Maximizing the spectral efficiency of coded CDMA under successive decoding

Caire, Giuseppe; Guemghar, Souad; Roumy, Aline; Verdu, Sergio
IEEE Transactions on Information Theory, Volume 50, N°1, January 2004

We investigate the spectral efficiency achievable by random synchronous code-division multiple access (CDMA) with quaternary phase-shift keying (QPSK) modulation and binary error-control codes, in the large system limit where the number of users, the spreading factor, and the code block length go to infinity. For given codes, we maximize spectral efficiency assuming a minimum mean-square error (MMSE) successive stripping decoder for the cases of equal rate and equal power users. In both cases, the maximization of spectral efficiency can be formulated as a linear program and admits a simple closed-form solution that can be readily interpreted in terms of power and rate control. We provide examples of the proposed optimization methods based on off-the-shelf low-density parity-check (LDPC) codes and we investigate by simulation the performance of practical systems with finite code block length.


DOI
Type:
Journal
Date:
2004-01-01
Department:
Communication systems
Eurecom Ref:
1091
Copyright:
© 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
See also:

PERMALINK : https://www.eurecom.fr/publication/1091