SOBA: Session optimal MDP-based network friendly recommendations

Giannakas, Theodoros; Giovanidis, Anastasios; Spyropoulos, Thrasyvoulos
INFOCOM 2021, IEEE International Conference on Computer Communications, 10-13 May 2021, Vancouver, Canada (Virtual Conference)

Caching content over CDNs or at the network edge has been solidified as a means to improve network cost and offer better streaming experience to users. Furthermore, nudging the users towards low-cost content has recently gained momentum as a strategy to boost network performance. We focus on the problem of optimal policy design for Network Friendly Recommendations (NFR). We depart from recent modeling attempts, and propose a Markov Decision Process (MDP) formulation. MDPs offer a unified framework that can model a user with random session length. As it turns out, many state-of-the-art approaches can be cast as subcases of our MDP formulation. Moreover, the approach offers flexibility to model users who are reactive to the quality of the received recommendations. In terms of performance, for users consuming an arbitrary number of contents in sequence, we show theoretically and using extensive validation over real traces that the MDP approach outperforms myopic algorithms both in session cost as well as in offered recommendation quality. Finally, even compared to optimal state-of-art algorithms targeting specific subcases, our MDP framework is significantly more efficient, speeding the execution time by a factor of 10, and enjoying better scaling with the content catalog and recommendation batch sizes.

 
 

DOI
HAL
Type:
Conférence
City:
Vancouver
Date:
2021-05-13
Department:
Systèmes de Communication
Eurecom Ref:
6429
Copyright:
© 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/6429