard every quadrilateral in the image that is not a
parallelogram.

To do this we have used a particular criterion for
parallelism. We have computed a 2D homography
associated with a quadrilateral. Such an homography
can be expressed as a 3 x 3 matrix H operating on
2D homogeneous coordinates.

In our case we have computed an homography
H that transforms a system of homogeneous coor-
dinates into another. The target system of coordi-
nates if the base system of coordinates of the image
plane where a pixel (z,y) has homogeneous coordi-

nates [1‘ y 1]T. The source system of coordinates
is a system of coordinates where the corners of the
quadrilateral have coordinates [:I:l +1 1]T.

Since the homography H is defined up to a scale
factor, it has 8 degres of freedom, which can be com-
puted linearly using the correspondance between the
4 pairs of coordinates, each providing 2 contraints.
VHi+HE,

i .
When it is zero, the quadrilateral is a plmr:illelo—
gram, and the higher its value, the more distorted the
quadrilateral is. We have empirically set the thresh-
old for parallelism to 0.15.

Our criterion for parallelism is C =

1,1 1,1

—1,1
1,-1
1,-1

—1,-1
—1,-1

non-parallelogram parallelogram

Figure 8: Representing a quadrilateral by an homog-
raphy.

2.2.4 Removing outliers

After the previous steps, only connex components
of the binary image that are quadrilaterals or al-
most quadrilaterals remain. Still, some quadrilaterals
might not be images of the black squares of interest.
So we have designed another step to discard another
type of potential outliers.

For this we consider the 4 neighbouring squares of
each square and decide whether those neighbours are
in a direction and at a distance consistent with the
average configuration of a square.

It is explained in 2.3.3 how the 4 neighbours of a
square are found.

2.3 Ordering of the 8 x 8 squares

2.3.1 Computing orientation

In order to characterize the location and orientation
of a quadrilateral we compute a system of coordinates
attached to it using its associated homography H (see
above for definition of H).

By definition H applied to homogeneous coordi-
nates [:I:l +1 1]T yields the homogeous coordi-
nates of the 4 corners of the quadrilateral associated
to H in the image plane.

Now we will set the center of the quadrilateral
to have coordinates [0 0 1]T in the source sys-
tem coordinates of H. Applying H to those coor-
dinates yields to image coordinates of the center of
the quadrilateral.

~1,-1

Figure 9: Local system of axes of a quadrilateral.

The axes of the system of coordinates associ-
ated to the quadrilateral have been defined as
;’—jl([o 0 I]T) and g’—le([O 0 I]T) where z =
[.1‘1 9 1]T =H. [Ul Usg 1]T

This can easily be explicited in terms of the coeffi-
cients of H.

2.3.2 Aligning squares

Once we have computed a local system of coordinates
for each quadrilateral we make the first axes of all
the quadrilaterals point in the same direction, and
the same for their second axes, which may require
to swap axes or to reverse one or two axes for some
quadrilaterals.

To decide whether we swap or not the axes of some
quadrilaterals, we do a two-level quantization of their
direction using a Lloyd-Max algorithm.

To completely define the algorithm let us define
the quantization space, the nature of the centroids
and the metric used to cluster the variables in the
quantization space.

The parameter space for one quadrilateral is the
set {0,1}, 0 meaning for example that the axes of
the quadrilateral are not to be swapped, and 1 that
they are to be swapped. Associated to this parameter
is the pair formed by the directions of the two axes of
the quadrilateral, swapped or not depending on the
value of the parameter. The directions are expressed

as angles defined modulo 7.
v u u
u v v .
0 0 0 v
U
Initial centroids

u v u
v u v
0 0 0

Initial configuration
v v v
u u u
0 1 1
v v v
u u u
1 0 1

After one step

.
\]I\v

After one step

Figure 10: Two-level quantization of the quadrilater-
als in order to align their first and second axes con-
sistently.

The centroids are angles, each angle being defined

modulo 7. There are 2 centroids, one corresponding
to the mean direction of the first axes of the quadri-
laterals (after possible swapping of their two axes),
and the other corresponding to the mean direction of
the second axes of the qudrilaterals.

Finally, the distance associated to the choice of a
value, 0 or 1, for the parameter of a quadrilateral, and
given a 2 centroids, is the sum of the distance between
the first axis of the quadrilateral (considering possible
swapping of the 2 axis depending on the value of the
parameter) and the first centroid, and the distance
between the other axis of the quadrilateral and the
second centroid.

We iterate the Lloyd-Max algorithm, by clustering
the quadrilaterals with some initial choice for the cen-
troids, and then compute the new centroids until the
clustering is fixed or at least 64 quadrilaterals don’t
change cluster (to avoid possible non-convergence in
some cases, due to outliers). This requires very few
iterations, typically 1 or 2. We must point out that
computing the mean, modulo m, of a set of angles
defined modulo m must be done carefully, since it is a
bit tricky. We have used the fact that all the angles
involved in the computation of a given centroid can

be expressed as numbers in a same interval of length
s

’ To end with the description of our procedure for
aligning the quadrilaterals in a consistent manner we
should add that at the end with have swapped the 2
centroids, when needed, to ensure that the first one
was associated to the most horizontal direction.

We have also given an orientation to the directions
associated with the centroids so that the first one
pointed to the right and the second one, up.

And finally we have also reversed the orientation
of the axes of the quadrilaterals, when needed, so
that their axes point in the same direction than their
associated oriented centroids.

2.3.3 Looking for neighbours

Now that we have computed a local system of axes
for each squares and that all those systems have axes
pointing in almost the same direction we can con-
sistently compute the neighbouring squares of each
square in the 4 directions defined by the axes of their

local system of coordinates.

For example, to find the neighbour of one square,
having a local system of coordinates (O, u, v), along
the positive direction of its first axis u, we look for the
square whose center is at minimum distance from O
under some constraint. If (z,y) are the coordinates of
another square’s center in the system of coordinates
(O, u,v), we set the distance of this center to be d =
z and impose the constraints d > 0 and |y| < |z|.
We use similar definitions to find the neighbours of a
square in all 4 directions.

In case we still have more than 64 squares, meaning
there are still outliers, we try to discard them here.
For this we compute the mean coordinates of a neigh-
bour’s center with respect to a square’s local system
of coordinates. And discard the squares whose neigh-
bours are at coordinates farthest from the average.

2.3.4 Ordering squares

Now that we have identified, characterized and
aligned all 64 squares, computing also their neigh-
bours in all 4 directions, it is easy to order them by
row and column. The corners of each squares are
also roughly located and can be globally ordered in
16 rows and 16 columns. We assume that the first
row is to the top and the first column to the left in
the image. To decide what is top and left in a pos-
sibly slighly rotated pattern, we use the estimation
of the average directions of the axes of the squares,
computed earlier. Left is in the negative direction of
the first axis and top in the positive direction of the
second axis.

In order to ensure a consistent numbering of cor-
ners between several pictures of the same pattern, it
is necessary that the pattern be not rotated too much
along the line of view between the various pictures.

3 Sub-pixel feature localization

3.1 The Deriche-Giraudon algorithm

In order to refine the location of the corners found
in the previous set of operations with a low preci-
sion (about one pixel or worse) we have implemented
the theory developped by Deriche-Giraudon which is

Figure 11: The Deriche-Giraudon corner detection
algorithm.

proven to give optimal theoretical results under some
assumptions.

We will only give a short presentation of this al-
gorithm. For details and justifications one may read
[1].

The first step consists in computing the determi-
nant of the Hessian of the gaussian-filtered image, for
two different values, oy and o3, of the width of the
gaussian filter.

This is expressed as DET = Imfyy—fﬁy where I,
Iyy and Iy represent the second-order derivatives of
the gaussian filtered image.

Then, a local maximum of DET is looked for
around a given roughly detected corner, for the two
values of o. This yields two different points, a; and
ay (see figure 11), that both approximate the exact
location of the corner.

It is shown in [1] that the exact location of the
corner is along the line joining the two previous points
and that in this point the Laplacian of the image is
zero.

So, after locating the two local maxima of DET
for the two possible values of o, we find the point on
the line joining those two points where the Laplacian
of the image crosses zero.

This is straightforward implement once it is de-
cided how to compute and interpolate the needed dif-
ferential properties of the image. In fact, to compute
either of the 2 criteria DET, we need to compute
the derivatives of images. To locate a local maxi-
mum of such a criterion with sub-pixel accuracy we
need to be able to interpolate it. Same thing for the
computation of the Laplacian and the finding of its
zero-crossing with sub-pixel accuracy.

The accuracy that we can hope for when practi-
cally using the Deriche-Giraudon algorithm depends
greatly on the methods used for computing deriva-
tives and for interpolating images. No hint about
what methods are more suitable in practice is given

in [1]. So we hereafter present the methods we im-
plemented.
3.1.1 Gaussian-filtering of an image

Filtering an image I(k,!) with a Gaussian filter

G(;l‘, y) = 2o
ing I with G, which can be done in the frequency
domain by multiplication. The resulting image is

k. ST . .
=2 gimply consists in convolv-

Lk, 1) =" I(p,q)G(k—p,l - q)

p,q

3.1.2 Interpolating an image

Our choice of an image interpolation scheme was
largely based on the comprehensive presentation of
image interpolation provided by [2]. We chose to use
a cubic B-spline interpolation of images with a sup-
port of 7 pixels in each dimension of the image. We
used the code provided in [2] to efficiently compute
interpolation coefficients.

3.1.3 Computing the spatial derivatives of an
image

Given an image I(k,!l) and an interpolating function
¢ such that the interpolated value of I at coordinates

(z,y) is

I(I,y) :Zj(kal)¢($_k:y_l)

k|

one can compute the first derivative of I with respect
to x at any point as

o 99 (o —ky—1)
xr

o) = ST

(and similarly for other or higher order deriatives).

Thus, assuming the previous interpolation scheme
(cubic B-spline interpolation) one can deduce a con-
sistent way of computing derivatives of an image.

However we did not compute derivatives in this
way, because we had to compute the derivatives of
Gaussian-filtered images. In this case we can simply
compute the derivatives of the smoothed image by
convolving the initial image with the derivatives of
the Gaussian filter (which can be computed analyti-
cally). So the derivatives of the smoothed image with
respect to & would be

oL, . oG
5y k1) = > Iy,)5, (k—pl—a)

p,q

which again can be computed efficiently in the fre-
quency domain.

3.1.4 Finding a local maximum in an image

Finding a local maximum in an image is easy, but
finding it with sub-pixel accuracy is not a well-defined
problem since the location of such a local maximum
depends mainly on the interpolation scheme chosen
for the image and on the optimization procedure.
For interpolation we have chosen the afore-
mentionned cubic B-spline interpolation scheme. For
the optimization procedure we thought about a few
algorithms (e.g. gradient descent, recursive search-
ing in a 3 x 3 neighbourhood of decreasing scale).
We finally used the following iterative algorithm:

e From an estimate (z,y) of the location of the
maximum (with non-integer coordinates) com-
pute (by interpolation) the values of the image
at coordinates (z +4,y+ j) where i and j are in

{-1,0,1}

e Compute the 2-dimensional quadratic function
of (4,7) that best approximates the previous 9
interpolated values of the image

e Analytically find the local maximum of this
quadratic function and take it as the estimate of
the location of the maximum for the next step

The stopping criterion is a threshold on the dif-
ference between the estimate of the maximum at the

beginning and at the end of a step (10~° for instance).
In a few cases, there would be an oscillation between
two values. To prevent this we multiply the ampli-
tude of the correction to be made, by a factor initially
equal to one and that decreases exponentially.

In cases where the quadratic function has no ana-
lytical maximum but a minimum, we take the correc-
tion to be the opposite of the correction that would
have to be applied to move towards the minimum.

In cases where the correction to be made has either
coordinate greater than 1 (or lower than —1), we re-
duce it to so that the absolute value of its coordinates
be at most 1.

Finally, the computing of the best-fitting quadratic
function assumes a mean squared error criterion, and
the data are not all given the same weight (1 for the
central point, 0.7 for the edge points, and 0.5 for the
corner points).

3.1.5 Finding the zero-crossing of the Lapla-
cian

If a; is the estimate of the corner’s location obtained
for the smallest value of o, say o1, and as is the
estimate obtained for the largest value sigmas, the
best estimate of the corner’s location lies on the semi-
line [az, a1) and where the Laplacian of the image is
zero.

To find this point we have computed the value of
the Laplacian at point as, then found a point on the
semi-line [az,a1) where the sign of the Laplacian is
opposite to its sign at as, and found the zero-crossing
of the Laplacian by dichotomy.

Here we had a large choice of algorithms to com-
pute the Laplacian. And no doubt this choice has
an impact on the final results. For instance when
we need to value of the Laplacian in a specific loca-
tion we can directly compute the interpolated second-
order derivatives from the initial image, as explained
in 3.1.3. But we can also compute the Laplacian at
integer coordinates and then interpolate it using our
interpolation scheme. What we did is the latter, but
we did not compute the Laplacian from the image,
but from a Gaussian-filtered image (in order to re-
duce the influence on the second-order derivatives of
the noise present in the image).

10

3.2 Alternative algorithm

Zhang took advantage of the particular configuration
of corners in order to locate then with sub-pixel accu-
racy: he fitted lines to the edges of the black squares
and set the corners to be the intersection of those
lines. This accuracy of this method is as good as the
accuracy with which the lines are fitted to the edges
of the squares.

Although no technical details are given in [3] re-
garding the line-fitting process, we have implemented
it in this way:

e For each edge of each square, consider its two ex-
tremities 21 and x5 (initially taken as the rough
estimate for the location of corners)

Compute the norm of the gradient of the
Gaussian-filtered image in the direction orthog-
onal to the edge [z1, 2]

Move z; and x5 so as to maximize the correlation
between the gradient image and a Gaussian line
profile

Compute the line going through the final z; and
zo for each edge, and set the final detected cor-
ners to be the intersections of those lines

Given an edge [z1, z5] and a gradient norm image
E, the correlation between this image and a Gaussian
line profile of width o attached to the edge [¢1, 22] is
computed as

C= ZE(r)e

where z has integer coordinates and is limited
to be in the neighbourhood of the segment [1, 23]
(e.g. at most 4 or 5 pixels away from it) and where
d(z, (21, 22)) represents the distance between z and
the line (21, z2).

It is easy to analytically differentiate C' with re-
spect to 1 and z» and to maximize it using an opti-

_ d(w, (=g ,23))?

o2

mal step gradient descent algorithm (at each step we
move both z; and z5 along a direction orthogonal to
[21, 2] and we recompute the gradient norm accord-
ing to the new orientation of [#1, 2], even if it has
only slightly changed).

4 Results

The accuracy of the corner detection cannot be eval-
uated in itself except in the case of synthetic images
where the exact location of the corners is known and
can be compared with the estimated location of the
corners. Such images can be built but the validity
of the results they provide depends on the validity of
the algorithm with which they have been synthesized.
In particular we should note that while such images
are mostly black and white, pixels near the edges of
the black squares should be represented with a gray
level computed according to some algorithm which
may not exactly reflect the way images are acquired
by a real camera.

We did not evaluate the accuracy of the corner de-
tection in itself, but we did evaluate the reprojection
error after calibration with Zhang’s calibration algo-
rithm.

4.1 Calibration algorithm used

After the extraction of corners in a set of 5 images,
we feed Zhang’s calibration algorithm with this data
and get the estimated calibration parameters of the
camera with which the images have been acquired,
along with the position in 3-D space of the calibration
object for each image.

Knowing the projection parameters of the camera
and the location of the calibration object in 3-D space
(and the location of the corners of the squares drawn
on it) it is possible to project in the image the cor-
ners whose location are known in 3-D space and to
compare them with the corners estimated from the
image. This yields the so-called reprojection error.

Before proceeding with the numerical results, let
us mention that we could have used another pat-
tern (than black squares) or another algorithm simi-
lar to Zhang’s but that would also take into account
the possible tangential distortion of the camera, if
needed.

4.2 Numerical results

For the sake of comparison we have tested our two
corner extraction implementations on a set of 5 im-

ages actually used by Zhang in [3, 4]. Thus, table 1
shows the reprojection error when using corners de-
tected with 3 different algorithms on the images of
[3, 4]. In experiment 1, we simply used the corners
detected by Zhang, available on [4]. In experiment
2 we used our own implementation of a line-fitting
algorithm on Zhang’s images. In experiment 3 we
used our implementation of the Deriche-Giraudon al-
gorithm.

We have defined the reprojection error E as in [3],
that is as the square root of the mean squared error
between detected (z;) and reprojected (z}) corners:

1 Z(le _1,2_)2 — 4 /£2_|_0-2

n

F =

i

where z and o are the mean and standard deviation
of x; — &} respectively.
The parameters for the line-fitting algorithm are:

e o1: width of the Gaussian line profile to be fitted

e 05: width of the Gaussian filter applied to the
image “before” computing the gradient image

The parameters for the Deriche-Giraudon algo-
rithm are:

e o1: width of the Gaussian filter applied to the
image before computing the first DET criterion
(see 3.1)

e 05: width of the Gaussian filter applied to the
image before computing the second DET crite-
rion

e o03: width of the Gaussian filter applied to the
image before computing its Laplacian

Tables 2 and 3 respectively show results obtained
on synthetic images and on the real images of figure

1.
5 Conclusion

We have applied the Deriche-Giraudon [1] corner de-
tector to the specific problem of camera calibration,

Exp. 1 Exp. 2 Exp. 3
Image Set | Zhang Zhang Zhang
Corner Zhang Line- Deriche-
Detection Fitting Giraudon
gy = 1.0 g = 1.3
09 = 2.0 g9 = 3.9
g3 = 3.6
Image 1 0.35 0.33 0.23
Image 2 0.23 0.25 0.28
Image 3 0.54 0.52 0.37
Image 4 0.24 0.26 0.22
Image 5 0.21 0.23 0.31

Table 1: Square root of the mean squared reprojec-
tion error for Zhang’s images. Our implementation of
the line-fitting algorithm gave results comparable to
those obtained by Zhang. Our implementation of the
Deriche-Giraudon algorithm did not give significantly
better results and required intensive fine-tuning.

Exp. 4 Exp. 5
Image Set | Synthetic | Synthetic
Corner Line- Deriche-
Detection | Fitting Giraudon

g = 0.9 g = 0.9

g9 = 0.9 g9 = 3.7

g3 = 3.7

Image 1 0.083 0.100
Image 2 0.082 0.098
Image 3 0.083 0.099
Image 4 0.082 0.098
Image 5 0.007 0.023

Table 2: Square root of the mean squared reprojec-
tion error for our synthetic images. The results are
better than for the previous real images since the
noise in synthetic images is only due to sampling and
anti-aliasing algorithms and there were no lens dis-
tortion in the virtual camera.

and to the even more specific problem of camera cal-
ibration using images of a plane object on which is
drawn a pattern consisting of black squares as de-

scribed in [3, 4].

While implementing the corner detector we have

Exp. 6 Exp. 7
Image Set | Real Real
Corner Line- Deriche-
Detection | Fitting Giraudon

gy = 0.9 g = 1.0

09 = 0.9 g9 = 3.0

g3 = 2.0

Image 1 0.09 0.15
Image 2 0.17 0.34
Image 3 0.11 0.31
Image 4 0.23 0.33
Image 5 0.17 0.20

Table 3: Square root of the mean squared reprojec-
tion error for our real images. The results are much
better than with Zhang’s images in the case of line-
fitting and are similar in the case of the Deriche-
Giraudon algorithm. In fact those real images are
of much better quality than those used by Zhang.

noticed that the choice of the interpolation algorithm
was very important and [1] gives no hint about it. In
the light of [2] which provides a thorough study of
interpolation in the context of images, we have chosen
to use a cubic B-spline interpolation.

We compared our implementation of the Deriche-
Giraudon algorithm with an implementation of a line-
fitting algorithm that takes advantage of the partic-
ular configuration of the corners to detect in order to
detect them with sub-pixel accuracy.

The results of both methods, in terms of repro-
Jection error on real images, are comparable on low
quality images. On images of higher quality, the line-
fitting method is better, while the results of our im-
plementation of the Deriche-Giraudon algorithm re-
main almost the same. This might indicate that the
Deriche-Giraudon algorithm is limited by the choice
that have to be made in its practical implementa-
tion (choice of image interpolation scheme, choice of
derivatives computation scheme). In that case work
should be directed towards experimenting what im-
plementation choices give the best results. Those op-
timal choice certainly depend partly on the image
acquisition device.

Finally, we have presented a fully automatic

12

scheme for roughly locating the corners in the specific
pattern used for camera calibration. This is necessary
before using any sub-pixel localization refinement al-
gorithm, and this is not provided in [4].

References

[1] R. Deriche, G. Giraudon, A Computational Ap-
proach for Corner and Vertex Detection, 1JCV,
10-2, pp. 101-124, 1993.

[2] P. Thévenaz, T. Blu, M. Unser, Image
Interpolation and Resampling, Swiss Fed-
eral Institute of Technology, Lausanne,
http://bigwww.epfl.ch/publications
/thevenaz9901.html

[3] Z. Zhang, A flexible new technique for camera
calibration, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 22(11):1330-1334,
2000.

[4] A Flexible New Technique for Camera Cal-
ibration, http://research.microsoft.com
/~zhang/calib/

13

