Trustworthy semantic-enabled 6G communication: A task-oriented and privacy-preserving perspective

Guo, Shuaishuai; Zhang, Anbang; Wang, Yanhu; Feng, Chenyuan; Quek, Tony Q. S.
IEEE Wireless Communication (WCM), 31 July 2024

Trustworthy task-oriented semantic communication (ToSC) emerges as an innovative approach in the 6G landscape, characterized by the transmission of only vital information that is directly pertinent to a specific task. While ToSC offers an efficient mode of communication, it concurrently raises concerns regarding privacy, as sophisticated adversaries might possess the capability to reconstruct the original data from the transmitted features. This article provides an in-depth analysis of privacy-preserving strategies specifically designed for ToSC relying on deep neural network-based joint source and channel coding (DeepJSCC). The study encompasses a detailed comparative assessment of trustworthy feature perturbation methods such as differential privacy and encryption, alongside intrinsic security incorporation approaches like adversarial learning to train the JSCC and learning-based vector quantization (LBVQ). This comparative analysis underscores the integration of advanced explainable learning algorithms into communication systems, positing a new benchmark for privacy standards in the forth-coming 6G era.


Type:
Journal
Date:
2024-07-31
Department:
Communication systems
Eurecom Ref:
7852
Copyright:
© 2024 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
See also:

PERMALINK : https://www.eurecom.fr/publication/7852