Security architectures for network slice management for 5G and beyond

Ben Saad, Sabra
Thesis

Network slicing architecture, enabled by new technologies such as Network Functions Virtualization (NFV) and Software-Defined Networking (SDN), is one of the main pillars of Fifth-generation and Beyond (B5G). In B5G settings, the number of coexisting slices with varying degrees of complexity and very diverse lifespans, resource requirements, and performance targets is expected to explode. This creates significant challenges towards zero-touch slice management and orchestration, including security, fault management, and trust. In addition, network slicing opens the business market to new stakeholders, namely the vertical or tenant, the network slice provider, and the infrastructure provider. In this context, there is a need to ensure not only a secure interaction between these actors, but also that each actor delivers the expected service to meet the network slice requirements. Therefore, new trust architectures should be designed, which are able to identify/detect the new forms of slicing-related attacks in real-time, while securely and automatically managing Service Level Agreements (SLA) among the involved actors. In this thesis, we devise new security architectures tailored to network slicing ready networks (B5G), heavily relying on blockchain and Artificial Intelligence (AI) to enable secure and trust network slicing management.

HAL
Type:
Thèse
Date:
2023-02-17
Department:
Systèmes de Communication
Eurecom Ref:
7177
Copyright:
© EURECOM. Personal use of this material is permitted. The definitive version of this paper was published in Thesis and is available at :
See also:

PERMALINK : https://www.eurecom.fr/publication/7177